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1. Introduction 
 

Recent researches have revealed that Graphene exhibits 

exceptional electronic and mechanical properties due to its 

unique atomic structure. These phenomenal characteristics 

of Graphene can be exploited thoroughly in various nano-

engineering applications such as sensors, actuators, energy 

harvesters, micro-electro mechanical systems (MEMS) etc. 

Due to its tremendous engineering applications, much of the 

focus is placed on the vibration and wave propagation 

analysis of graphene structures in nano-engineering. As a 

matter of fact, that the graphene sheets are sufficiently small 

(nano scale), it is very much necessary to consider the 

effects of length scale in order to apply classical models of 

elasticity. It cannot be denied that the mechanical responses 

of nanostructures are different in contrast to the 

macrostructures. Therefore, in the recent years, a severe 

tendency is observed in the research society to accurately 

assess the mechanical responses of nanostructures. In this 

regard, the size-dependent nonlocal continuum models and 

various theories are proved to be efficient and beneficial. 

For the first time, Eringen put forward the first nonlocal 

theory, called nonlocal elasticity theory (NET), to take into 

consideration the size-dependency of nanostructures 

(Eringen 1972, 1983). In his research, Eringen pointed 
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that stress state at each desired point in a solid body is 

affected by two main variants; first, the strain in that point, 

and second, strain in all other neighboring points. This 

theory is broadly applied in many papers dealing with the 

mechanical behavior of nano-structures. 

Many pioneers have exploited the benefit of NET and 

highlighted its significance for wave propagation analysis 

(Wang and Varadan 2007, Wang et al. 2010, Narendar and 

Gopalakrishnan 2012a, b), free vibration analysis 

(Malekzadeh et al. 2011, Eltaher et al. 2013, Ebrahimi and 

Salari 2015b) and bending and buckling analysis )Aydogdu 

2009) of various nano structures. Ebrahimi and his co-

workers utilized the NET to investigate the mechanical 

responses of size-dependent beams and plates subjected to 

various external load (Ebrahimi and Salari 2015, Ebrahimi 

et al. 2016b, 2017, Ebrahimi and Dabbagh 2017b,c, 

Ebrahimi and Barati 2017). Even though the enormous use 

of the NET for investigating the mechanical responses of 

tiny structures has been witnessed, there are some 

drawbacks associated with this theory based on the 

experiments (Fleck and Hutchinson 1993, Lam et al. 2003). 

Meanwhile, Lam et al. (2003) showed the crucial role of 

elastic strain gradient in the size-dependent responses of 

small structures. Further, NET considers only the stiffness 

softening effect. Also, NET fails to incorporate stiffness-

hardening effect by introducing the length scale parameter. 

Lately, Lim et al. (2015) presented a new nonlocal 

continuum theory, named nonlocal strain gradient theory 

(NSGT), to account for the small scale influences precisely. 
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In this theory, both of the previous behaviors discussed by 

Eringen (1972, 1983) and Lam et al. (2003) are covered. In 

addition, the stress field of NSGT accounts for not only the 

nonlocal stress field but also the strain gradient stress field. 

Also, Lim et al. (2015) justified the credibility of this theory 

by analyzing the wave dispersion responses of CNTs. This 

paved way for further works as many researchers attempted 

to use this theory for studying the mechanical response of 

nanostructures. The solution to evaluate the buckling 

problem of nanobeams and nano plates through NSGT was 

proposed by Li and Hu (2015) and Farajpour et al. (2016), 

respectively. The wave dispersion properties of nano-beams 

and –plates are investigated in detail in the framework of 

the NSGT by Ebrahimi and his co-workers (Ebrahimi et al. 

2016a, Ebrahimi and Dabbagh 2017a). Most recently, 

Ebrahimi and Barati (2018) developed a NSGT to analyze 

the vibration problem of an axially functionally graded 

nanobeam. Khelifa et al. (2018) explored the buckling 

response with stretching effect of carbon nanotube-

reinforced composite beams resting on elastic foundation. 

In another work, Bending and free vibration analysis of FG 

plates was investigated by Bellifa et al. (2016) using a 

simple shear deformation theory and the concept the neutral 

surface position. Ould Larbi (2018) presented an analytical 

solution for free vibration of functionally graded beam 

using a simple first-order shear deformation theory while 

Zouatnia et al. (2017) presented an analytical solution for 

bending and vibration responses of functionally graded 

beams with porosities. Recently, Hadji et al. (2018) 

employed a new quasi-3D higher shear deformation theory 

for vibration of functionally graded carbon nanotube-

reinforced composite beams resting on elastic foundation. A 

new higher order and sinusoidal shear deformation model 

was introduced by Hadji et al. (2017a) for functionally 

graded beams and plates. 

Parallelly, it was evident from the researches that a large 

variety of carbon based structures such as CNTs, carbon 

nanocones and nanorings can be achieved by generating 

some controlled distortions in single-layered graphene 

sheets (SLGSs) (Ghorbanpour Arani and Jalaei 2016). In 

addition, graphene sheets encompass some superiorities 

compared with other small size structures made of many 

various types of materials like higher elastic potential (Lee 

et al. 2008) and larger thermal conductivity (Seol et al. 

2010). Owing to the beneficial properties of SLGS, it 

becomes crucial to thoroughly explore and understand the 

mechanical responses of SLGS structures under the 

influence of various external loadings (Murmu and Pradhan 

2009, Pradhan and Murmu 2010, Pradhan and Kumar 2011, 

Rouhi and Ansari 2012). Also, the effect of external 

magnetic field on the vibration characteristics of SLGS was 

studied by Murmu et al. (2013) and Ghorbanpour Arani et 

al. (2016). Meanwhile, Zenkour (2016) surveyed the 

transient vibration problem of a SLGS rested on a 

viscoelastic foundation. Influence of initial shear stress is 

regarded by Ebrahimi and Shafiei (2017) analyzing 

vibrational characteristics of SLGSs rested on Winkler-

Pasternak foundation. 

Literature review reveals a surge inclination in the 

research society investigating the vibration and buckling 

analysis of SLGSs, whereas, the wave propagation answers 

are available in scarce. However, the prominent applications 

of wave propagation-based methods in many industrial 

applications satisfy everybody to pay more attention to the 

wave propagation analysis of mechanical elements. Lately, 

more time and energy effort are allocated to the 

investigation of wave propagation responses of SLGSs. For 

example, size-dependent mechanical properties of 

propagating waves in graphene sheets are exactly studied by 

Arash et al. (2012) by the means of the nonlocal elasticity. 

Also, Liu and Yang (2012) employed a nonlocal model to 

investigate the wave propagation problem of an embedded 

isotropic graphene sheet. Hadji et al. (2017b) presented the 

wave propagation in functionally graded beams using 

various higher-order shear deformation beams theories. 

Most recently, Xiao et al. (2017) presented a nonlocal strain 

gradient based theory to examine wave propagation 

behaviors of viscoelastic monolayer graphene sheets. 

From the exhaustive literature survey, it is clear that 

wave propagation behavior of NSG based SLGSs with 

respect to the effects of the induced Lorentz force has not 

been studied hitherto. In this regard, the present work 

makes the first attempt. The graphene sheet is modeled via 

a refined higher-order two-variable plate theory. Also, 

NSGT is utilized in order to describe the small-scale effects 

in detail by capturing both stiffness-softening and –

hardening impacts. Moreover, SLGS is assumed to be 

rested on a two-parameter elastic medium. Maxwell's 

equation is satisfied in the x axis and the generated Lorentz 

force is calculated. In addition, the principle of virtual work 

is employed to derive the Euler-Lagrange equations. 

Afterwards, the obtained differential equations are 

incorporated with those on the NSGT to develop the 

nonlocal governing equations of SLGSs. In the framework 

of an analytical exponential solution procedure, the wave 

frequency, phase velocity and escape frequencies are 

achieved.  
 

 

2. Theory and formulation 
 

2.1 Kinematic relations 
 

Present part is devoted to describing the kinematic 

behaviors of graphene sheets. The schematic of an 

embedded SLGS can be seen in Fig. 1. In order to capture 

shear deformation effects, a refined trigonometric two-

variable plate theory is utilized. Thus, the displacement 

fields can be written as: 
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where wb and ws are bending and shear deflections in the 

thickness direction, respectively. Also, f(z) is a shape 
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function that estimates shear stress and shear strain. In the 

present theory, a trigonometric function is used as follows 
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in above equation, h is plate’s thickness. Now, the 

nonzero strains can be stated as follows 
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in Eq. (5), g(z) can be stated as 

( )
( ) 1-

df z
g z

dz
=

 

(6) 

Besides, the Hamilton’s principle can be defined as 

0
( - ) 0

t

U T V dt + =
 

(7) 

in which U is strain energy, T is kinetic energy and V is 

work done by external loads. The variation of strain energy 

can be calculated as 
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Substituting Eq. (5) in Eq. (8) reveals 
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in Eq. (9) the unknown parameters can be defined in the 

following form 
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Furthermore, work done by external forces can be 

divided in two parts; one part is generated due to the elastic 

medium and another one is the external work of Lorentz 

force induced by the magnetic field. Indeed, the SLGS is 

presumed to be subjected to a longitudinal steady magnetic 

field with the intensity of H0. Hence, the exerted body force 

produced by this field can be formulated as follows 
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(11) 

in which η, , h and J are the magnetic permeability of 

SLGS, gradient operator, small disturbance of applied 

magnetic field and current density vector, respectively. 

Here, the magnetic field can be expressed as follows 

0 x x
ˆH H i=  (12) 

where, δ is the Kronecker delta tensor. Inserting Eqs. (1) 

to (3) in Eq. (11), the applied Lorentz forces per unit 

volume can be written as 
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Furthermore, the resultant Lorentz’s forces can be 

written in the following form 
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Thus, the work done by external forces can be expressed 

as 
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where kw and kp are Winkler and Pasternak coefficients. 

The variation of the kinetic energy should be written as 
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in which 
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Inserting Eqs. (9), (15) and (16) in Eq. (7) and setting 

the coefficients of δwb and δws to zero, the Euler-Lagrange 
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equations of GSs can be rewritten as 
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2.2 The nonlocal strain gradient theory 
 

According to the nonlocal strain gradient theory, the 

stress field takes into consider the effects of nonlocal elastic 

stress field besides strain gradient stress field. So, the theory 

can be expressed as follows for elastic solids 

(1)
(0) i j

i j i j

d

dx


 = −  

(20) 

in above equation, the stresses 𝜎𝑥𝑥
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 (classical stress) 

and 𝜎𝑥𝑥
(1)

 (higher-order stress) are corresponding to strain 

εxx and strain gradient εxx,x, respectively as follows 
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in which Cijkl is the elastic coefficient; e0a and e1a are 

introduced to account for the nonlocality effects. Also, l 

captures the strain gradient effects. Once the nonlocal 

kernel functions α0(x,x′,e0a) and α1(x,x′,e1a) satisfy the 

developed conditions, the constitutive relation of nonlocal 

strain gradient theory can be expressed as below 
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in which 2 denotes the Laplacian operator. Considering 

e0=e1=e, the general constitutive relation in Eq. (22) 

becomes 
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Finally, the simplified constitutive relation can be 

written as follows 
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in above equation 
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where µ=e0aandλ=l. Substituting Eq. (10) in Eq. (24) 

gives 
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 (28) 

in Eqs. (26) to (28), the cross-sectional rigidities can be 
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formulated as follows 
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By substituting Eqs. (26) to (28) in Eqs. (18) and (19), 

the nonlocal governing equations of SLGSs can be directly 

derived in terms of displacements as follows 
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(32) 

 

 

3. Analytical solution 
 

In this part, the nonlocal governing equations derived in 

previous section are going to be solved analytically. The 

displacement fields are assumed to be exponential and can 

be defined as follows 

( )

( )
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1 2
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bb

s s

W i x y tw x y t
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 (33) 

where Wb and Ws are the unknown coefficients; β1 and 

β2 are the wave numbers of wave propagation along x and y 

directions respectively, and finally ω is wave’s angular 

frequency. Now, substituting Eq. (33) to Eqs. (31) and (32) 

results 

   ( )   2

2 2 2 2
0K M

 
−  =  (34) 

The unknown parameters of Eq. (34) can be noted as 

follows 

   ,
T

b sW W =  (35) 

In order to attaining wave’s angular frequency, the 

determinant of the left hand side of Eq. (34) should be set to 

zero 

   2

2 2 2 2
0K M

 
− =  (36) 

In above equation by setting β1= β2= β and solving the 

obtained equation for ω, the wave’s angular frequency of 

embedded SLGSs can be calculated. If the angular 

frequency is divided by wave number, the phase velocity 

can be obtained as below 

pc



=  (37) 

Also, the escape frequency of graphene sheet can be 

derived by tending wave number to infinity 

lim
2

escf




→
=  (1) 

 

 

4. Numerical results and discussion 
 

Herein, the wave propagation responses of SLGSs are 

compared once various parameters are supposed to be 

changed. The mechanical material properties of graphene 

sheets are: E=1 TPa, ν=0.19, ρ=2300 kg/m3. Also, the 

thickness is presumed to beh=0.34 nm. In the following 

diagrams wave frequencies are calculated by dividing 

wave’s angular frequency to 2π. Moreover, the validity of 

reported results is proven setting a comparison between 

results of present research with those of antecedent 

works.Fig. 2 is allocated to show the effects of both 

nonlocal and length scale parameters by plotting the 

variations of wave frequency versus wave number for 

different values of these parameters. Revealed from the 

diagram, nonlocal parameter is able to decrease the wave 

frequency once it is increased. Indeed, this effect which is 

named the stiffness-softening effect results in lowering 

wave frequency in wave numbers higher than β = 3×109. In 

return, length scale parameter affects wave frequency in a 

 

 

Table 1 Comparison of frequency of FG nanoplates for 

various nonlocal parameter (p=5) 

µ a/h=10   a/h=20  

 
Natarajan et al. 

(2012) 
present  

Natarajan et al. 

(2012) 
present 

0 0.0441 0.043803  0.0113 0.011255 

1 0.0403 0.040051  0.0103 0.010288 

2 0.0374 0.037123  0.0096 0.009534 

4 0.033 0.032791  0.0085 0.008418 
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Fig. 2 Variation of wave frequency versus wave number 

for different nonlocal and length scale parameters (kw= kp 

=0, Hx=0)  

 

 

(a) λ<µ 
 

 

completely different way. Actually, a raise in the amount of 

wave frequency can be observed once greater length scale 

parameters are utilized. This increasing influence is named 

stiffness-hardening influence which has enough potential to 

strengthen the wave frequency values enormously. 

 

 

(b) λ=µ 

 

(c) λ>µ 

Fig. 3 Variation of phase velocity versus wave number for 

various values of magnetic field intensity at (a) λ<µ, (b) 

λ=µ and (c) λ>µ (kw = kp = 0). 

 

 
Moreover, influence of magnetic field intensity is shown 

in Fig. 3. In this figure, variation of phase velocity versus 

 
Fig. 1 Geometry of a single-layered graphene sheet rested on Winkler-Pasternak foundation. 
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wave number is plotted for three main conditions (λ<µ, λ=µ 
and λ>µ) once magnetic field intensity is assumed to be 
changed. The main similarity between these three major 
situations is the increasing influence of magnetic field 
intensity on the phase velocity of graphene sheets. As a 
matter of fact, phase velocity can be aggrandized by 
applying higher amounts of magnetic field intensity. In the 
case of λ<µ, phase velocity decreases continuously in each 
amount of magnetic field intensity. Moreover, whenever an 
equal amount is devoted to nonlocal and length scale 
parameters ( = ), phase velocity has a constant value in 
all wave numbers once magnetic field intensity is set to 
zero; however, this variant experiences a decreasing trend in 
nonzero values of magnetic field intensity. Besides, 
whenever λ>µ, phase velocity remains constant at first and 
then increases gradually once magnetic field intensity is set 
to zero. 

In addition, Fig. 4 is depicted in order to magnify the 
influences of Winkler coefficient on the phase velocity of 
SLGSs for three major conditions (λ<µ, λ=µ and λ>µ). It is 
clear that Winkler coefficient affects phase velocity 
amounts once wave number is assumed to be smaller than β 
= 0.04×109. Obviously, this parameter is powerful enough 
to motivate phase velocity values in the mentioned range of 
wave numbers. On the other hand, it is of significance to 
advert that phase velocity's behavior is a bit different in 
higher wave numbers once nonlocal and length scale 
parameters are supposed to obtain various amounts 
compared to each other. Precisely, phase velocity 
experiences a decreasing, unchangeable and increasing 
trend in the high wave numbers in the cases of λ<µ, λ=µ 
and λ>µ, respectively.  

Now, it is turn to highlight the effects of nonlinear 

foundation parameter on the phase velocity of SLGSs for 

the same major conditions (λ<µ, λ=µ and λ>µ). Based on 

the Fig. 5, it shall be regarded that effects of Pasternak 

coefficient can be well observed in a wide range of wave 

numbers. Clearly, higher phase velocity amounts are 

achieved if greater Pasternak coefficients are employed. 

Moreover, it is clear to everybody that size-dependent 

behavior of SLGSs is happened in this diagram in the same 

form as occurred in the previous figure. In other words, 

once Pasternak coefficient is set to zero (kp=0), wave 

responses of SLGSs in high wave numbers are hugely 

influenced by the ratio of nonlocal to length scale 

parameters. It is worth remarking that phase velocity shows 

a similar response in each of the three main cases once 

Pasternak parameter is obtained a nonzero value (kp≠0). In 

fact, in this condition (kp≠0), phase velocity achieves a 

same amount in the beginning and then starts a continuous 

decrease to its final value. Finally, coupled influences of 

nonlocal and length scale parameters are covered by 

plotting the variation of escape frequency versus nonlocal 

parameter for various length scale parameters in Fig. 6. In 

this diagram, it is avoided to use numerical nonzero 

amounts for other participant parameters because these 

parameters are not able to affect escape frequency (  →). 

Herein, previous results are confirmed again. Actually, it is 

clear that escape frequency goes through a gradual 

decreasing trend as nonlocality increases. However, escape 

frequency can be amplified by applying higher amounts for 

length scale parameters.  

 

(a) λ<µ 

 
(b) λ=µ 

 

(c) λ>µ 

Fig. 4 4 Variation of phase velocity versus wave number 

for various values of Winkler coefficient at (a) λ<µ, (b) 

λ=µ and (c) λ>µ (kp=0, Hx=0) 
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Fig. 6 Variation of escape frequency versus nonlocal 

parameter for various values of length scale parameter 

(kw= kp =0, Hx=0) 

 

 

 

5. Conclusions 
 

In this paper, wave propagation responses of SLGSs 

subjected to longitudinal magnetic field are studied in the 

framework of a refined two-variable plate theory 

incorporated with the NSGT. SLGS is considered to be 

rested on an elastic substrate including linear and nonlinear 

constants. The governing equations are derived applying a 

Hamiltonian approach with respect to the Lorentz force 

induced by the magnetic field. In the present part, a review 

is performed to highlight the most significant influences as 

follows: 

• Wave dispersion responses of SLGSs can be 

amplified employing either lower nonlocal parameters or 

higher length scale parameters. 

• Winkler parameter can generate an increase in the 

 
 

(a) λ<µ (b) λ=µ 

 

(c) λ>µ 

Fig. 5 Variation of phase velocity versus wave number for various values of Pasternak coefficient at (a) λ<µ, (b) λ=µ and (c) 

λ>µ (kw=0, Hx=0) 
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value of phase velocity in a limited small range of wave 

numbers, roughly within 
90 04 10. =  . 

• As same as Winkler parameter, Pasternak 

coefficient has enough potential to intensify phase velocity 

values. However, effect of this parameter is not limited to 

small wave numbers and can be observed in high wave 

numbers too. 

• Greater phase velocity amounts can be obtained 

once nonzero values are allotted to the magnetic field 

intensity compared to the condition in which this parameter 

is set to zero. 

• Behavior of phase velocity is different in the 

cases of various length scale parameters. Phase velocity 

passes through a decreasing, constant and increasing path in 

high wave numbers when λ<µ, λ=µ and λ>µ, respectively. 

• Escape frequency diminishes gradually as 

nonlocality increases. Also, higher escape frequencies can 

be achieved by utilizing greater length scale parameters. 
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