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1. Introduction 
 

The vibration of continuous systems is always 

encountered in engineering practices. According to the 

history of structural dynamics, Bernoulli-Euler, Rayleigh 

and Timoshenko beams theories have been proposed for 

characterization of elastic beams vibration. These classical 

continuum mechanics theories provide good results for 

flapwise bending vibration of the rotating beams. Rotating 

beam structures are often used in engineering models like 

helicopter and turbine blades. In order to build such 

structures, their natural frequencies and mode shapes need 

to be calculated accurately. These properties of rotating 

flexible structures differ significantly from those of non-

rotating flexible structures. Centrifugal force due to angular 

velocity of the blades results in the variation of bending 

stiffness, which can change the natural frequencies and 

mode shapes of blades vibration. Also, experimental 

investigations has proved that the classical beam theories 

are incapable of predicting mechanical behavior of 

structures in micron scale due to their size-dependency. In 

order to investigate the size-dependency effects, Eringen 

nonlocal elasticity theory has been proposed. In this theory, 

the stress at a reference point is a functional of the strain  
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field at every point of the domain. In recent years, structural 

elements such as bars, beams, and plates on micro- or 

nanoscale have often been used as components in micro- or 

nanoelectromechanical system. Many continuum mechanics 

approaches are often employed to study the mechanical 

behavior of micro- or nanoscale structures. The nonlocal 

elasticity theory is a modified classical elasticity theory 

which often applied to analyze the vibration behavior of 

nanostructures (Lee and Chang 2010). 

The size-dependency effects of nanobeams have been 

investigated by nonlocal continuum theory (Eltaher et al. 

2012, Eltaher et al. 2013-a, Nguyen et al. 2015). The 

buckling behaviors of nonlocal functionally graded (FG) 

Timoshenko and Euler–Bernoulli beams have been studied 

(Eltaher et al. 2014, Emam 2013, Ghannadpour et al. 2013, 

Eltaher et al. 2013-b, Thai 2012, Thai and Vo 2012). The 

dynamic characteristics of damped viscoelastic nonlocal 

beams have been investigated (Adhikari et al. 2013, Murmu 

et al. 2013). The bending, vibration and buckling of 

nonlocal elastic nanoplates have been studied (Phadikar and 
Pradhan 2010). By applying the weak form equations, 

flapwise frequency analysis of the rotating microbeams 

connected to a hub by incorporating size effect phenomena 

has been investigated (Dehrouyeh-Semnani 2015). Free 

vibration of the rotating tapered cantilever beams with 

rotatory inertia has been studied and the integral equation 

method has been proposed to determine the natural 

frequencies (Tang et al. 2015). The dynamic stiffness 

method for free vibration analysis of a rotating tapered 

Rayleigh beam has been developed. The effects of 

centrifugal stiffening, an outboard force, an arbitrary hub 
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radius and the rotatory inertia (Rayleigh beam) have been 

included in the analysis (Banerjee and Jackson 2013). A 

comprehensive dynamic model of a rotating hub–

functionally graded material (FGM) beam system has been 

developed based on a rigid–flexible coupled dynamics 

theory. The dynamic stiffening effect of the rotating hub–

FGM beam system has been captured by a second-order 

coupling term that represents longitudinal shrinking of the 

beam caused by the transverse displacement (Li et al. 

2014). The nonlinear von Karman strain and the 

corresponding linear stress have been used to consider the 

stiffening effect due to rotation of a rotating cantilever beam 

(Kim et al. 2013). Using the power series solution, the 

natural frequency of the flapwise bending vibration, and 

coupled lagwise bending and axial vibration has been 

investigated for the rotating Euler beams (Huang et al. 

2010). The governing differential equation of the rotating 

beam has been reduced to that of a stiff string by 

assumption of the constant centrifugal force. The solution 

has been enhanced with a polynomial term and has been 

used in the Rayleigh’s method (Ganesh and Ganguli 2013). 

The flapwise bending free vibration problem for rotating 

nano-tubes has been investigated. The small scale effects on 

the nanotube model have been investigated based on the 

nonlocal elasticity theory. In this model the effects of 

transverse shear deformation and rotatory inertia have been 

accounted (Narendar 2012). The small scale effect on axial 

vibration of non-uniform and non-homogeneous nanorods 

has been studied by using the theory of nonlocal elasticity 

(Chang 2013). Using differential quadrature method, free 

vibration of nanobeams based on different beam theories 

like Euler–Bernoulli, Timoshenko, Reddy and Levinson in 

conjunction with nonlocal elasticity theory have been 

investigated (Behera and Chakraverty 2015). The natural 

frequencies of the flapwise bending vibrations of a non-

uniform rotating nanocantilever has been calculated, 

considering the true spatial variation of the axial force due 

to the rotation (Aranda-Ruiz et al. 2012). The flapwise 

bending–vibration characteristics of a rotating 

nanocantilever have been investigated. Employing 

Eringen’s nonlocal elasticity theory and differential 

quadrature method, the nondimensional nonlocal 

frequencies have been obtained (Pradhan and Murmu 

2010). Using three-dimensional nonlocal elasticity theory of 

Eringen, the closed-form solutions have been presented for 

in-plane and out-of-plane free vibration of simply supported 

functionally graded (FG) rectangular micro/nano plates 

(Salehipour et al. 2014). Using nonlocal elasticity theory, 

the buckling and vibration of nanoplates have been 

investigated (Aksencer and Aydogdu 2011). Using the 

nonlocal elastic theory, the natural frequency of a 

nonuniform nanocantilever beam with consideration of 

surface effects has been studied (Lee and Chang 2010). 

Using nonlocal elasticity theory and differential quadrature 

method, the vibration response of nanocantilever with non-

uniformity in the cross sections has been investigated 

(Murmu and Pradhan 2009). Nonlocal elastic rod model has 

been developed and has been applied to investigate the 

small-scale effect on axial vibration of nanorods (Aydogdu 

2009). The weak form integral equations have been 

developed for free vibration analysis of non-prismatic 

Euler–Bernoulli and Rayleigh beams under variable axial 

force, non-prismatic shear beam, axial vibration of a non-

prismatic bar with and without end discrete spring, torsional 

vibration of a bar with an attached mass moment of inertia, 

flexural vibration of the beam with laterally distributed 

elastic springs and buckling analysis of non-prismatic 

beams (Mohammadnejad 2015, Saffari et al. 2012, Saffari 

and Mohammadnejad 2015). A closed form solution for 

both natural frequency and buckling load of nonlocal FG 

beams resting on nonlinear elastic foundation has been 

presented (Niknam and Aghdam 2014). A modified 

nonlocal theory of Eringen has been proposed for analysis 

of functionally graded (FG) materials at micro/nano scale 

(Salehipour et al. 2015). Bending, buckling, vibrations, and 

wave propagation of nanobeams modeled according to the 

nonlocal elasticity theory of Eringen have been investigated 

(Eltaher, et al. 2016). A modified functionally graded beam 

theory based on the neutral axis has been exploited to 

investigate natural frequencies of macro/nanobeams 

(Eltaher, et al. 2013). The resonance frequencies of size 

dependent regular square perforated nonlocal nanobeam has 

been studied (Eltaher, et al. 2018). The free vibration of 

nonlinear material graduations of a nanobeam based on the 

nonlocal Timoshenko theory using finite element method 

has been investigated (Eltaher, et al. 2014). Mechanical 

behaviors of size-dependent nanobeams on the basis of the 

higher order gradient model has been investigated (Eltaher, 

et al. 2014). 

In this paper, the weak form integral equations for 

flapwise bending vibration analysis of the rotating beams 

are developed. Rayleigh beam theory is used to investigate 

flapwise bending vibration of the rotating beams with 

rotatory inertia effects. After this, Size-dependency effects 

are investigated using Eringen nonlocal elasticity theory. 

The governing differential equation for free vibration of a 

beam with variable stiffness and mass is a partial 

differential equation with variable coefficients. Many 

mathematical techniques may be employed to determine the 

numerical solution or the approximate solution for this 

equation. The presented approach in this paper for 

conversion of the governing partial differential equation 

into solvable one is based on the conversion of the 

governing equation into its weak form. A differential 

equation includes a function and its derivatives. The weak 

form of the differential equation is obtained through the 

repetitive integration of the initial equation. The integration 

continues till the resulting integral equation, includes only 

the function itself after the last integration stage; derivatives 

of the function will have been eliminated due to the 

integration. The solution of the weak form of the 

differential equation instead of the initial equation has many 

applications in the finite elements analysis. 

Free vibration analysis of the rotating beams includes 

two general fields such as the finite elements approach (or 

numerical approach) and approximate analytical approach. 

The finite element approach and numerical approach are 

based on the discrete model and have to solve thousands of 

linear simultaneous equations to give quantitative results in 

detail. So they are a powerful tool for analysis and design at  
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Fig. 1 Flapwise bending vibration of the rotating tapered 

Rayleigh beam 
 

 

the detailed and final design stage. Presented method in this 

paper is an analytical approximate method based continuum 

approach that gives insight into characteristics of free 

vibration. It is simple and accurate enough that can be 

routinely used for the preliminary stage of analysis. The 

advantages of both analytical and approximate methods of 

continuum modeling may not be replaced by the discrete 

modeling of finite element analysis. It should be noticed 

present method is a combination of exact analytical 

approach (repetitive integration stages) and approximate 

approach (approximation of the mode shape function using 

a power series) based on the continuum approach. 
Using four successive integration, the governing 

differential equation which is based on the fourth order 
derivative of the mode shape function of the vibration is 
converted into its weak form integral equation. This method 
has been used in Ref (Huang and Li 2010) for calculation of 
the natural frequencies of axially functionally graded 
Bernoulli-Euler beams with non-uniform cross-section. 
After four successive integration, the resulting equation is 
based on the mode shape function. Therefore, the mode 
shape function is approximated using a power series. 
Substitution of the power series into weak form integral 
equations results in a system of linear algebraic equations. 
The natural frequencies are determined by calculation of the 
non-trivial solution for resulting system of equations. In 
Section 5, the results of proposed method are compared 
with those obtained by Refs (Tang et al. 2015, Banerjee and 
Jackson 2013, Pradhan and Murmu 2010). In Ref (Tang et 
al. 2015), using a mathematical relation, the fourth order 
governing equation has been converted into a second order 
one based on the bending moment function. After this, 
using two successive integration, the second order equation 
has been converted into an integral equation based on the 
bending moment function. The bending moment function 
has been approximated using a power series. In Ref 
(Banerjee and Jackson 2013), the dynamic stiffness method 
has been used for calculation of the natural frequencies. 
 

 

2. Flapwise bending vibration of the rotating tapered 
Rayleigh beam 
 

2.1 Conversion of the governing equation into its 
weak form 

 

In Fig. 1, a cantilever tapered beam of length L which is 

fixed at point o to a rigid hub with radius R, is shown. The 

beam is modeled by a Rayleigh cantilever with variable 

cross-section. Rotatory inertia is considered. The beam is  
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assumed to rotate in the counter-clockwise direction at a 

constant angular velocity Ω.  

Tang et al. (2015) have used Hamilton’s variation 

principle in order to obtain the governing differential 

equation for flapwise bending vibration of the rotating non-

uniform Rayleigh beam as follows (refer to Tang et al. 2015 

for process of the calculation of the governing equation in 

more details): 

In which W(x,t), A(x), I(x), ρ, L and E are the 

displacement in the flapwise direction, variable cross-

sectional area, second moment of the cross-sectional area, 

the mass density of the beam, beam length and the modulus 

of elasticity respectively. T(x) is the centrifugal tension 

force at a distance x from the center which can be 

calculated as follows: 

( )2( ) ( )

L

x

T x A x R x dx=  +  (2) 

T(x) is due to the rotational motion of the beam. If there 

was an axial force acting on the cross section of the beam, 

that force is added to T(x). The assumptions for the tapered 

beam are as follows 
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Where A0 and I0 are the cross-sectional area and second 
moment of the cross-sectional area at x=0. c is a constant 
called the taper ratio which must be such that c < 1. Values 
of n=1 or 2 cover the most practical cases because n=1 
gives linear variation of the area of the cross-section and 
cubic variation of the second moment of area along the 
length, whereas n= 2 are the second and fourth orders. If 
motion is represented by a harmonic vibration, the flapwise 
displacement is obtained using the following relation 

( ) i, ( ) tW x t x e =  (4) 

Where ϕ(x) and ω are the mode shape function and the 
natural frequency of the beam, respectively. 

2 1i = −
 

is 
applied. For further convenience, the following 
dimensionless variables are introduced: 
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Where , ( )   and 0r are the dimensionless parameters for 

the local location, mode shape function and the hub radius 

respectively. ,r  and  are the dimensionless parameters 

related to the inverse of slenderness ratio, the angular 

velocity and the natural frequency respectively. Substitution 

of relations (2-5) into Eq. (1) leads to a single-variable 

equation in terms of location, as follows 
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In which the function  

( )
1

2 0( )( )t f s r s ds



 = +  

is applied. Eq. (6) is, in fact, the free vibration equation for 

flapwise bending vibration of a rotating tapered Rayleigh 

beam based on the non-dimensional variable . In order to 

transform Eq. (6) to its weak form, both sides of Eq. (6) are 

integrated twice with respect to  within the range 0 to . 

The results are the integral equations as follows 
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Further, integration from both sides of Eq. (8) twice with 

respect to  from 0 to yields 
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Eq. (10) is the integral equation of the weak form of Eq. 
(6). As can be seen, Eq. (6) includes a fourth order 
derivative of the mode shape function and after four 
successive integrations, Eq. (10) includes only the mode 
shape function itself. In Eq. (10) 1C , 2C , 3C and 4C are the 
integration constants which are determined through 
boundary conditions of both ends of the beam. Eqs. (7-10) 
are applicable for determination of the integration constants.  

 

2.2 Boundary conditions 
 

The following boundary conditions must be considered 

for the cantilevered beam: 
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Also, the following boundary conditions are established 

for flapwise bending vibration of the tapered cantilevered 

Rayleigh beam 
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(14) 

Application of the condition (11) at Eq. (10) and 

conditions (11) and (12) at Eq. (9) leads to 

3 4 0C C= =  (15) 

Also, Application of the condition (13) at Eq. (8) leads 

to 
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Regarding (1) 0t = , substitution of the condition (14) 

into Eq. (7) yields: 
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can be used for calculation of ( )  as follows: 

3 21 2
1 1

0

( ) ( ) ( , ) ( )ds
6 2

C C
f k s s



      + = +  (18) 

In which 

( ) ( )

( )

( )

( )

( )

( )

( )

1 1

0

2
3

1 2

0 0

2 2

1

0

2 2
2

1

0

2

0

2
2

0

2 2

1

0

2 2
2

1

0

( , ) 2 ( ) ( )

(s) ( ) ( ) ( )ds
6

( ) ( )ds

( ) ( )ds
2

( ) ( )ds

( ) ( )ds
2

( ) ( )

( ) ( )ds
2

k s f s s ds

s f s ds s f s s

r s f s s

r
s f s s

s t s s

s t s s

r s f s s ds

r
s f s s



 











 


   

  


 

  


 

  


 

= − +

− − − +

− −

− −

− +

− +

− −

−



 













 

(19) 

(1) can be calculated by setting 1 = into Eq. (18). The 

result is as follows 

1

1 2
1

1 1 10

1
(1) (1, ) ( )ds

(1) 6 (1) 2 (1)

C C
k s s

f f f
 = − + +  (20) 

By substitution of 1C and (1)  (Eqs. 17 and 20) into 

Eq. (16), the integration constant 2C is calculated as follows 

1

2

0

( ) ( )C g s s ds =   (21) 

Where 

2
21 1

2 1 2
1 1

2 2 2 2 2 2
1 1 2

1

1 1

2 2 2 2
1 1 1

( ) (1, ) (1 ) ( )
6 (1) (1)

( ) ( ) ( ) ( )

2 (1)

2 (1)

(1) (1)

( ) f s k s s f s
f f

r f s t s r f s f s

f

f

r f r f

g s
  



   




  

 −
= − − − −


   + − +

 =
 −

 = +

 (22) 

Substitution of the integration constants 1C , 2C , 3C  and 

4C into Eq. (10) results in an integral equation in ( )  as 

follows: 

1

1 1 2

0 0

( ) ( ) ( , ) (s)ds ( , ) (s)ds 0f k s k s



      + + =   (23) 

In which 

2
3 2

2 2( , ) ( ) ( )
6 2

k s f s g s
 

  = −  (24) 
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Fig. 2 Flapwise bending vibration of the non-local 

rotating beam 
 

 

Eq. (23) is the weak form integral equation for flapwise 

bending vibration of the rotating cantilevered tapered 

Rayleigh beam. The mode shape function ( )  is the only 

unknown parameter in the integral equation (23).  

 

 

3. Flapwise bending vibration of the non-local 
rotating Bernoulli-Euler beam 

 
3.1 Conversion of the governing equation into its 

weak form 
 

The classical beam theories cannot predict mechanical 

behavior of structures in micron scale due to their size-

dependency. In order to investigate size-dependency effects 

on the flapwise bending vibration of the rotating beam, 

Eringen nonlocal elasticity theory is used. In this theory, the 

stress at a reference point is a functional of the strain field at 

every point of the domain. The size-dependency effects are 

taken into account using the term 0( )e a which is called the 

nonlocal parameter or the scale-coefficient. In this section, 

the flapwise bending vibration of a rotating non-local 

Bernoulli-Euler beam is investigated. The size-dependency 

effects are considered using the nonlocal elasticity theory. It 

is assumed that the beam has a uniform section along the 

length (Fig. 2).  

The governing differential equation for free vibration of 

such beam is given as follows (Pradhan and Murmu 2010): 

( )

4 2

4 2

2 2
2

0 2 2

(x, ) (x, ) (x, )
(x)

(x, ) (x, )
(x)

0 0

W t W t W t
EI A T

x t x x

W t W t
e a T A

x x x t

x L





    
+ −      

     
+ −  

     

=  

 
(25) 

If motion is represented by a harmonic vibration, the 

transverse displacement is obtained using the following 

relation: 

( ) i, ( ) tW x t x e =  (26) 

Where ( )x and ω are the mode shape function and the 

natural frequency of the beam respectively. Regarding the 

non-dimensional parameters introduced in relations (5), 

substitution of Eq. (26) into Eq. (25) results in a single-

variable equation in terms of location as follows: 

4
2 2

4

2 3
2 2 2 2

2 3

( ) ( )
( ) ( )

( ) ( )
( ) 0

0 1

d d d
t

d d d

d d d
t

d d d

   
    

  

   
    

  



 
− − + 

 

 
+ = 

 

 

 

(27) 

In which 

2

2 0e a

L


 
=  
 

is the non-dimensional parameter 

for nonlocal parameter and the function

( )
1

0( )t r s ds


 = +  is applied. Eq. (27) is, in fact, the 

free vibration equation of the flapwise bending vibration of 

the non-local rotating Bernoulli-Euler beam based on the 

non-dimensional variable . In order to transform Eq. (27) 

to its weak form, both sides of Eq. (27) are integrated twice 

with respect to


within the range 0 to . The results are 

the integral equations as follows: 

3
2 2

3

0

2 2 2 2

2 3
2 2 2 2

12 3

( ) ( )
( ) ( )

( ) ( )

( ) ( )
2 ( ) ( )

d d
t s ds

d d

d d

d d

d d
t t C

d d


   

   
 

   
   

 

   
     

 

− − +

−

+ + =



 

(28) 

2
2 2

2

0

2 2 2 2 2

0

2
2 2

1 22

( )
( ) ( ) (s) ( )

( )
( ) ( ) ( ) ( )

( )
( )

d
t t s ds

d

d
s s ds t

d

d
t C C

d





 
     



 
         



 
   



− + −

− + + +

= +





 

(29) 

Further, integration from both sides of Eq. (29) twice 

with respect to from 0 to yields 

2 2

0 0

2
2 2 2

0 0

2 2 21
2 3

( )
( ) ( ) ( ) (s) ( )

( ) ( ) ( )
2

( )
( )

2

d
t s s ds s t s ds

d

s s ds s ds

Cd
t C C

d

 

 

 
    




    

 
    



− + − −

− + +

= + +

 

 

 

(30) 
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2

0

2 2
2 3

0 0

2 2 2 2

0

2 2 3 21 2
3 4

0

( ) ( ) ( ) ( )

( ) (s) ( ) ( ) ( )
2 6

( ) ( ) ( ) ( )

(s) ( )
6 2

s t s s ds

s t s ds s s ds

s s ds t

C C
t s ds C C



 





    

 
   

        

     

− − +

− − − +

− + −

 = + + +



 





 (31) 

It should be noted that in the equations above 

( ) 1t  = −  and ( ) 0t  = have been applied. Eq. (31) is 

the integral equation of the weak form of Eq. (27). In Eq. 

(31) 1C , 2C  , 3C  and 4C are the integration constants which 

are determined through boundary conditions of both ends of 

the beam. Eqs. (28-31) are applicable for determination of 

the integration constants.  
 

3.2 Boundary conditions 
 

The following boundary conditions must be considered 

for the cantilevered Bernoulli-Euler beam 

0 (0, t) 0

0 (0) 0 (0) 0    (32)

0 (0, t) 0

d d
0 (0) 0 (0) 0    (33)

d d

i t

i t

x W

or

e

W
x

x

or

e
L





  

 


 















= =

= = → =


= =



= = → =

3

3

3

3

2

2

2

2
(34)

0

1 0    (35)

(x, )

( )

(x, )
0

d ( )
1 0    

d

x L

or

W t
EI

x

d

d

W t
x L EI

x

or


 



 




= =

= =











 







= =



= =

 

Application of the condition (32) at Eq. (31) and 

condition (33) at Eq. (30) leads to 

3 4 0C C= =  (36) 

Regarding (1) 0t = , Application of the condition (34) at 

Eq. (29) leads to 

2 2 2 2

1

2 2

1 2

0

(1) (1) (1)

( ) (1 ) ( )

d
t

d

t s s s C C


    



  

+ +

 − − = + 

 (37) 

Substitution of the conditions (34) and (35) into Eq. (28) 

yields 

1

2 2 2 2 2

1

0

(1) ( )
d

s ds C
d


     


 − − =    (38) 

In Eqs. (37) and (38) (1) and (1)
d

d




are also 

unknown. As a consequence, two other independent 

equations are needed for uniquely determining 1C and 2C . 

Substitution of 3C and 4C  into Eq. (31) results in an 

equation which can be used for calculation of ( )  as 

follows 

2 2 3 21 2
1

0

1 ( ) ( ) ( , ) ( )ds
6 2

C C
t k s s



         + + = +    
(39) 

In which 

2

1

0

2 2
2 3

0 0

2 2 2 2

0 0

( , ) ( ) ( ) ( )

( ) (s) ( ) ( ) ( )
2 6

( ) ( ) (s) ( )

k s s t s s ds

s t s ds s s ds

s s ds t s ds



 

 

   

 
   

      

= − − +

− − − +

− −



 

 

 (40) 

(1) can be calculated by setting 1 = into Eq. (39). 

The result is as follows ( (1) 0t = ) 

1

1 2
1

0

(1) (1, ) ( )ds
6 2

C C
k s s = + −   (41) 

Also, substitution of 3 0C = at Eq. (30) and setting 

1 = , the following equation is obtained for calculation of

d
(1)

d



 

1

1
2

0

(1) ( ) ( )ds
2

Cd
C g s s

d





= + −   (42) 

Where 

2
2 2 2 2 2( ) ( ) (s) ( ) ( )

2
g s s t t s s


     = − − − − +  (43) 

By substitution of (1) and (1)
d

d




into Eqs. (37) and (38), 
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the integration constant 1C and 2C are calculated as follows 

1

1 3
1

1 2 3 40

1

1 4 3 4
2 2

1 2 1 3 4 10

( ) ( )
( )

( ) ( ) ( )
( )

p s q s
C s ds

p s q s q s
C s ds

 


   

   


     

  +
=  

+  


 +
= −  + 





 (44) 

In which 

2 2 2 2

1

2 2

2

1

2 2 2 2

1

2 2 2 2

2

2 2
2 2

3

2 2 2 2

4

( ) ( ) (1 s) (1, )

(1) ( )

( ) ( )

(1)
1

6 2

1 (1)
2

1
2 2

p s t s k s

t g s

q s g s

t

t

   

 

 

    

   


 
  

   







= − − − −
 


= − −


= −



 = − −


 = − −


 = − +


 (45) 

Substitution of the integration constants 1C , 2C , 3C  and 

4C into Eq. (31) results in an integral equation in ( )  as 

follows 

1

2 2
1 2

0 0

1 ( ) ( ) ( , ) (s)ds ( , ) (s)ds 0t k s k s



         + + + =
     (46) 

In which 

31 3
2

1 2 3 4

2
24 1 4 3

2
1 1 2 1 3 4

( ) ( )
( , )

6 6

( ) ( )( )

2 2 2 2

p s q s
k s

p s q sg s

 
 

   

   


     

 − −
= − 

+ 

 +
+ + 

+  

 (47) 

Eq. (46) is the weak form integral equation for flapwise 

bending vibration of the rotating non-local Bernoulli-Euler 

beam. The mode shape function ( )  is the only unknown 

parameter in the integral equation (46).  
 

 

4. Solution of the resulting integral equations 
 

In the preceding sections, the governing differential 

equations for free flapwise bending vibration of the rotating 

tapered Rayleigh beam and the rotating non-local Bernoulli-

Euler beam have been converted into the integral equation 

with general form as 

1

1 2

0 0

( ) ( ) ( , ) (s)ds ( , ) (s)ds 0H k s k s



      + + =   (48) 

The function ( )H  has been calculated as 
2(1 )nc +−  

and 2 21 ( )t  + for the rotating tapered Rayleigh beam 

and the rotating non-local Bernoulli-Euler beam, 

respectively. The functions 1( , )k s and 2 ( , )k s have 

been introduced in the previous sections. The mode shape 

function ( )  is the only unknown parameter in the 

integral equation (48). In order to solve the integral 

equation (48) and to determine the natural frequencies, the 

mode shape function is approximated by the following 

power series 

0

( )

R
r

r

r

c  
=

=  (49) 

Where rC are unknown coefficients to be determined and 

R is a given positive integer, which is adopted such that the 

accuracy of the results are sustained. Introducing Eq. (49) 

into integral equation (48) leads to 

1

1 2

0 0 0

( ) ( , ) d ( , ) d 0

R
r r r

Cr

r

H k s s s k s s s



   
=

 
 + + =
 
 

    (50) 

Both sides of Eq. (50) are multiplied by m and 

integrated subsequently with respect
 
to  between 0 and 1. 

This results in a system of linear algebraic equations in rC  

 1 2

0

( , ) ( , ) ( , ) 0

0,1,2,...,

R

r

r

G m r K m r K m r c

m R

=

+ + =

=

  (51) 

In which functions
 

( , )G m r and ( , ), ( 1,2)iK m r i =  are 

expressed as follows 

1

0

1

1 1

0 0

1 1

2 2

0 0

( , ) ( )d

( , ) ( , ) d d

( , ) ( , ) d d

r m

r m

r m

G m r H

K m r k s s s

K m r k s s s



  

  

  

+

 =




=




=




 

 

 (52) 

The system of linear algebraic equations (51) may be 

expressed in matrix notations as follows: 

0
( 1) ( 1) ( 1) 1 ( 1) 1

A C
R R R R

     
     =

+  + +  +   (53) 

In which [ ]A and [ ]C are the coefficients matrix and 

unknowns vector respectively. The only unknown parameter 

in the coefficients matrix [ ]A is the dimensionless 

parameter related to the natural frequency of the beam  . 

[ ] 0C = is a trivial solution for the resulting system of 

equations introduced in (53).  The natural frequencies are 

determined through calculation of a non-trivial solution for  
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resulting system of equations. To achieve this, the 

determinant of the coefficients matrix of the system has to 

be vanished. Accordingly, a frequency equation in  (which 

is a polynomial function of the order 2( 1)R + ) is 

introduced. The roots of the frequency equation are the 

dimensionless parameter related to the natural frequency of 

the beam  . Given the fact that the mode shape function is 

approximated by the power series of (49), the results 

accuracy is improved if more number of the series 

sentences is taken into account (Larger R is adopted).  

 

 
5. Numerical examples 
 

In this section, some illustrative examples are given to 

verify the accuracy and efficiency of the proposed 

analytical approach. In the numerical examples, the 

influence of geometry properties, rotatory inertia, rotational 

speed, taper ratio and size-dependency are investigated on 

the natural frequencies of the rotating beam. The computer 

package MATLAB is used to write the codes, based on 

presented analytical approach.   

Table 1 the first four dimensionless frequencies of the non-rotating beam with uniform cross section 

 Euler-Bernoulli beam 

(r=0) 

Rayleigh beam 

No. of 

modes 

r =1/20 r =1/10 

present (Tang et al. 2015) present (Tang et al. 2015) present (Tang et al. 2015) 

First 3.51602 3.51602 3.49575 3.49575 3.43681 3.43681 

Second 22.0345 22.03449 21.1907 21.19069 19.1364 19.13637 

Third 61.6973 61.69721 56.4863 56.48626 46.4936 46.49355 

Fourth 120.904 120.90206 103.825 103.82380 78.2148 78.21309 

Table 2 the first three dimensionless frequencies of the beam with n = 1, c = 0.5, r = 0 (Euler-Bernoulli beam), 𝑟 =
1

30
 

(Rayleigh beam) 

 

η = 1 η = 2 

Euler-Bernoulli Rayleigh Euler-Bernoulli Rayleigh 

r0 =0 r0 =0 

present present present present 

1  3.98662 3.98024 4.4368 4.42885 

2  18.474 18.3239 18.9366 18.7813 

3  47.4174 46.4755 47.8717 46.9191 

 r0 =2 r0 =2 

 present present present present 

1  4.38668 4.37977 5.74259 5.73313 

2  18.8796 18.7259 20.473 20.30461 

3  47.8308 46.8804 49.4867 48.5007 

 

η = 3 η = 4 

Euler-Bernoulli Rayleigh Euler-Bernoulli Rayleigh 

r0 =0 r0 =0 

 present present present present 

1  5.09267 5.0826 5.87876 5.86636 

2  19.6839 19.5203 20.6852 20.5105 

3  48.6191 47.6488 49.6457 48.6512 

 r0 =2 r0 =2 

 present present present present 

1  7.45274 7.44031 9.31032 9.29482 

2  22.8795 22.6889 25.8663 25.6482 

3  52.1206 51.0776 55.5817 54.4634 
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5.1 Non-rotating Bernoulli-Euler and Rayleigh 
beams 

 

In this example, the first four dimensionless frequencies 

of the non-rotating Bernoulli-Euler and Rayleigh beams are 

calculated. By setting n = 0, η = 0, r0 = 0, c = 0.5 and 

adopting r = 0 for Euler–Bernoulli beam and 𝑟 =
1

20
 or 

𝑟 =
1

10
  for  a  Rayle igh  beam,  respec t ive ly,  the  

 

 

first four dimensionless frequencies of the beam are 

calculated. The results are presented in Table 1 and 

compared with those obtained in Tang et al. 2015. 

The results of Table 1 show that rotatory inertia 

decreases the dimensionless frequencies of the non-rotating 

Rayleigh beam in comparison to non-rotating Bernoulli-

Euler beam. Also, the rotatory inertia is more effective on 

the dimensionless frequencies of the higher modes of the 

vibration.  
 

5.2 Beams with linearly varying depth and constant 
width 

 

The first three dimensionless frequencies of the beam 

are calculated for four different rotational speed, η =1,2,3,4. 

It is assumed that n = 1, c = 0.5, and r0 = 0,2. Setting n = 1 

in relations (3) corresponds to the beams with linearly 

varying depth and constant width. For Bernoulli-Euler beam 

r=0 and for Rayleigh beam 𝑟 =
1

30
 are applied. The results 

are tabulated in Table 2 and compared with those obtained 

by (Tang et al. 2015). 

The presented results in the Tables 2 present excellent 

agreement with results obtained by (Tang et al. 2015). The 

results of presented approach in this paper have been 

obtained with R=8. R is the order of power series (49) 

which approximate the mode shape function. In Ref (Tang 

et al. 2015), the bending moment function has been 

approximated by a power series and the results have been 

obtained with R=10. Therefore, the presented approach in 

this paper has a more rapid convergence rate in comparison 

to Ref (Tang et al. 2015).  

Results of Table 2 show that with increase in the 

rotational speed η, the dimensionless frequencies of both  

Table 3-a The first dimensionless frequency of the beam 

with n = 1, r0 =0  

λ 1 

  c = 0 c = 0.25 c = 0.5 c = 0.75 

  1/r present present present present 

0 

10 3.4368 3.5722 3.7727 4.13479 

30 3.5070 3.6289 3.8180 4.17189 

50 3.51275 3.6336 3.8217 4.1749 

100 3.5152 3.6356 3.8233 4.1762 

EB 3.516 3.6362 3.8238 4.1766 

5 

10 6.23179 6.3958 6.6118 6.9577 

30 6.4251 6.5469 6.7286 7.0506 

50 6.4407 6.5591 6.7381 7.0581 

100 6.4473 6.5643 6.7421 7.0613 

EB 6.4495 6.566 6.7434 7.0623 

10 

10 10.8187 11.0217 11.2631 11.6095 

30 11.1598 11.2889 11.4748 11.7887 

50 11.187 11.3104 11.4919 11.8032 

100 11.1985 11.3195 11.4991 11.8093 

EB 11.2023 11.3225 11.5015 11.8113 

Table 3-b The second dimensionless frequency of the beam with n 

= 1, r0 =0 

λ2 

  c = 0 c = 0.25 c = 0.5 c = 0.75 

  1/r present present present present 

0 

10 19.1364 18.2726 17.0975 15.544 

30 21.6477 20.0022 18.1689 16.1093 

50 21.8929 20.1622 18.2634 16.1573 

100 21.9989 20.2309 18.3038 16.1776 

EB 22.0345 20.2539 18.3173 16.1844 

5 

10 21.8856 21.2756 20.3563 19.0587 

30 24.9737 23.4339 21.7176 19.7979 

50 25.2734 23.6325 21.8372 19.8604 

100 25.4026 23.7176 21.8882 19.887 

EB 25.4461 23.7462 21.9053 19.8959 

10 

10 28.4787 28.3901 27.916 26.9155 

30 32.9654 31.5417 29.9097 28.0187 

50 33.394 31.828 30.0838 28.1119 

100 33.5784 31.9506 30.1579 28.1514 

EB 33.6404 31.9917 30.1827 28.1646 

Table 3-c The third dimensionless frequency of the beam 

with n = 1, r0 =0 

λ3 

  c = 0 c = 0.25 c = 0.5 c = 0.75 

  1/r present present present present 

0 

10 46.4936 43.943 40.4126 35.2629 

30 59.2074 53.1494 46.3266 38.3354 

50 60.765 54.1686 46.9206 38.617 

100 61.4602 54.6166 47.1781 38.7376 

EB 61.6973 54.7684 47.2649 38.7781 

5 

10 48.947 46.6548 43.4436 38.6914 

30 62.5392 56.5937 49.9090 42.1204 

50 64.207 57.694 50.5578 42.4344 

100 64.9513 58.1776 50.8391 42.5689 

EB 65.2051 58.3414 50.9338 42.614 

10 

10 55.4945 53.8431 51.3959 47.4791 

30 71.4977 65.7662 59.3121 51.8027 

50 73.4696 67.0859 60.1046 52.1979 

100 74.3493 67.6656 60.448 52.3672 

EB 74.6493 67.862 60.5637 52.424 
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Bernoulli-Euler and Rayleigh beams increase. Also, this 

change is more intensive for r0 = 2 in compare to r0=0. For 

larger rotational speeds, the variations of the frequencies are 

more intensive with variations of the r0. 

For the three different rotational speeds, η = 0,5,10 and 

four different taper ratios, c = 0, 0.25, 0.5, 0.75, the first 

three dimensionless frequencies of the beam are calculated. 

It is assumed that hub radius was set to zero (r0 =0). The 

results are presented in Tables 3-a to 3-c. 

The presented results in the Tables 3 present excellent 

agreement with results obtained by (Tang et al. 2015). 
 

 
 

5.3. Beams with linearly varying depth and width 
 

In this example, a rotating beam with linearly varying 

depth and width, which corresponds to n =2, is assumed. 

The same dimensionless parameters, as those used in Table 

3, are considered and the first three dimensionless 

frequencies of the rotating beam are calculated. The results 

are tabulated in Table 4.   

The results of Tables 3 and 4 show that with the increase 

in taper ratio c, the first dimensionless frequency increases 

and the second and third frequencies decrease. Variations in 

the dimensionless frequencies are more significant for 

larger taper ratios. 

Table 4-a The first dimensionless frequency of the beam with n = 2, r0 =0 

λ1 

  c = 0 c = 0.25 c = 0.5 c = 0.75 

  1/r present (Tang et al. 2015)  present (Tang et al. 2015)  present (Tang et al. 2015)  present (Tang et al. 2015)  

0 

10 3.4368 3.4368 3.8824 3.8824 4.5517 4.5517 5.7394 5.7394 

30 3.5070 3.5070 3.9483 3.9483 4.6168 4.6168 5.8136 5.8136 

50 3.5128 3.5128 3.9537 3.9537 4.6221 4.6221 5.8196 5.8196 

100 3.5152 3.5152 3.9559 3.9559 4.6244 4.6244 5.8222 5.8222 

EB 3.51602 3.5160 3.9567 3.9567 4.6252 4.6252 5.8231 5.8231 

5 

10 6.2318 6.2318 6.5881 6.5881 7.1268 7.1268 8.0992 8.0992 

30 6.4251 6.4251 6.7521 6.7521 7.2717 7.2717 8.2436 8.2436 

50 6.4407 6.4407 6.7654 6.7654 7.2835 7.2835 8.2554 8.2554 

100 6.4473 6.4473 6.7711 6.7711 7.2885 7.2885 8.2604 8.2604 

EB 6.4495 6.4495 6.7729 6.7729 7.2901 7.2901 8.2620 8.2620 

10 

10 10.8187 10.8187 11.1593 11.1593 11.6467 11.6467 12.4866 12.4866 

30 11.1598 11.1598 11.4490 11.4490 11.9083 11.9083 12.7568 12.7568 

50 11.1870 11.1870 11.4724 11.4724 11.9295 11.9295 12.7788 12.7788 

100 11.1985 11.1985 11.4823 11.4823 11.9385 11.9385 12.7881 12.7881 

EB 11.2023 11.2023 11.4856 11.4856 11.9415 11.9415 12.7912 12.7912 
 

Table 4-b The second dimensionless frequency of the beam with n = 2, r0 =0 

λ2 

  c = 0 c = 0.25 c = 0.5 c = 0.75 

  1/r present (Tang et al. 2015) present (Tang et al. 2015) present (Tang et al. 2015) present (Tang et al. 2015) 

0 

10 19.1364 19.1364 18.7656 18.7656 18.2107 18.2107 17.664 17.6638 

30 21.6477 21.6477 20.5475 20.5475 19.3846 19.3846 18.3837 18.3834 

50 21.8929 21.8929 20.7125 20.7125 19.4885 19.4885 18.4451 18.4449 

100 21.9989 21.9989 20.7832 20.7832 19.5328 19.5328 18.4712 18.4710 

EB 22.0345 22.0345 20.8069 20.8069 19.5476 19.5476 18.4799 18.4797 

5 

10 21.8856 21.8856 21.5647 21.5647 21.0033 21.0033 20.3879 20.3879 

30 24.9737 24.9737 23.7497 23.7497 22.4375 22.4375 21.2664 21.2663 

50 25.2734 25.2734 23.9509 23.9509 22.5640 22.5640 21.3413 21.3411 

100 25.4026 25.4026 24.0371 24.0371 22.6179 22.6179 21.3731 21.3729 

EB 25.4461 25.4461 24.0660 24.0660 22.6360 22.6360 21.3837 21.3836 

10 

10 28.4787 28.4787 28.3154 28.3154 27.7327 27.7327 26.8986 26.8986 

30 32.9654 32.9654 31.4425 31.4425 29.7521 29.7521 28.1365 28.1364 

50 33.3940 33.3940 31.7269 31.7269 29.9292 29.9292 28.2418 28.2417 

100 33.5784 33.5784 31.8487 31.8487 30.0046 30.0046 28.2865 28.2864 

EB 33.6404 33.6404 31.8895 31.8895 30.0299 30.0299 28.3014 28.3014 
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5.4 Beams with linearly varying depth and width 
 

For four different rotational speed, η=1,2,3,4, the first 

three dimensionless frequencies of the beams are calculated. 

It is assumed that n = 1,2, c = 0.5, r0 =0, and r=
1

100
. The 

results are presented in Table 5 and compared with those 

obtained by (Banerjee and Jackson 2013). 

The results of Table 5 present with increase in n  

parameter the frequencies increase and this change is more 

significant for lower modes and also, with increase in η 

 

 

parameter, this change decrease. With increase in η 

parameter the frequencies increase and this change is more 

significant for n=1 in compare to n=2.  

Fig. 3 presents the first five dimensionless frequency 

curves as a function of the taper ratio c for a rotating 

Rayleigh beam with n=1, 𝑟 =
1

30
, r0 =2, η = 5.   

Results presented in Fig 3 show their complete 

consistency with those in Ref. (Tang et al. 2015). The 

results of Fig. 3 present with variations of taper ratio c, the 

higher modes have more significant non-linear decrease.  

Table 4-c The third dimensionless frequency of the beam with n = 2, r0 =0 

λ3 

  c = 0 c = 0.25 c = 0.5 c = 0.75 

  1/r present (Tang et al. 2015) present (Tang et al. 2015) present (Tang et al. 2015) present (Tang et al. 2015) 

0 

10 46.4936 46.4936 44.3682 44.3682 41.4573 41.4572 37.4058 37.4027 

30 59.2074 59.2073 53.6911 53.6911 47.6022 47.6021 40.8291 40.8245 

50 60.7649 60.7649 54.7231 54.7231 48.2205 48.2204 41.148 41.1401 

100 61.4602 61.4601 55.1767 55.1767 48.4887 48.4885 41.280 41.2755 

EB 61.6973 61.6972 55.3304 55.3304 48.5791 48.5789 41.3257 41.3209 

5 

10 48.9470 48.9470 46.8699 46.8699 44.0143 44.0143 40.0132 40.0105 

30 62.5393 62.5392 56.8774 56.8774 50.6398 50.6397 43.7332 43.7292 

50 64.2069 64.2069 57.9848 57.9848 51.3058 51.3057 44.076 44.0719 

100 64.9513 64.9512 58.4715 58.4715 51.5946 51.5945 44.223 44.2188 

EB 65.2051 65.2050 58.6364 58.6364 51.6919 51.6918 44.2724 44.2681 

10 

10 55.4945 55.4945 53.5748 53.5748 50.8800 50.8800 46.9575 46.9565 

30 71.4977 71.4977 65.4472 65.4472 58.7877 58.7878 51.4514 51.4492 

50 73.4696 73.4696 66.7598 66.7598 59.5804 59.5805 51.8649 51.8625 

100 74.3493 74.3493 67.3363 67.3363 59.9241 59.9241 52.0422 52.0397 

EB 74.6493 74.6493 67.5316 67.5316 60.0398 60.0399 52.1016 52.0992 

Table 5 The first three dimensionless frequency of the beam with n = 1,2, c = 0.5, r0 =0, r=
1

100
 

  n=1 n=2 

   present (Banerjee and Jackson 2013) present (Banerjee and Jackson 2013) 

1 

1  3.98604 3.9860 4.76325 4.7632 

2  18.4603 18.460 19.6654 19.665 

3  47.3303 47.330 48.6168 48.617 

2 

1  4.4361 4.4361 5.15546 5.1555 

2  18.9225 18.922 20.058 20.058 

3  47.7836 47.784 48.999 48.999 

3 

1  5.09176 5.0918 5.7446 5.7446 

2  19.669 19.669 20.696 20.696 

3  48.5293 48.529 49.6298 49.630 

4 

1  5.8776 5.8776 6.47121 6.4712 

2  20.6693 20.669 21.5579 21.558 

3  49.5537 49.554 50.4991 50.499 
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Fig. 3 The first five dimensionless frequency curves as a function of the taper ratio c for a rotating Rayleigh beam with 

n=1, 𝑟 =
1

30
, r0 =2, η = 5 

 

Fig. 4 The first three dimensionless frequency curves of a Rayleigh beam as a function of the slenderness ratio 
1

𝑟
  with n=2, 

c=0.5, r0 =0, η = 5 

 

Fig. 5 the variation of the first dimensionless frequency of the beam with dimensionless angular velocity η with r0 =1 
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For taper ratio quantities more than 0.75 the decrease in 

frequencies is intensified. For a rotational speed η=5, taper 

ratio c=0.5, hub-radius r0 =0, n=2, Fig. 4 shows the ratio 

between the results obtained by using  Rayleigh beam 

theory ( i ) and Bernoulli–Euler theory (
0

i ) for the first 

three natural frequencies against the slenderness ratio (
1

𝑟
).  

Results presented in Fig 4 shows excellent agreement 

with those in Ref. (Banerjee and Jackson 2013). The results 

of Fig. 4 present for slenderness ratio less than 25, the 

variations of the all three modes are more significant. This 

change is more intensive for higher modes.  

 

5.5 Size-dependency effects 
 
In this example, the effect of size-dependency on the 

dimensionless frequencies of rotating Euler-Bernoulli beam 

is investigated. Fig. 5 shows the variation in the first 

dimensionless frequency of the beam with dimensionless 

angular velocity η for both local and nonlocal elastic 

models. For local model, the nonlocal parameter, (ψ=
𝑒0𝑎

𝐿
) is 

assumed to be zero. While for nonlocal model, the nonlocal 

parameter ψ is assumed to be 0.1, 0.2, 0.3 and 0.4. Here, the 

dimensionless hub radius is assumed as r0 =1. 

 

 

 

The results of Fig. 5 present with increase in η 

parameter, the frequencies increase and this increase is 

more intensive for larger ψ. This result says the angular 

velocity is more effective on the non-local beams and size-

dependency effects will be effective with larger angular 

velocities.  

Figs. 6 and 7 show the variation in dimensionless frequency 

with dimensionless angular velocity for the second and third 

modes of vibration, respectively. No real Eigen-value has 

been calculated for the third mode of vibration with
 
ψ = 0.4 

beyond η=1.   

Results of Figs 6 and 7 show that similar to the first 

mode, with the increase in the angular velocity, the 

dimensionless frequencies of second and third modes of the 

vibration increase. But, the results for ψ parameter is 

different. In compare to the first mode, with increase in the 

ψ parameter, the second and third frequencies decrease. Fig. 

8 shows the variations in the first dimensionless frequency 

with variations in the dimensionless angular velocity η
 
for 

different values of dimensionless hub radius, r0. Four values 

of hub radius are assumed as: r0 = 0.5, 1, 1.5, 2. Here, the 

nonlocal parameter is assumed as: ψ= 0.1.   

Fig. 8 shows that with the increase in dimensionless hub 

radius r0, the first dimensionless frequency increases. 

Results presented in Figs 5 to 8 show their complete 

consistency with those in Ref. (Pradhan and Murmu 2010).  

 

Fig 6 the variation of the second dimensionless frequency of the beam with dimensionless angular velocity η with r0 =1 

 

Fig. 7 the variation of the third dimensionless frequency of the beam with dimensionless angular velocity η
 
with r0 =1 and ψ 

= 0.1, 0.2, 0.3, 0.4  
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6. Conclusion 

 

Application of the weak form integral equations for 

flapwise bending vibration of the rotating beams has been 

presented. Through repetitive integrations, the governing 

differential equations for flapwise bending vibration of the 

Rayleigh beam with non-uniform cross section and non-

local Euler-Bernoulli beam have been converted into weak 

form integral equations. In order to solve the resulting 

integral equations, the mode shape function of the vibration 

has been approximated by a power series and substitution of 

the power series into weak form integral equations 

transformed them into a system of linear algebraic 

equations. The natural frequencies of the beam have been 

calculated by determination of a non-trivial solution for 

system of linear algebraic equations. The accuracy, 

simplicity and reliability of the proposed method has been 

verified thorough several numerical examples in which the 

influence of the geometry properties, rotatory inertia, 

rotational speed, taper ratio and size-dependency has been 

investigated on the natural frequencies of the rotating 

beams. Differences between natural frequencies of 

proposed method and previous published works were in 

acceptable ranges. Ref. (Tang et al. 2015) was the main 

reference for comparison of the results obtained. In this 

reference, the bending moment function has been 

approximated by a power series with R=10. In the presented 

approach in this paper, the mode shape function has been 

approximated by a power series with R=8 which shows 

more rapid convergence rate.  
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