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1. Introduction 
 

Laminated composite materials are extensively used for 

construction of various important engineering structures e.g. 

aircraft structures, submarine, wind turbine blade, bridge 

deck, commercial vehicles and ship structures etc. The 

composite materials offer numerous advantages like 

lightweight, high stiffness, improved chemical and 

environmental resistance, high fatigue resistance and above 

all ability to tailor the properties. However, the 

experimental and analytical studies on composite materials 

revealed large statistical variations in their mechanical 

properties. Thereby, the response of laminated composite 

structure is largely influenced by various uncertain 

parameters. Thus, safety assessment of composite structures 

i.e. reliability analysis of composite structures considering 

random variation of involved parameters is quite important. 

The present study deals with reliability analysis of 

laminated composite shell structures. 

The reliability assessment of structure requires the  
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computation of probability of failure (pf). Several methods 

of reliability analysis have been developed which can be 

classified into two groups: analytic techniques and 

simulation methods. In the first group, one can see the well-

known First Order Reliability Method (FORM) and Second 

Order Reliability Method (SORM). Such methods aim at 

building a local approximation of the limit state function 

from geometric considerations such as the gradients and 

curvatures. In the second groups, the methods based on 

Monte Carlo Simulations (MCS) can be found. These are 

now well established and documented in numerous texts 

(Thoft-Christensen and Barker 1982, Ditlevsen and Madsen 

1996, Melchers 1999, Halder and Mahadevan 2000).  

The applications of reliability analysis methods to 

composite structures are also notable in recent past. 

Reliability of laminate composite structure using first order 

second moment method was introduced by Cederbaum et 

al. (1990) considering stress failure criteria. Boyer et al. 

(1997) presented the application of reliability methods i.e. 

FORM and SORM of laminated composite structures 

considering stress-strain failure criteria. An analytical 

probabilistic modeling for stochastic initial failure and 

reliability of a laminated thin-walled composite structure 

was proposed by Yushanov et al. (1998). A comparison 

between MCS technique and FORM based reliability 

assessment of composite structure was presented by Sciuva 

and Lomario (2003) considering loads, geometries and 

material properties as stochastic variables. Chen et al. 

(2005) showed fuzzy reliability methods for laminated 
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composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by 

the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of 

performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to 

such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the 

finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such 

theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply 

the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher 

order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply 

thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite 

element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results 

obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the 

direct MCS by considering two numerical examples. 
 

Keywords:  reliability; response surface method; laminated shell; higher order shear deformation theory; finite element 

analysis 

 



 

Sandipan N. Thakur, Subrata Chakraborty and Chaitali Ray 

composites where loads were considered as random design 

variables and strengths as fuzzy variables. Finite element 

based methodology for statistical analysis of angle-ply 

composite structures considering material properties as 

random variables was proposed by Antonio and Hoffbauer 

(2007).  

 Using Spectral Stochastic finite element method 

(SFEM) to obtain response of composite structure 

considering material properties as random variables was 

presented by Ngah and Young (2007). Biagi and Medico 

(2008) presented MCS based reliability analysis of 

composite cylindrical shells under axial compression with 

stacking sequence of fiber as a random variable. 

Papadopoulos and Lagaros (2009) presented stochastic 

vulnerability based robust design of laminated shell 

structures considering random geometric and material 

properties. Chiachio et al. (2012) presented a survey on 

reliability analysis of composites encompassing different 

types of reliability methods, random variables and failure 

criteria for laminated composite plate and shell. Gomes et 

al. (2011) presented reliability based optimization of 

laminated composite using artificial neural networks and 

genetic algorithms considering loading, fiber orientation 

angle and ply thickness as random variables. Reliability 

analysis and sensitivity analysis of composite structures was 

presented by Gosling et al. (2014). Basic input variables 

were taken as fiber orientation angle and ply thickness. The 

FORM was proposed for reliability analysis and compared 

with MCS based results. Stochastic free vibration analysis 

of composite shell structure based on Kriging 

metamodeling approach was presented by Dey et al. (2015). 

Sasikumar et al. (2015) proposed a polynomial chaos based 

SFEM for reliability analysis of composite structures with 

individual lamina properties as random variables. Haeri and 

Fadaee (2016) presented an advanced Kriging model to 

approximate the mechanical model of a laminated 

composite structure for estimation the probability of failure 

considering stress criterion to define the performance 

function for reliability analysis. A bottom up surrogated 

based approach is employed by Dey et al. (2016) for 

reliability assessment of laminated composites considering 

uncertainty in ply orientation angle, elastic modulus and 

mass density. FSDT was used to construct the surrogated 

model of the shell. Several parametric studies were 

presented to determine the stochastic natural frequencies 

and mode shapes of the shell. Mukhopadhyay et al. (2016) 

presented the effect of noise on surrogated based stochastic 

frequency analysis of spherical composite shallow shells 

considering material properties, ply orientation angle and 

mass density of the laminate as input random parameters. 

The Kriging based surrogated model was used to calculate 

the frequency of the shell whereas the surrogated model 

was developed using finite element formulation of 

laminated composite shell based on FSDT. Mukhopadhyay 

et al. (2017) presented a critical comparative assessment in 

terms of accuracy and computational efficiency of Kriging 

model variants for uncertainty quantification of natural 

frequencies of composite doubly curved shells. Five types 

of Kriging model variants were studied and all the models 

were constructed using FSDT of laminated shell. Direct 

MCS was used to check the effectiveness of each model 

with uncertainty in ply orientation angle, elastic modulus 

and mass density of the shell. Dey et al. (2017) investigated 

different types of surrogate models which are used in 

reliability analysis of composites for comparative 

assessment of uncertainty in natural frequencies. Both 

computational efficiency and accuracy were compared for 

each model. The results obtained by the MCS method were 

compared with the results of the different metamodels.  

The reliability analysis of composite structures as 

discussed above used the FORM and MCS based approach 

which involves repetitive evaluations of performance 

function. The second moment based FORM algorithms 

require computation of gradients and hessians of 

performance function. For implicit performance function, 

finite difference methods are usually adopted for 

approximating the gradients of the performance functions. 

This requires a large number of numerical computations. 

Furthermore, the second moment methods cannot always 

provide desired accuracy, particularly when the levels of 

uncertainty in the parameters are relatively large. Whereas, 

in direct MCS approach, repeated evaluation of 

performance function involves large number of executions 

of the FE model of a structure. Thus, assessing the 

reliability of a complex composite structure requires a deal 

between the reliability algorithms and numerical methods 

used to model the mechanical behavior of the system and 

development of approach requiring fairly low 

computational time becomes important for safety 

assessments of composite structures. The response surface 

method (RSM) based metamodeling technique has emerged 

as an effective solution in this regard allowing a convenient 

way to achieve a balance between the number of execution 

of the FE model and the accuracy of computed reliability.  

The early application of RSM in structural reliability 

was made by Faravelli (1989) and the subsequent works 

(Bucher and Bourgund 1990, Liu and Moses 1994, 

Rajashekhar and Ellingwood 1993, Basaga et al. 2012) for 

reliability analysis of large and complex structural system 

are well known. The position of the sample points, the type 

of polynomial response and its performance is the subject of 

investigated by several researchers (Rajashekhar and 

Ellingwood 1993, Allaix and Carbone 2011, Goswami et al. 

2016). The optimal number of sampling points required to 

construct response surface is another important issue which 

is well studied in Haldar et al. (2012), Huh and Haldar 

(2011). 
In the application of metamodeling for uncertainty 

quantification and reliability analysis of composite 
structures (Dey et al. 2015, Haeri and Fadaee 2016, Dey et 
al. 2016, Mukhopadhyay et al. 2016, Mukhopadhyay et al. 
2017, Dey et al. 2017) the finite element model was 
formulated either by classical laminate theory or first order 
shear deformation theory (FSDT). But such theories show 
significant error in calculating the responses of composite 
structures. Thus, it is felt important to use accurate and 
efficient method of response evaluation of composite 
structures for constructing response surface. The present 
study attempted to apply the RSM for reliability analysis of 
composite shell structures where the surrogate model is 
constructed using HSDT of laminated shell. For this, the 
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finite element based HSDT model proposed by Thakur and 
Ray (2015a,b) is adopted to obtain much accurate response 
of composite shell structures. A second order polynomial 
function based RSM is used to approximate the composite 
shell responses considering the uncertainties in the material 
properties (E1, E2, G12, G13, G23, γ12), external load (P0), ply 
thickness (h) and radius of curvature (R) of shell structure. 
The sensitivity of responses of the shell is also obtained by 
RSM and finite element method based direct approach to 
illustrate the advantages of RSM for response sensitivity 
analysis. The reliability results obtained by the proposed 
RSM based MCS and FORM are compared with the most 
accurate reliability analysis results obtained by the direct 
MCS. The RSM based reliability analysis algorithm is 
elucidated with the help of two numerical examples i.e. 
reliability analysis of four layered laminated composite 
cylindrical symmetric (0°/90°/90°/0°) and anti-symmetric 
(0°/90°/0°/90°) shell structures. 
 
 

2. Response analysis of laminated composite shell   
 

The evaluation of response of a structure plays the 
pivotal role for successful evaluation of its reliability.  The 
theoretical model of laminated composite shell structure is 
modified day to day to achieve an accurate and improved 
realistic result. Classical laminated shell theory based on 
love-Kirchhoff assumption (Love 1888) was first 
introduced neglecting the transverse shear deformation of 
the laminates. Considering the constant shear deformation 
and using a linear displacement field through the thickness, 
FSDT (Reddy 1984) was introduced, which is also unable 
to predict the actual behavior of composite laminates. The 
HSDT (Reddy and Liu 1985, Kant and Menon 1989, 
Sayyad and Ghugal 2014, Thakur and Ray 2015a,b, Thakur, 
Ray and Chakraborty 2016)  involves non-linear 
distribution of displacement field across the thickness of the 
laminate gives more accurate results as compared to FSDT.  
Thus, for reliability analysis use of more accurate laminated 
shell theory is important for proper quantification of 
responses considering uncertain parameters.  The more 
realistic solution of laminated composite shell structure of 
any shapes obtained by the finite element based HSDT 
models proposed by Thakur and Ray (2015a,b) which 
considers the effect of thickness coordinate to radius ratio 
(z/R) in strain components as well as normal and shear 
stress resultants is adopted in the present study for obtaining 
accurate responses of the shell structures. The model is 
briefly discussed in the following.  

A doubly curved laminated shell with s, r, z co-ordinate 
system is shown in Fig. 1. Rs and Rr are the radius of 
curvature in s and r directions respectively, h is the total 
thickness of the shell along z direction and n is the number 
of lamina. 

The stress-strain relationship for a typical kth lamina in a 

laminated composite shell shown in Fig. 1 is given by 

11 12 16

12 22 26

16 26 66

44 45

45 5

s

r

sr

sz

rz5

ε0 0

ε0 0

ε0 0

ε0 0 0

ε0 0 0

s

r

sr

sz

rz

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q











    
    
       
 =   
    
    
          

(1) 

 

Fig. 1 Geometry of laminated shell 

 

 

The displacement field considering Taylor series 

expansion is expressed by, 
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Where, u, v and w are the displacement components at the 

middle surface of the shell and 
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𝑧
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 and 

𝑧
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 terms in strain-displacement 

relationship, the strain components at the mid-plane can be 

expressed as (Thakur and Ray 2015a,b), 
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And the transverse shear strain components at the mid-plane 

are 
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Using the relationship between stress resultants and 

mid-plane strain components, the rigidity matrix of 

laminated shell can be obtained as (Thakur and Ray 

2015a,b) 
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(5) 

Where, [0] is a null matrix. The elements of the rigidity 

matrix are computed and presented in Appendix A. 

The finite element analysis has been carried out by 

using an eight noded 𝐶0 isoparametric shell element with 

nine degrees of freedom at each node (u, v, w ,θs, θr, u*, 

v*, 𝜃𝑠
∗,  𝜃𝑟

∗). The displacement field can be expressed as 
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(6) 

Where, [Ni] is the shape function of the associated node of 

isoparametric quadrilateral element and ui is the nodal 

displacement. The strain-displacement relationship at the 

mid-plane of the laminated shell can be expressed in the 

following matrix form as, 

   { }B u =
 

(7) 

Where, [B] is the differential operator matrix of 

interpolation function which can be derived from strain-

displacement equations (Eq. 3 and Eq. 4). The computations 

of non-zero terms of [B] matrix are shown in Appendix B. 

The element stiffness matrix [Ke] and the mass matrix [Me] 

for an element can be obtained as 
1 1
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(8) 

Where [I] is the inertia matrix and│J│is the determinant of 

Jacobian matrix. The finite element static equilibrium 

equation can be written as,  

    K u P=
 

(9) 

Where [K] is the overall stiffness matrix and u is the 

deflection. 
 

 

3. Response surface method  
 

The RSM, first proposed by Box and Wilson (1954), is 
a statistical technique designed for better understanding 

about the overall response of structural system by design of 
experiment (DOE) (Das and Zheng 2000, Roussouly et al. 
2013, Khuri and Mukhopadhyaya 2010) and subsequent 
analysis of experimental data. The RSM is a simple 
function (polynomial type in most of the cases) which is 
fitted by a set of carefully selected data points referred as 
DOE. Thus, it is basically a system identification procedure 
where the output parameters (i.e. displacement, natural 
frequency, stresses) are directly obtained by substituting the 
value of input parameters (i.e. loading, structural geometry 
and materials properties).  

If there are n response values yi corresponding to n 
numbers of observed data, xij(denotes the i-th observation of 
the j-th input variable xj in a DOE), the relationship between 
the response and the input variables can be expressed as 

y+ y = Xβ
 

(10) 

In the above multiple non-linear regression model, X, y, 
β and εy are the design matrix containing the input data from 
the DOE, response vector, unknown co-efficient vector and 
error vector, respectively. Typically, the quadratic 
polynomial form used in the RSM is as following: 

0
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    The Least Square Method (LSM) is the most widely 

adopted technique to construct polynomial response surface. 

The best estimate of the polynomial coefficients are 

obtained in the sense of least squares by minimizing the 

sum of squares of the distance between the original data 

points and the points in the fitted curve. Suppose the data 

points are (x1,y1), (x2,y2),…, (xn,yn), where x is the 

independent variable and y is the dependent variable and the 

fitting curve is 1 2( ) .f x a x a= +  Then the deviations or 

errors d of ( )f x from each data points are 
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The coefficient of the fitted curve ( )f x  can be obtained 

by setting the gradient of the error (L) with respect to a1 and 

a2 is equal to zero i.e. 
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In the LSM of estimation technique, the unknown 
polynomial coefficients of Eq. (11) are obtained by 
minimizing the error norm defined as: 
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And the least squares estimate of β is obtained as, 

 T T
−

 =
 

β X X X y
1

 
(13) 

Once the polynomial coefficients β are obtained from 

the above Eq. (13), the response y can be readily evaluated 

for any set of input parameters. To fit an accurate model 

within reasonable time, it is required that the initial input 

data (X and y) are selected judiciously. The CCD is adopted 

in the present study to generate the input data sets where 

2n+2n+1 number of functions evolutions are required. 

The capability of response surface model is usually 

judged by the statistical indices i.e. Root Mean Square Error 

(RMSE), the coefficient of determination (R2) and the 

average prediction error (εm), given by (Goswami 2010) 
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(14) 

Where p is the total number of samples, yi is the actual 

response obtained by the FEM-MCS for the ith sample 

point, iy is the mean value of actual responses and ˆ
iy is 

the predicted response obtained by the RSM-MCS for the 

ith sample point. It has been noted from the convergence 

study of direct MCS results presented in Numerical Study 

that approximately after 20,000 simulations the probability 

of failure with respect to deflection criteria does not change 

significantly. Thus, conservatively, sample size p is taken as 

30,000 in evaluating Eq. (14). A larger value of R2 (i.e. a 

value closer to 1) and smaller values of RMSE and εm 

indicates a better fit of the RSM model. 
 

 

4. Sensitivity analysis 
   

Sensitivity analysis of laminated shell i.e. changes in 

deflection, stress, frequency, buckling etc due to the change 

in design variables is of great importance to study the effect 

of variation in the design variables on the performance of 

the shell for proper design of such structures. There exists 

some design variable showing significant effect on the 

structural response sensitivity whereas some other variables 

may have negligible effect. Thus, the sensitivity gradient 

provides essential information for choosing a search 

direction to obtain improved and feasible new design 

points. Also, the sensitivity analysis is significant for 

optimization, re-analysis and damage assessment and 

reliability analysis of such composite structure effectively. 
The sensitivity of responses can be obtained directly 

using the FE equations as presented through Eqs. (6) to (9) 

in section 2. The design variables considered for deflection 
sensitivity are: material parameters (E1, E2, γ12, G12, G13, 
G23), fiber orientation angle (θ), radius of curvature (Rr and 
Rs) and external load (P0). Now, taking the differentiation of 
the FE equilibrium Eq. (9) with respect to any design 
variable (say d) can be expressed as 

 
 

 
   

 
 

 
 

 1
. .
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K u

d d d

Ku P
i e K u

d d d

−

 
+ =

  

  
= − 

   

 (15) 

It may be noted that one needs to evaluate the above 
gradient of the response repeatedly for reliability analysis 
by FORM, optimum design and model updating and it will 
be a computationally challenging task for such analysis of 
real complex structures.  However, the response sensitivity 
can be obtained easily using the explicit response surface 
obtained by RSM. The sensitivity of any desired output 
response approximated by response surface obtained by 
RSM (Eq. 11) with respect to design variable xl can be 
simply obtained as following  

2
k

l ll l il i

i ll

y
x x

x
  




= + +


  (16) 

Where βil = βli  
However, the numerical values of the sensitivity 

derivatives obtained with respect to each design variable 
will be of different order, because the order i.e. range of 
design variables are different. Thus, it is not possible to 
make a comparative assessment of importance of each 
variable on the overall sensitivity of response of the shell to 
identify the most significant design parameter. Thus, the 
sensitivity parameters are normalized and the normalized 
sensitivity coefficient for l-th design parameter xl is 
obtained as  

l

l scaled

l

y

xdy

dx y

x

 
 
   = 
  
 
 

 (17) 

The sensitivity information obtained from the above 
provides the nature of variation of the responses of a 
laminated shell with respect to l-th input parameter xl. This 
information indicates that the changes in performance in a 
design associated with enhancement or reduction of 
respective variables. Now, it is important to make a 
comparative assessment of importance of each variable to 
identify the most decisive input parameters that 
predominantly affect the responses of composite shell 
structures. For this, the importance factor can be obtained to 
rank the variables in order of their relative significance. The 
importance factor is defined as  

2

2

1

l scaled
l

m

l l scaled

dy

dx
S

dy

dx=

 
 
 

=
 
 
 



 (18) 
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Where, Sl is the importance factor of sensitivity of y due to 

the input variable xl and m is the total number of input 

variables. It may be noted that the value of Sl as obtained 

from Eq. (18) is normalized between 0 and 1. Thus, this 

value can serve as an indicator for identifying the relative 

importance of various input parameters influencing the 

responses of structure. This is highly useful at early design 

stage to identify the important input parameters; thereby 

reducing the number of significant variables for further 

optimum design and reliability analysis.  
 

 

5. Reliability analysis 
 

The assurance of performance is referred to as 

reliability. This performance function is described as, 

Z = g( )X
 

(19) 

Where, X is the vector consists of the random structural 

parameters. The failure occurs when Z<0 and the 

probability of failure is mathematically expressed by the 

following multi-dimensional integral,  

f

( ) 0

P (Z<0) .. ( )X

g

f d


=  
X

X X

 

(20) 

Where, )fX(X is the n-dimensional joint probability density 

function (PDF) of the basic random variables. In general, 

the joint PDF of the random variables is seldom available. 

Moreover,  evaluating the multiple integral is  a  

 

 

formidable task. The MCS technique or various second 

moment based approximate methods i.e. the FORM and 

SORM is usually performed to evaluate the probability of 

failure. In the present study RSM based MCS and FORM is 

used for reliability analysis of laminated shells. 

 

 

6. Numerical study 
 

The effectiveness of sensitivity analysis and reliability 

evaluation of laminated composite shell by RSM is 

numerically demonstrated by considering cross-ply 

cylindrical symmetric and anti-symmetric shells. The 

boundary conditions for both the numerical examples are 

taken as simply supported at all edges of the laminates, i.e. 

v = w= θr= v*= 𝜃𝑟
∗= 0 at s = 0, a and  u = w= θs= u*= 

𝜃𝑠
∗= 0 at r = 0, b. The loading condition used in each 

example is sinusoidally distributed load, i.e 

P=P0sin(πs/a)sin(πr/b),where P0 is the constant load. 

Simply supported cross-ply anti-symmetric (0°/90°) and 

symmetric (0°/90°/0°) laminated doubly curved shells are 

considered first to study the accuracy of HSDT (Thakur and 

Ray 2015a,b) model which is used for constructing the 

response surface for reliability analysis. The aspect ratio is 

taken as 1 and a/h ratio is considered as 10. The term R/a 

ratio varies from 1 to infinity. The results in terms of non-

dimensional central deflections are computed by HSDT 

model (Thakur and Ray 2015a,b) and have been presented 

in Table 1 and compared with Bhimaraddi (1993). 

Bhimaraddi (1993) has used the three-dimensional theory of 

elasticity to obtain the exact solution of central deflection of  

Table 1 Non-dimensional central deflection (
2 0/w wE P= ) of laminated cross-ply shell for uniformly distributed sinusoidal 

load. (a=b; a/h=10; Rs=Rr=R) 

Lamination scheme R/a 

Laminated theory 

3D Elasticity 

(Bhimaraddi 1993) 

CST 

(Bhimaraddi 1993) 

PSD 

(Bhimaraddi 1993) 

Present HSDT 

0°/90° 

1 4.6920 3.5718 (23.87%) 3.7686 (19.68%) 4.0823 (12.99%) 

2 8.8092 7.1163 (19.21%) 7.8119 (11.32%) 8.1438 (7.55%) 

3 10.512 8.7192 (17.05%) 9.7489 (7.25%) 9.9928 (4.93%) 

4 11.263 9.4655 (15.95%) 10.675 (5.22%) 10.855 (3.62%) 

5 11.639 9.8559 (15.32%) 11.167 (4.05%) 11.306 (2.86%) 

10 12.150 10.429 (14.16%) 11.896 (2.09%) 11.970 (1.48%) 

20 12.258 10.583 (13.66%) 12.094 (1.33%) 12.148 (0.89%) 

Plate 12.257 10.636 (13.22%) 12.161 (0.78%) 12.209 (0.39%) 

0°/90°/0° 

1 4.0811 2.4008 (41.17%) 3.0770 (24.60%) 3.4036 (16.60%) 

2 6.3134 3.5965 (43.03%) 5.3616 (15.07%) 5.5874 (11.49%) 

3 6.9888 3.9619 (43.31%) 6.2163 (11.05%) 6.6647 (4.63%) 

4 7.7476 4.1080 (46.97%) 6.5836 (15.02%) 6.8226 (11.93%) 

5 7.3674 4.1794 (43.27%) 6.7688 (8.12%) 7.0452 (4.37%) 

10 7.5123 4.2784 (43.04%) 7.0325 (6.38%) 7.1031 (5.44%) 

20 7.5328 4.3039 (42.86%) 7.1016 (5.72%) 7.1226 (5.44%) 

plate 7.5169 4.3125 (42.62%) 7.1250 (5.21%) 7.1256 (5.20%) 
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Table 2 The statistical properties of various random 

parameters of laminated shell 

Variable Distribution Unit Mean COV 

E1 Normal GPa 135 0.1 

E2 Normal GPa 10.97 0.1 

G12 Normal GPa 5.77 0.1 

G13 Normal Gpa 5.77 0.1 

G23 Normal GPa 3.45 0.1 

γ12 Normal Dimensionless 0.24 0.1 

P0 Normal kPa 1 0.1 

h Normal m 0.002/ply 0.05 

R Normal m 50 0.1 

 

 

laminated shell. Bhimaraddi (1993) also used classical shell 

theory (CST) and a higher order theory i.e. parabolic shear 

deformation theory (PSD) neglecting the effect of z/R ratio 

in the analysis. The present laminated shell theory is based 

on HSDT considering the effect of z/R ratio. It can be 

observed from Table 1 that the present HSDT model shows 

consistent results when compared to the exact 3D solution. 

The RSM based reliability analysis of composite shell 

structures are elucidate numerically by considering four 

layered symmetric (0°/90°/90°/0°) and anti-symmetric 

(0°/90°/0°/90°) laminated composite cylindrical shells. The 

dimensions are considered as a=1m and b=3m and radius of 

curvature R=Rs =50m and Rr =inf. The uncertain parameters 

considered are: material properties (E1, E2, G12, G13, G23, 

γ12), external load (P0), ply thickness (h) and radius of 

curvature (R).  The mean values of design variables with 

other statistical properties are shown in Table 2.  

 

6.1 Example 1: Symmetric (0°/90°/90°/0°) cross-ply 
laminated cylindrical shell 

 
In this example four layered cross-ply symmetric 

(0°/90°/90°/0°) laminated cylindrical shell is considered to 

check the accuracy of present LSM based RSM.  The 

maximum deflection of the shell is approximated by RSM 

considering second order polynomial with cross term as an 

explicit function of the nine random variables. The central 

composite design (CCD) is adopted as DOE scheme. For 

nine input variables, total numbers of design points required 

are 29+2×9+1=531 to generate the response surface by 

CCD. A Matlab programme is used to generate these data 

points for developing the RSM using finite element method 

based on HSDT of laminated shell structure.  It may be 

noted that response surface for any other response quantity 

of interest i.e. stress strain etc. at any location can be easily 

obtained once the DOE data are generated. 

To study the capability of RSM to approximate the 

response of the composite shell, various statistical indices 

i.e. Root Mean Square Error (RMSE), co-efficient of 

determination (R2) and direct error (εm) are computed first. 

The values of RMSE, R2 and εm as obtained by the RSM for 

central deflection of symmetric (0°/90°/90°/0°) cross-ply 

laminated cylindrical shell are 0.00133, 0.999999 and 

0.5196 respectively. It can be noted that the value of R2 is  

Table 3 Non-dimensional sensitivity of central deflection 

with respect to different design variables for symmetric 

cross-ply (0°/90°/90°/0°) laminated cylindrical shell  

Sensitivities RSM Direct Error (%) 

𝜕𝑈

𝜕𝐸1
 -1.0034 -0.9548 4.84 

𝜕𝑈

𝜕𝐸2
 -2.2537×10-2 -2.1472×10-2 4.72 

𝜕𝑈

𝜕𝐺12
 -2.2898×10-2 2.1819×10-2 4.71 

𝜕𝑈

𝜕𝐺13
 -5.5922×10-4 -5.4039×10-4 3.36 

𝜕𝑈

𝜕𝐺23
 -1.4028×10-3 -1.3612×10-3 2.96 

𝜕𝑈

𝜕𝜈12
 -1.4589×10-2 -1.3929×10-2 4.52 

𝜕𝑈

𝜕𝑃0
 1.0295 0.9999 2.87 

𝜕𝑈

𝜕ℎ
 -3.1131 -2.9915 3.90 

𝜕𝑈

𝜕𝑅
 5.0817×10-3 4.4899×10-3 11.64 

 

 

nearest to one and the value of RMSE and direct error (εm) 

are very small which indicates that the RSM can 

approximate the shell response with sufficient accuracy.  

Now, the sensitivity analysis is performed on the 

developed RSM to identity the significant random variables. 

Table 3 presents the results of non-dimensional sensitivity 

of central deflection with respect to different design 

variables obtained by RSM and FEM (direct method). It is 

clearly observed that the RSM based approach provides 

almost same result in terms of sensitivity of central 

deflection compare to the direct method. The error in RSM 

based sensitivity with respect to radius of curvature is noted 

to be much higher with respect to other parameters. This is 

arising because the sensitivity or first derivative of the 

central deflection of shell with respect to radius of curvature 

by direct method is carried out neglecting the higher order 

terms of thickness coordinate to radius of curvature (z/R) 

ratio e.g. (z/R)2, (z/R)3.  

The sensitivity-based importance factor of central 

deflection with respect to all design variables obtained by 

the RSM depicted in Fig.2. It may be readily noted from the 

figure that the most influential parameters are E1, P0 and h. 

The reliability analysis is now taken up for the 

following performance function 

g(x)=U-U0 (21) 

where, U is the central deflection of the laminated shell and 

U0 is the maximum allowable deflection. The reliability is 

now estimated using the response surface already 

approximated to predict the central deflection. Fig. 3 shows 

the probability of failure with respect to number of 

simulation by RSM based MCS and direct MCS method.  

For direct MCS, the complete FE analysis is performed for 

each simulation to obtain the deflection and it is repeated 

for total number of simulation considered. The allowable 

209



 

Sandipan N. Thakur, Subrata Chakraborty and Chaitali Ray 

 

Fig. 2 Sensitivity-based importance factor of central 

deflection for symmetric (0°/90°/90°/0°) cross-ply 

laminated shell with respect to different design variables 
 

 
Fig. 3 The probability of failure of symmetric 

(0°/90°/90°/0°) cross-ply laminated shell with respect to 

deflection criteria 
 

 

central deflection is taken as 2.2 mm in this case. It is 
clearly observed that the reliability results converge and 
merge with nearly at 20,000 simulations. Thus, for further 
parametric study 20,000 simulations is taken for reliability 
estimation. In this regard, by comparing the results, one can 
easily notice the capability of the RSM based MCS to 
estimate the reliability of the composite shell. 

The effectiveness of the RSM in terms of processing 
time for estimating reliability with respect to deflection 
criteria is studied first. Table 4 shows the comparison of 
results of processing time for such analysis as required by 
Direct-MCS, RSM-MCS, FORM-Direct and FORM-RSM 
for cross-ply laminated Symmetric (0°/90°/90°/0°) shell. 
The allowable deflection is considered as 2.2 mm and 
20000 simulations are taken in Direct-MCS and RSM-MCS 
approach. It can be observed from Table 4 that for 20000 
FEM runs, the Direct-MCS required 14480 sec i.e. about 4 
hours to obtain the probability of failure with respect to 
deflection criteria. Whereas, the same result obtained from 
RSM-MCS required 0.134 sec only. Also, it can be studied 
that FORM-Direct and FORM-MCS show significant error 
as compared to Direct-MCS. Thus, the RSM approach can  

Table 4 Comparison of processing times for probability of 

failure of cross-ply laminated symmetric (0°/90°/90°/0°) 

shell with respect to deflection criteria 

Method 
Relative processing 

time (sec) 

Probability of failure 

(pf) 

Direct-MCS 14480 0.2341 

RSM-MCS 0.134 0.2377 

FORM-Direct 12.35 0.2173 

FORM-RSM 0.030 

 
0.2148 

 

 
Fig. 4 The probability of failure of symmetric 

(0°/90°/90°/0°) cross-ply laminated shell with respect to 

deflection criteria for different allowable deflection 

 
 

be effectively used in reliability assessment of laminated 
shell structures to reduce the computational cost of analysis.  

Fig. 4 presents the probability of failure of the shell for 
different allowable deflection. The reliability is estimated 
by RSM based MCS and by RSM based FORM and 
compare with the results of direct MCS and direct FEM 
based FORM. It can be observed that results obtained by 
RSM based MCS is totally merged with FEM based MCS 
results. As expected, RSM and direct FEM based FORM 
show significant error when compared with to direct MCS 
based results. 

As noted from Fig. 2 that the most influential 
parameters affecting the shell deflection are E1, P0 and h. 
thus, further parametric studies are considered with respect 
to these three parameters to study the nature of variation 
and performance of RSM or reliability analysis. However, it 
is also well known that radius of curvature(R) is an 
important factor for response analysis of shell structure. 
Thus, it is also taken for parametric study of reliability 
analysis. Fig. 5 to Fig. 8 shows the results of probability of 
failure of central deflection with respect to coefficient of 
variation (COV) of design parameters E1, P0, h and R, 
respectively. The allowable central deflection in each case 
is taken as 2.2 mm.  As expected, the probability of failure 
of central deflection increases with the increase value of 
COV of each design parameters. It may be noted that the 
present RSM based MCS shows quite good estimate of 
probability of failures and are quite close to the most 
accurate direct based MCS estimate. Whereas, as expected 
the FORM results show significant error.  
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Fig. 5 The probability of failure of symmetric 

(0°/90°/90°/0°) cross-ply laminated shell with respect to 

deflection criteria for different COV of E1 

 

 
Fig. 6 The probability of failure of symmetric 

(0°/90°/90°/0°) cross-ply laminated shell with respect to 

deflection criteria for different COV of  P0 

 

 
Fig. 7 The probability of failure of symmetric 

(0°/90°/90°/0°) cross-ply laminated shell with respect to 

deflection criteria for different COV of h 

 

 
Fig. 8 The probability of failure of symmetric 

(0°/90°/90°/0°) cross-ply laminated shell with respect to 

deflection criteria for different COV of Rx 

 

 

6.2 Example 2: Anti-symmetric (0°/90°/0°/90°) 
cross-ply laminated shell 
 

Four layered cross-ply anti-symmetric (0°/90°/0°/90°) 

laminated cylindrical shell is now taken up to further study 

the capability of RSM based reliability analysis of 

composite shell structure. As earlier, the central deflection 

of the shell is approximated by RSM. The nature of 

polynomial function, number of random variables and DOE 

scheme remains same as earlier. 

To study the capability of RSM to approximate the 

response of the composite shell, the various statistical 

indices i.e. RMSE, R2 and εm are computed and the 

corresponding values are 0.00207, 0.999173 and 0.4289. It 

can be noted that the value of R2 is nearest to one and the 

value of RMSE and direct error (εm) are very small which 

indicates that the RSM can approximate the shell response 

with sufficient accuracy. 

The non-dimensional sensitivity of central deflection 

with respect to different design variables are shown in 

Table 5 and the result of sensitivity of deflection by present 

RSM compares well with that of FEM results for this case 

also. Fig. 9 shows the variation of sensitivity-based 

importance factor for central deflection for anti-symmetric 

(0°/90°/0°/90°) laminated cylindrical shell with respect to 

all design variables obtained by the RSM. The observations 

on results are as earlier i.e. the most effective parameters on 

deflection are E1, P0 and h. 

Taking allowable deflection 4.4 mm, the variations of 

probability of failure of central deflection with respect to 

number of simulations are shown in Fig. 10.  Based on 

which number of simulation for further study is fixed at 

20,000 for this example problem also.  

Table 6 shows the results in terms of processing times 

for probability of failure of cross-ply laminated anti-

symmetric (0°/90°/0°/90°) shell with respect to deflection 

criteria. The allowable deflection is taken as 4.4 mm. It can 

be observed that RSM-MCS can properly estimate the 

probability of failure as compared to Direct-MCS with less  
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Table 5 Non-dimensional sensitivity of central deflection 

with respect to different design variables for anti-symmetric 

(0°/90°/0°/90°) cross-ply laminated cylindrical shell  

Sensitivities RSM FEM Error (%) 

𝜕𝑈

𝜕𝐸1
 -0.8623 -0.8278 3.00 

𝜕𝑈

𝜕𝐸2
 -0.1367 -0.1316 3.73 

𝜕𝑈

𝜕𝐺12
 -4.0956×10-2 -3.9326×10-2 3.97 

𝜕𝑈

𝜕𝐺13
 -7.0261×10-4 -6.8411×10-4 2.63 

𝜕𝑈

𝜕𝐺23
 -4.3075×10-4 -4.1951×10-2 2.60 

𝜕𝑈

𝜕𝜈12
 -1.5751×10-2 -1.5167×10-2 3.70 

𝜕𝑈

𝜕𝑃0
 1.0258 1.0000 2.51 

𝜕𝑈

𝜕ℎ
 -3.1004 -2.9903 3.55 

𝜕𝑈

𝜕𝑅
 8.0930×10-3 7.1575×10-3 11.55 

 

 

Fig. 9 Sensitivity-based importance factor of central 

deflection for anti-symmetric (0°/90°/0°/90°) cross-ply 

laminated shell with respect to different design variables 
 

  

Fig. 11 presents the probability of failure for different 

allowable deflection for anti-symmetric (0°/90°/0°/90°) 

laminated cylindrical shell. The observations on the results 

are same as earlier and capability of RSM based MCS for 

reliability analysis of composite shell is confirmed for this 

problem also.   

Fig. 12 to Fig. 15 further show the results of parametric 

study i.e. the variation of the probability of failure of the 

shell with respect to COV of design parameters E1, P0, h 

and R respectively. The allowable central deflection in each 

case is taken as 4.4 mm. The same trend is observed i.e. the 

probability of failure of central deflection is increases with 

the increase COV values of each design parameters and the 

RSM based MCS estimate the probability of failure quite 

accurately whereas FORM based results show considerable 

error. 

 
Fig. 10 The probability of failure of anti-symmetric 

(0°/90°/0°/90°) cross-ply laminated shell with respect to 

deflection criteria 

 

Table 6 Comparison of processing times for probability of 

failure of cross-ply laminated anti-symmetric (0°/90°/0°/90°) 

shell with respect to deflection criteria 

Method 
Relative processing 

time (sec) 

Probability of 

failure (pf) 

Direct-MCS 14500 0.1212 

RSM-MCS 0.153 0.1235 

FORM-Direct 12.46 0.0919 

FORM-RSM 0.029 0.0939 

 

 

Fig. 11 The probability of failure of anti-symmetric 

(0°/90°/0°/90°) cross-ply laminated shell with respect to 

deflection criteria for different allowable deflection 

 

  

7. Summary and conclusions 

 
The reliability assessment of laminated composite shell 

structure is presented in the framework of RSM to replace 

the repeated response analysis of complex finite element 

model of the composite shell. In doing so, useful sensitivity 

information and importance factor estimation capability of 

the RSM based approach is also demonstrated. The result of 
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Fig. 12 The probability of failure of anti-symmetric 

(0°/90°/0°/90°) cross-ply laminated shell with respect to 

deflection criteria for different COV of E1 

 

 
Fig. 13 The probability of failure of anti-symmetric 

(0°/90°/0°/90°) cross-ply laminated shell with respect to 

deflection criteria for different COV of P 

 

 

reliability quantities by the RSM based approach is 

compared with the most accurate direct MCS to study the 

accuracy of the RSM based approach. It has been generally 

noted from the numerical study that RSM based MCS can 

estimate the reliability of the composite shells considered in 

the presents study for wide range of variations of 

probability of failures ranges. As the FEM analysis of 

laminated shell takes much computational time, the RSM 

can be used efficiently in reliability analysis to balance the 

accuracy and cost of computational time. In this regards it 

may be noted that the FEM analysis for deflection of 

laminated composite shell structures takes 0.72 sec in 

Matlab programming for single run. Thus, for constructing 

of RSM for nine input variables by CCD requires 531 runs 

i.e. about 6.5 minutes whereas for direct MCS with 20,000 

runs required about 4 hrs. Thus, RSM based approach can 

be successfully used as an efficient alternative for reliability 

estimate of complex composite shell structures. 

 
Fig. 14 The probability of failure of anti-symmetric 

(0°/90°/0°/90°) cross-ply laminated shell with respect to 

deflection criteria for different COV of h 

 

 
Fig. 15 The probability of failure of anti-symmetric 

(0°/90°/0°/90°) cross-ply laminated shell with respect to 

deflection criteria for different COV of Rx 
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APPENDIX A 
 

Rigidity matrix of laminates 
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APPENDIX B 
 

The non-zero terms of strain-displacement matrix [B] are as 

follows 
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