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1. Introduction 
 

Reducing cost and designing an economic structure 

which is mostly possible by reducing the structural mass is 

the main goal of structural optimization. Therefore, a 

structure meeting the goals and expectations of engineering 

with the least weight is considered as an ideal structure. In 

the field of structural optimization, optimization occurs in 

three branches including size, shape, and topology, 

depending on design variable selection. The goal of 

topology optimization as the most comprehensive type of 

structural optimization is determining the mass distribution 

of structural material in the design space leading to 

structural performance improvement and weight loss. In this 

branch of optimization, the design area and boundary 

conditions are specified first and then the general form of 

structure, location of members, and geometry of design 

space are subjected to be changed until the design criteria 

are achieved.  

Topology optimization of structures has been studied 

extensively in past decades on beams, plates and 2D 

structures to reduce weight in design area alongside their 

mechanical performance improvement. It ’s worth 

mentioning that many studies have already been made on 

2D structures in order to evaluate their mechanical 

performance. It should be noted that these studies have 

evaluated mechanical behavior concentrating on the full  
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design area. For example, Hadji, L., Khelifa, Z. and Adda 

Bedia, E.A. (2016), represented a new higher-order shear 

deformation model for functionally graded beams. Buckling 

analysis of isotropic and orthotropic plates using a novel 

four variable refined plate theory was studied by Bourada, 

F., Amara, and K., Tounsi, A. (2016). Bennoun, M., et al. 

(2016), represented a novel five variable refined plate 

theory for vibration analysis of functionally graded 

sandwich plates. Wave propagation in functionally graded 

beams using various higher-order shear deformation beams 

theories have been studied by Hadji, L., Zouatnia, N., and 

Kassoul, A. (2017).   

Appearance of fast computing methods by computers 

alongside with several structural optimization methods 

invention like homogenization (Bendsoe and Kikuchi 

1998), solid isotropic material with penalization method 

(Zhou and Rozvany, 1991, Sigmund and Petersson, 1998, 

Rozvany et al. 1992, Ritz, 2001, Bendsoe and Sigmund, 

2003), evolutionary structural optimization method (Xie 

and Steven, 1993 and 1997), and level-set method (Sethian 

Wiegmann, 2000, Wan et al. 2003) have drawn researchers 

attention to optimize already known engineering structures. 

the evolutionary structural optimization method is 

performed for discrete design variables. It can be said that 

the optimization procedure is to find the best topology of a 

structure by determining for every point in the design 

domain whether there should be material (solid element) or 

not (void element). In Bi-directional Evolutionary 

Structural Optimization (BESO) approach which was 

introduced for the first time by Yang et al. (1999) and then 

its extended version was presented by Huang and Xie 
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(2007), unlike initial methods which gradually omitted 

unnecessary elements from finite element model of the 

structure, addition of elements simultaneous with their 

omission from the design area is possible too. The criterion 

of addition and omission of an element is determined based 

on the influence of that element on the changes of objective 

function. This criterion is called the element sensitivity 

number. Increasing the structural stiffness against a volume 

constraint has been noticeably taken into consideration on 

the most structural optimization problems which have been 

studied previously. Besides structural stiffness as objective 

function, frequency optimization is of great importance in 

many engineering fields like aerospace and automotive. A 

frequent goal of designing the vibrating structures is to 

avoid the resonance of the structure for external excitation 

frequencies achieved by maximizing the fundamental 

frequency.  

Fewer researches have been done on frequency 

optimization problems compared with wide-ranging articles 

which have been issued for topology optimization with 

stiffness as the objective function. Homogenization (Tenek 

and Hagiwara, 1994, Ma, 1995) and solid isotropic material 

with penalization approach (Kosaka and Swan, 1999, Du 

and Olhoff, 2007) are of used methods in researches done 

on frequency optimization problems. Nevertheless, solid 

isotropic material with penalization approach does not 

function properly in low-density regions due to the 

occurrence of artificial local vibration modes (Pedersen, 

2000). Bi-directional Evolutionary Structural Optimization 

(BESO) algorithm which had previously been implemented 

efficiently in stiffness problems was applied by Yang et al. 

(1999) and then its amended version by Zuo and Xie (2010) 

for solving frequency problems.  

Generally, the high ability of the BESO method in 

solving stiffness problems has been welcomed by 

researchers of topology optimization area in recent years. 

Stiffness optimization of elastoplastic structures (Xia et al. 

2017) and composite materials (Sun et al. 2011), tension-

based topology optimization (Xia et al. 2018), topology 

optimization of continuous structures with uniform 

boundaries (Da et al. 2017), simultaneous topology 

optimization of large-scale structures and microstructure for 

natural frequency (Liu et al. 2016), and structural topology 

optimization under frequency and displacement constraints 

(Zuo et al. 2012) are the newest studies in this field, which 

used BESO approach.  

In most of the topology optimization studies made until 

now, only one objective function has been considered, but 

there may be several objective functions in many real case 

problems. It should be noted that in a single-objective 

problem, structural performance in other areas might be 

subjected to changes that are not often favorable in the 

design process. As a result, optimizing different criteria 

together should be taken into consideration. There have 

been few studies on Multiobjective topology optimization 

compared with single-objective topology optimization. In 

this regard, Sujin Bureerat and Tawatchai Kunakote have 

worked on this field using classic optimization evolutionary 

algorithms (Kunakote and Bureerat, 2011). David Munk 

et.al (2018) have also worked on this field using an updated 

smart normal constraint method which is combined with a 

Bi-directional Evolutionary Structural Optimization (SNC-

BESO) algorithm in a multi-physics problem. In this regard, 

different applications for topology optimization have been 

also considered by researchers (Zhiyi et al. 2018, Zhou, 

2016, Nguyen and Lee, 2015, Banh et al. 2018). 

Stiffness and frequency behavior of structures as two 

important factors in real-design problems were studied as 

separate objective functions in past researches (Yang, X., et 

al. (1999) and Zuo, Z.H., et al. (2012)). Therefore, 

establishing a balance between these two features can have 

high importance in the process of designing and analyzing 

structures related to automotive, aviation and construction 

industries. The phenomenon of multiple frequencies, mesh 

dependency of topology responses, checker-boarding, 

geometric symmetry constraint, and occurrence of artificial 

localized vibration modes in low-density regions are the 

most important challenges faced by the designer in 

frequency optimization problems which influence the 

manufacturability of the optimized design too. 

In this study, the development of the bi-directional 

evolutionary algorithm is considered for topology 

optimization of continuum structures with frequency and 

stiffness objective functions simultaneously as a dual-

purpose optimization. In this regard, the method of weight 

functions is used for creating one general criterion and so 

linear combination of these two weighted criteria 

constitutes a general criterion of the structure. Also, there is 

no limitation in types and numbers of objective functions 

within the developed procedure but for maintaining 

coherence with recent works, stiffness and frequency 

objective functions are used in this paper. To the best of 

authors’ knowledge Multi-objective BESO method that has 

been rarely used in previous works, is introduced in this 

paper for objective functions of compliance and 

fundamental natural frequency. In fact, it is the sequences of 

the BESO method in which different objective functions 

can be combined with weight functions method while there 

are some tricky computational issues and constraints 

implementation that should be taken into account. 

Topology optimization problem with stiffness objective 

function which is the base for the development of topology 

optimization methods and modified Bi-directional 

Evolutionary Structural Optimization algorithm for 

frequency problems alongside its relevant challenges have 

been represented elaborately in previous work of the 

authors (Teimouri and Asgari, 2018) in a problem of two-

dimensional elastic beam. The fundamentals and relations 

of the multi-objective BESO method has been represented 

for a general objective function composed of stiffness and 

first natural frequency criteria. Then the developed 

algorithm has been implemented in a problem of two-

dimensional elastic beam and the best mass distribution is 

presented in the design area. At the same time, considering 

the weaknesses of the optimized structure in single-

objective optimizations for both stiffness and frequency 

problems, slight modifications have been made on the 

numerical algorithm of developed multi-objective BESO in 

order to overcome challenges due to artificial localized 

modes, checker-boarding and geometrical symmetry 
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constraint during the progressive iterations of optimization. 

MATLAB software has been used for implementing the 

developed algorithm for solving optimization problems 

while ABAQUS finite element solver has been used for 

static and modal analysis of the structure. Algorithm stages 

have been implemented completely through creating an 

interaction between these two powerful computer tools. The 

decision for elements addition and deletion is intellectually 

made in all optimization iterations by calling up the output 

information of finite element solver by MATLAB and 

performing sensitivity analysis on all elements. 

Consequently, an efficient multi-objective Bi-directional 

Evolutionary Structural Optimization (MBESO) method is 

developed for topology optimization of frequency and 

stiffness in continuum structures simultaneously. Numerical 

results show that the proposed Multi-objective BESO 

method is efficient and optimal solutions can be obtained 

for continuum structures based on an existent finite element 

model of the structures. 

 

 

2. Multi-objective topology optimization of 
continuum structures 

 
2.1 The weighed function method for BESO  
 

The Weight Function Method has been implemented in 

order to create a multi-objective problem based on 

separated functions. In this method which is regarded as the 

most popular method for multi-objective optimization 

problems, a Multi-Objective (MO) problem is changed into 

a Single-Objective (SO) problem as follows where F is 

multi-criteria objective function, Wi is weight function of 

criteria i, and fi (x) is criteria i. 

Minimize or Maximize:  𝐹 = ∑ 𝑤𝑖𝑓𝑖(𝑥)𝑘
𝑖=1  (1-a) 

Inequality Constraint: 𝑔𝑗 ≤ 0 (1-b) 

Equality Constraint: ℎ𝑖 = 0 (1-c) 

The weight function of each objective function is 

selected due to its importance by a designer. Using the 

Weight Function Method: 

- Importance of different functions can be specified 

and, 

- A balance between two different criteria with 

different physical natures can be maintained.   

Also, the following equation should be maintained for 

each weight function: 

∑ 𝑤𝑖 = 1

𝑘

𝑖=1

 (2) 

It should be noted that normalizing objective functions 

with different dimensions or physical natures is very 

important. One method for this purpose is as follows which 

should be implemented on all objective functions 

0

0

max 0

( )
,   utopia point

norm i i

i i

i i

f X f
f f

f f

−
= 

−
 

(3) 

Where 𝑓𝑖
0  is the optimum value of the objective 

function 𝑓𝑖, in single-objective optimization problem and 

𝑓𝑖
𝑚𝑎𝑥  is its maximum value. The following points are 

important in weight functions method: 

- Obtained solution through this method is definitely 

an optimum Pareto solution. 

- If some of the weight functions are selected zero, a 

poor Pareto solution is obtained.  

- the Collection of Pareto solutions can be obtained 

by changing weight functions. 

- All possible Pareto solutions are not obtained in 

this method.  

Based on the above-mentioned method, the BESO 

method has been developed for multi-objective 

optimization. Multi-objective BESO method which will be 

introduced in this paper for the first time in fact is the 

sequence of the conventional BESO method in which 

different objective functions can be combined through 

weight functions method.   

In the Multiobjective BESO approach, at first elements 

sensitivity numbers are calculated separately for each 

objective function like a single-objective (SO) problem. 

Then elemental sensitivity numbers with respect to 

Multiobjective function (general criterion) are obtained 

using a linear combination of these SO sensitivity numbers. 

So, the process of deletion and addition of an element is 

done based on the sensitivity number. Fundamentals and 

relations of the Multiobjective BESO method will be 

represented for a general objective function composed of 

stiffness and frequency criteria.   
 

2.2 Problem statement 
 

Stiffness is one of the key factors that must be taken into 

account in the design of a large variety of structures. 

Commonly the mean compliance C, the inverse measure of 

the overall stiffness of a structure, is considered as the first 

objective function; hence minimizing structural compliance 

is equivalent to maximizing its stiffness. Considering 

structural stiffness as the first criterion of multi-objective 

topology optimization, the single-objective stiffness 

problem under a volume constraint is represented as follows 

Minimize:      C =
1

2
𝑓 

𝑇𝑢 (4-a) 

With volume constraint of: 𝑉∗ − ∑ 𝑉𝑖𝑥𝑖
𝑁
𝑒=1 = 0 (4-b) 

Design variable as:    𝑥𝑖 = {0 𝑜𝑟 𝑥𝑚𝑖𝑛, 1} (4-c) 

On the other hand to improve structural frequency 

performance, jth natural frequency is considered as the 

second criterion in Multiobjective topology optimization 

problem 

Maximize:     𝜔𝑗 (5-a) 

With volume constraint of:  V∗ − ∑ Vixi
N
i=1 = 0 (5-b) 

Design variable as:   xi = xmin or 1 (5-c) 

Due to the fact that all objective functions should be 

simultaneously minimized or maximized in a multiobjective 
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optimization problem, frequency objective function can be 

represented as follows without changing single-objective 

frequency problem 

minimize:            −𝜔𝑗 (6) 

As mentioned before, according to the dimensional 

difference between the two objective functions, they should 

be normalized. Using equation (3), the normalized forms of 

both objective functions are represented in equations 7-a 

and 7-b which respectively show dimensionless mean 

compliance and dimensionless jth natural frequency. 𝐶0 

and 𝜔𝑗
0 are numerical values corresponding to the single-

objective topology optimization problem 

0

0

max 0

,   utopia point
norm i

C C
C C

C C

−
= 

−
 

(7-a) 
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(7-b) 

Finally using the weight functions method, the 

Multiobjective topology optimization problem with a 

general objective function (stiffness- frequency) is 

represented as follows 

Minimize: 

*

n

1

mi

( )

{ ,1}

0

norm norm

C
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j

i i

i

i

V V

F w C

x
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− =

=

= + −



 

(8-a) 

Volume constraint of: (8-b) 

Design variable: (8-c) 

 

2.3 Implementing Weighted Multiobjective BESO 
 
2.3.1 Interpolation Relation of Material Distribution 
The relation between elemental design variable and 

material properties (Young’s modulus and Density) should 

be specified in a soft-kill approach. This relation has been 

presented and discussed separately for both stiffness and 

frequency problems in reference (Teimouri and Asgari, 

2018). A unique relation for material distribution should be 

specified in a Multiobjective topology optimization 

problem, which satisfies challenges related to each 

objective function. Presented interpolation relation for 

stiffness problem is not usable in frequency problem due to 

the occurrence of artificial vibration modes in low-density 

regions (Huang, 2010). Therefore, it can be said that the 

occurrence of artificial modes is still an imitating factor in a 

Multiobjective stiffness and frequency optimization 

problem. In this research, the interpolation scheme for 

frequency problem (Huang, 2010) will be used in the 

Multiobjective problem as the material distribution relation 

as follows so that E1 and ρ1 are respectively density and 

Young’s modulus of applied material in the structure. In 

most studies with the mentioned approach for stiffness 

problems, penalty values of p and q are considered 

respectively 1 and 3.   

ρ(xi) = 𝑥𝑖𝜌
1 (9a) 

E(xi) = [
1 − 𝑥𝑚𝑖𝑛

1 − 𝑥𝑚𝑖𝑛
𝑝 𝑥𝑖

𝑝
−

𝑥𝑚𝑖𝑛
𝑝

− 𝑥𝑚𝑖𝑛

1 − 𝑥𝑚𝑖𝑛
𝑝 ] 𝐸1 (9b) 

 

2.3.2 Sensitivity Analysis and Sensitivity Number 
By calculating the variation of general objective 

function (Equation of 8-a) with respect to changes of the 

elemental design variable, the sensitivity analysis is 

performed as follows 

( )
norm

i i

C C C

norm

j
ddCdF

w w w w

dx dx dx
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
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−
= + = +

 

(10) 

Performing a sensitivity analysis based on the above-

mentioned material distribution scheme over each 

dimensionless objective function of compliance and 

frequency, the elemental sensitivity numbers corresponding 

to each one of the objective functions are calculated as 

follows: 

In the stiffness problem 

1
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And in the frequency problem 
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(12) 

Wherein, 𝑝 is the penalty parameter related to the soft-

kill approach and 𝑘𝑐and 𝑘𝑤  are the numerical constant 

values which are resulted from dimensionless objective 

function derivatives.  

If 𝑥𝑚𝑖𝑛 descends to zero (a number such as 10−6 ), 

the elemental sensitivity number will be as follows: 

In the stiffness problem 
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And in the frequency problem 
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(14) 
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When calculating frequency sensitivity numbers in 

problems with symmetry in geometry and loading, the 

symmetry of frequency sensitivity numbers must be 

considered .  

Finally, the total sensitivity number of elements related 

to the general objective function is defined as follows 

𝛼𝑖 =
−1

𝑝

𝑑𝐹

𝑑𝑥
= (

−1

𝑝
)(𝑤𝐶

𝑑𝐶𝑛𝑜𝑟𝑚

𝑑𝑥
+ 𝑤𝜔

𝑑(−𝜔𝑗)𝑛𝑜𝑟𝑚

𝑑𝑥
) 

= 𝑤𝐶𝛼𝐶
𝑖 + 𝑤𝜔𝛼𝜔

𝑖  

(15) 

 

2.3.3 Sensitivity numbers improvements: 
To solve checker-boarding and mesh dependency 

problem in the BESO method, which are the most important 

numerical problems in a topology optimization problem, a 

method has been used to improve the elemental sensitivity 

numbers in which elemental sensitivities are converted to 

nodal sensitivity numbers (αi
n)  and then again the 

sensitivity number related to each element is obtained from 

the numbers assigned to the nodes being present in a 

specific radius of that element called the filter radius (Yang 

et al. 1999) 

𝛼𝑖̂ =
∑ 𝑤(𝑟𝑖𝑗)𝛼𝑗

𝑛𝑀
𝑗=1

∑ 𝑤(𝑟𝑖𝑗)𝑀
𝑗=1

 (16) 

In which 𝑟𝑖𝑗 is the distance between the center of the ith 

element and jth node. 𝑀 is the total number of nodes in the 

structure and 𝑤(𝑟𝑖𝑗) is the weight factor assigned to the 

related node which is calculated from the following 

equation 

w(rij) = {
rmin − rij     for  rij < rmin

0                   for  rij ≥ rmin
} (17) 

Based on gained experience in computer computations 

of evolutionary algorithms, averaging from each general 

improved elemental sensitivity number reduces numerical 

instabilities in the convergence of objective function 

considering the history of a sensitivity number in the 

optimization process. 

𝛼𝑖 =
𝛼𝑖

𝑘 + 𝛼𝑖
𝑘−1

2
 (18) 

In this equation, 𝑘 is the optimization iteration number. 

In each optimization iteration 𝛼𝑖
𝑘 = 𝛼𝑖 will be used for the 

next iteration. 

Ideal optimality criteria in the BESO approach is such 

that the sensitivity numbers of all elements remain the same 

if the elemental design variables are not changed. 

Therefore, the elemental design variable 𝑥𝑖  of elements 

with high sensitivity numbers should be increased and the 

elemental design variable 𝑥𝑖  of elements with low 

sensitivity numbers should be decreased. Considering that 

in the BESO approach, the design variable is a discrete 

quantity and only values of 1 or 𝑥𝑚𝑖𝑛 is allowed to be 

allocated, the optimality criteria is described in a way that 

solid elements sensitivity numbers are always more than 

soft elements sensitivity numbers, therefore, for elements 

with low sensitivity numbers, design variables are changed  

 

Fig. 1 Flowchart of the BESO method 
 

 

Fig. 2 Design domain of a simply supported 2D beam 
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from 1 to 𝑥𝑚𝑖𝑛  and for elements with high sensitivity 

numbers, design variables are changed from 𝑥𝑚𝑖𝑛 to 1. 

Decrease and increase of the volume fraction (the 

number of deleted / added elements to the total number of 

elements of the design area in each iteration) is determined 

by two parameters of 𝐴𝑅𝑚𝑎𝑥 and 𝐸𝑅. The volume of the 

structure in each step is calculated according to equation 

(19), and as soon as reaching the design objective volume 

(satisfied optimization constraint), its value is kept constant. 

Then the objective function convergence is evaluated. 

𝑉𝑘+1 = 𝑉𝑘(1 ± 𝐸𝑅)         (𝑘 = 1,2,3 … ) (19) 

The repeatable process of the BESO algorithm is shown 

in Fig. 1 which explains the necessary steps for reaching a 

reasonable topology through meeting the objective function 

and satisfying the design constraint. 

 

2.3.4 Geometrical symmetry  
In most structural optimization problems, for problems 

with symmetry in loading and fundamental geometry, 

geometrical symmetry of the resulted topology is 

considered as a logical requirement in the optimization 

process. In the first step, what is geometrically needed to 

achieve a symmetric topology, is having the same elemental 

sensitivity numbers for elements geometrically symmetric 

in order to have an equal chance of deletion/addition. Then, 

the designer should consider elements deletion/addition 

procedure to satisfy the geometrical symmetry. In this 

research, the symmetry constraint in the multi-objective 

BESO approach is considered in the deletion /addition stage 

of the main optimization process. 
 

 

3. Numerical implementation and results  
 

Multiobjective topology optimization for objective 

functions of stiffness and fundamental natural frequency 

has been considered in this section. In this example, the 

goal of the optimization is to maximize the fundamental 

frequency and stiffness of a 2D structure (Fig. 2). The 

objective volume is 50% of the structure’s initial volume 

and dimensions of the beam are considered as 8m1m. 

Four-node plane stress elements are used for discretization 

of the design area. The Young’s modulus and the Poisson’s  

 

 
Fig. 4 Evolution histories of the mean compliance and 

volume fraction for stiffness objective function and 

volume constraint of 50% 
 

 

ratio of the structure are respectively E=10MPa and v=0.3, 

and the structural density is considered ρ=1kg/m3. The 

number of the elements is proportional to the dimensions of 

the beam (40320). The required parameters for the BESO 

procedure are selected as follows:  

ER=0.02, ARmax=0.02, xmin=10-6, rmin= 0.075m and 

penalty parameter is p=3. 

A 1N force is considered for stiffness optimization of 

the structure in the middle of the beam lower length. The 

two-objective BESO procedure starts to reduce the volume 

of a structure by deletion/addition of elements from the 

design area in a gradual process which is determined by 

ARmax and ER. By allocating numerical quantities for the 

above-mentioned parameters in the MATLAB optimization 

code, and through using ABAQUS software for modal and 

static analysis, the elements that should be omitted or added 

to the structure will be specified in optimization iterations. 

Finally, the iterations will be continued up to convergence 

of the general objective function. In the following sections, 

the optimization results for both objective functions will be 

represented separately. Then the two-objective problem will 

be solved considering the general objective function which 

is a linear combination of stiffness and fundamental natural 

frequency.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 3 Topology evolution histories of the structure for maximum stiffness and volume constraint of 50% at iteration: a) 10, 

b) 25, c) 50, and d) 43 
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Table 1 comparing the results of optimized structure with 

initial structure 

 
Mean compliance 

[Nmm] 

Fundamental natural 

frequency [rad/sec] 

Volume 

fraction 

Initial 

structure 

Optimized 

structure 

with 

BESO 

method 

6.949 

9.8 

135.67 

147 

1 

0.5 

 

 

Fig. 5 First mode shape of the structure having an Eigen 

value of 147 [rad/sec] 

 

 
Fig. 6 Optimum topology of the structure for maximum 

fundamental frequency and volume constraint of 50% 

 
 
3.1 Stiffness optimization  
 

A single objective topology optimization for stiffness 

has been comprehensively discussed in the reference 

(Teimouri and Asgari 2018).  In Figs. 3 and 4, the structure 

topology evolution as well as the historical evolution of the 

objective function and volume fraction is illustrated. 

Satisfying the volume constraint after 15 iterations, the 

compliance of the structure is converged to a magnitude of 

9.73 [N.mm]. In the present research, the convergence is 

considered for 0.01%. 

In table 1, the topology optimization results of the 2D 

beam with maximized stiffness as objective function and 

volume constraint of 50% is compared with the initial 

structure. To evaluate the frequency performance of the 

structure, the frequency response of the final topology is 

shown in the Fig. 5. 

 

3.2 Fundamental natural frequency optimization 
 

The topology optimization of this structure considering 

the fundamental natural frequency as the objective function 

is also offered in the reference (Teimouri and Asgari, 2018) 

and (Yang et al. 1999). Implementing the same approach, the 

final topology of the structure is shown in Fig. 6. In table 2, 

topology optimization results of the beam structure for 

fundamental natural frequency and volume constraint of 

50% is compared with those of the initial structure. Using 

the modified BESO presented by authors (Teimouri and 

Asgari, 2018), the fundamental natural frequency of the 

structure is increased for 25% and at the same time, its mass 

(volume) is halved.  

As it’s understood from table 2, unlike the stiffness 

objective function which resulted in improvement of the 

structure frequency behavior, the compliance of the  

Table 2 Comparing the results of optimized structure with 

initial structure 

 

Mean 

Compliance 

[Nmm] 

1stNatural 

frequency 

[rad/sec] 

2ndNatural 

frequency 

[rad/sec] 

Volume 

fraction 

Initial structure 

 

Optimized structure 

with 

BESO method 

6.949 

 

35 

135.67 

 

170 

493.36 

 

172.73 

 

1 

 

0.5 

 

 

Fig. 7 The Pareto-front for different weighed coefficients 

 

 

structure is noticeably increased during frequency 

optimization which is considered as a great disadvantage in 

the single objective topology optimization for frequency in 

bridge-like structures. 

 
3.3 The Multiobjective BESO for optimization of 

stiffness and natural frequency  
 
In this section, two-objective topology optimization 

results for a 2D beam problem (Fig. 2) are represented 

using the weighted BESO method (combination of BESO 

and weighed function methods). 

According to the problem statement in equation (8), the 

obtained results for seven different coefficients (weighed 

functions of wc and wω) are presented in table 3 as some of 

the Pareto solutions.  

In Fig. 7 the Pareto-front of optimized objective 

functions of stiffness and fundamental natural frequency is 

illustrated for different weighted coefficients. Fig. 8 shows 

the evolution of compliance objective function for different 

weighted coefficients. According to Fig. 8, increasing the 

compliance weighed coefficient leads to an increase in its 

importance in general design criteria directing the beam 

topology design toward a stiffer structure with weaker 

frequency performance.  Finally, by changing the weighed 

compliance coefficient to “1”, the Multiobjective problem is 

practically converted to a single objective problem with 

minimum mean compliance (stiffest structure).  

In Fig. 9 the evolution of fundamental natural frequency 

is shown for different weighted coefficients. According to 

the figure, increasing the frequency weighted coefficient 

leads to an increase in its importance in the general design  
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Fig. 8 Evolution histories of the mean compliance for 

different weighed coefficients 

 

 
Fig. 9 Evolution histories of the fundamental natural 

frequency for different weighed coefficients 

 

criteria and as a result of that the beam topology design will 

result in a softer structure with better frequency 

performance.  Finally, by changing the frequency weighted 

coefficient to “1”, the two-objective problem is practically 

converted to a single objective problem with maximum  

 

 

 

fundamental natural frequency (best frequency 

performance). 

In Fig. 10, the topologies for different weighted 

coefficients are shown. According to the figure, the middle 

parts of the structure are more important in its stiffness.  In 

addition, these parts have greater impact on the structural 

mass and their omission will result in the fundamental 

natural frequency increase. Therefore selecting of a middle 

topology, in which both objective functions have suitable 

performance, is of great importance.  

 

 

4. Conclusion  
 

Considering the importance of different objective 

functions in structural problems and the necessity of 

Multiobjective optimization, in this paper, an efficient 

Multiobjective BESO method was developed for topology 

optimization of continuum structures simultaneously. The 

stiffness and frequency problem is solved as a two-objective 

topology optimization problem in a 2D continuum structure 

(rectangular beam). For this purpose, at first, both objective 

functions are optimized on mentioned geometry as single 

objective functions. According to the results, unlike 

Table 3 Topology optimization results of two-objective problem (stiffness and fundamental frequency) using weighed BESO 

method 

F ( )norm

j− norm
C [ / ec]

j
rad s [ ]C Nmm w

 C
w 

-0.0636 -0.06 0.46 170 35 1 0 

0.1543 0.12 0.48 167 29 0.9 0.1 

0.1897 0.13 0.32 165 22.8 0.7 0.3 

0.1891 0.32 0.059 158 12.4 0.5 0.5 

0.1638 0.49 0.024 152 11 0.3 0.7 

0.0524 0.56 -0.004 150 9.8 0.1 0.9 

-0.005 0.66 -0.005 147 9.8 0 1 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
 

(f) 
 

(g) 
 
Fig. 10 Final topologies of the two-objective optimization 

problem for different weighed coefficients of: a) 0, b) 0.1, 

c) 0.3, d) 0.5, e) 0.7, f) 0.9, and g) 1 
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stiffness single objective problem that leads to improvement 

of the structure frequency performance, the frequency 

single objective problem has no positive role in structure 

stiffness improvement and the structure compliance 

increases noticeably. Therefore by implementing the 

Multiobjective BESO based on the weighed coefficient 

method, a balance between both objective functions is made 

in the design. This type of topology optimization procedure 

can mostly be used in designing bridge-like structures or 

structures related to vehicle and aerospace industries where 

the stiffness and frequency performance are simultaneously 

important. During the progressive iterations of optimization, 

some modifications have been made on the developed 

Multiobjective BESO algorithm in order to overcome 

numerical challenges raised from artificial localized modes, 

checkerboarding and geometrical symmetry constraint. By 

implementing the Multiobjective BESO method in 

MATLAB-ABAQUS software package, the topologies 

resulted from different weighted coefficients are stiffer in 

comparison with a single objective frequency problem and 

have better frequency performance compared to the single 

objective stiffness problem. The Multiobjective BESO 

method in MATLAB-ABAQUS software package has been 

practically implemented and is applicable for 2D structures 

with different geometrical and boundary conditions and 

other objective functions. Numerical results show that the 

proposed Multiobjective BESO method is efficient and its 

optimal solutions can be obtained for continuum structures 

based on an existent finite element model of the structures. 

 

 

Symbols  
 
English symbols  

 

ER,AR  evolutionary ratio, incremental ratio  

E  Elasticity Modulus, N/m2 

KE, ME Element Stiffness matrix (N/m), element mass 

matrix (kg) 

ui  elemental displacement vector 

x  elemental design variable  

 

Greek symptoms  

 

P  density, kg/m3 

ωj  j-fundamental frequency (rad/sec) 

ɑ  modified element sensitivity number   
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