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1. Introduction 
 

Functionally graded materials (FGM) have been widely 

used in various industries and engineering sectors such as 

aerospace, aircraft, automobile, defense industries, and 

biomedical sectors. They are special composites whose 

composition varies continuously along the thickness of a 

structure to achieve a required function. Typically, these 

materials consist of a mixture of ceramic and metal (see 

Fig. 1), or a combination of different materials. The ceramic 

constituent provides high-temperature resistance due to its 

low thermal conductivity. The ductile metal constituent, on 

the other hand, prevents fracture caused by stresses due to a 

high temperature gradient in a very short span of time 

(Pradhan et al. 2013). To date, four types of material 

variations have been proposed such as power-law (P-FGM), 

sigmoid (S-FGM), Mori-Tanaka (M-FGM), and exponential 

(E-FGM) models (see Section 2). 

The advantages of the functionally graded materials are 

essentially due to the smooth variations of their mechanical 

properties along preferential directions, which allow one to 

preserve high specific stiffness while avoiding the main 

drawbacks of classical composites (laminated composites) 

such as the stress discontinuities at the layer-interfaces and 

the low resistance to thermal shocks (Filippi et al. 2015). 

The increase in functionally graded materials (FGM) 

applications requires accurate mathematical models to 

predict their responses. Recently, several researchers have 

developed analytical and numerical models in order to study 

the thermal and mechanical behaviour of FGM structures  
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(micro-beams, beams, plates, etc.). Ziou et al. (2016) have 

studied the static behaviour of functionally graded material 

beams by a finite element based on the theory of first order 

shear deformation, in which the Timoshenko kinematics 

assumption is used. Şimşek (2009) also studied the static 

behaviour of FGM simply-supported beam by using the 

Ritz method within the framework of Timoshenko and the 

higher order shear deformation beam theories. 

 Belabed et al. (2014) presented a higher order shear 

and normal deformation theory to analyze analytically the 

free vibration response of functionally graded material 

(FGM) plates. Pradhan et al. (2013) studied the free 

vibration of functionally graded beams by Rayleigh-Ritz 

method; they based in this analysis on the classical and first 

order shear deformation beam theories. 

Sankar (2001) has developed an elasticity solution for a 

functionally graded beam subjected to sinusoidal transverse 

loading, he also proposed a simple Euler-Bernoulli type 

beam theory based on the assumption that the section 

remains plane and normal to the beam axis. 

Recently Filippi et al. (2015) have presented a 

comparison between various analytical models used to 

perform static analyses of FGM beams.  

 In recent years, several studies have been conducted on 

functionally graded nanobeams and nanoplates (Karami et 

al. 2017, Karami et al. 2018 a, b, c, Nejad et al. 2018, 

Ebrahimi and Barati 2017, Bağdatli 2015, Kolahchi et al. 

2015). Kolahchi et al. (2016), Kolahchi et al. (2017 a, b), 

Hajmohammad et al. (2017), Madani et al. (2016), Hosseini 

and Kolahci (2018) investigated the analysis of FG carbon 

nanotubes.   

Most of these models are based on simplifying 

assumptions, such as those related to the kinematics of the 

beams. For example Euler-Bernoulli and Timoshenko 

theories in which assume that the section is undeformable  
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Fig. 1 FGM beam 

 

 

(for Bernoulli, the section remains, furthermore, normal to 

the beam axis after deformation).  

In this paper, we studied the static behaviour of FGM 

beams using the 3D exact beam theory built on 3D Saint-

Venant’s solution (Ladevèze and Simmonds 1998, El Fatmi 

and Zenzri 2002), in which the kinematic model includes 

sectional Poisson’s effects and out-of plane warpings. Since 

it is independent of any kinematic or static assumption. This 

theory is quite different from the classical theories of Euler-

Bernoulli, Timoshenko, and their extensions. This theory is 

based on a displacement model that allows the deformation 

of the section in and out of its plane via the main own 

displacement modes. The latters are specific to the section 

nature (shape and materials). 

 
 
2. Functionally graded material 

 

The material properties of FGM beams are assumed to 

vary continuously through the thickness (see Fig.1). Four 

homogenization methods exist in literature (Hadji et al. 

2016, Belabed et al. 2014, Pradhan and Chakraverty 2013, 

Lee and Kim 2013, Ben–Oumrane et al. 2009, Zenkour 

2006, Zenkour 2007, Ziou et al. 2017, Guenfoud 2019) for 

the computation of Young’s modulus 𝐸(𝑦) namely: (1) 

power–law distribution, (2) exponential distribution, (3) 

Mori–Tanaka scheme and (4) sigmoid distribution.  

For the power–law distribution (P–FGM), the Young’s 

modulus is given by (Zenkour 2006, Guenfoud 2019): 

𝐸(𝑦) = 𝐸𝑏 + (𝐸𝑡 − 𝐸𝑏) × (
2𝑦 + ℎ

2ℎ
)
𝑃

 (1) 

where 𝑃 is the power–law exponent; 𝐸𝑡  and 𝐸𝑏  denote 

the Young’s modulus at the top and bottom beam surfaces, 

respectively. 

 For the exponential distribution (E–FGM), the Young’s 

modulus is given by (Zenkour 2007, Kaci et al. 2014): 

𝐸(𝑦) = 𝐴 × 𝑒𝐵×(𝑦+
ℎ

2
)
 where 𝐴 = 𝐸𝑏 , 𝐵 =

1

ℎ
𝐿𝑛(

𝐸𝑡

𝐸𝑏
) (2) 

where ℎ, 𝐸𝑏  and 𝐸𝑡  denote the thickness of the beam, 

Young’s modulus of the bottom and top faces of beam 

respectively. 

For the Mori–Tanaka distribution (M–FGM), the 

Young’s modulus is given as (Belabed et al. 2014)  

𝐸(𝑦) = 𝐸𝑏 +(
(𝐸𝑡 − 𝐸𝑏) × 𝑉𝑐

1 + (1 − 𝑉𝑐) × (
𝐸𝑡
𝐸𝑏
− 1) × (

1 + 𝜈
3 − 3𝜈)

) (3) 

 

Fig. 2 Variation of Young’s modulus through the 

thickness of P–FGM beam 

 

 
Fig. 3 Variation of Young’s modulus through the 

thickness of E–FGM beam 

 

 

where 𝑉𝑐 = (0.5 + 𝑦/ℎ)
𝑃  is the volume fraction of the 

ceramic. Since the effect of the variation of Poisson’s ratio 

𝜈 on the response of FGM beam is insignificant.  

At last, the sigmoid distribution (S–FGM) is considered 

as to reduce the stress concentration in a single power low 

portion. And then, this type of model is intended to ensure 

smooth stress distribution using different power–law 

function as the volume fraction: 

{
 
 

 
 
𝑉𝑐1(𝑦) = 1 −

1

2
(1 −

2𝑦

ℎ
)
𝑃

          0 ≤ 𝑦 ≤
ℎ

2

𝑉𝑐2(𝑦) =
1

2
(1 +

2𝑦

ℎ
)
𝑃

            −
ℎ

2
≤ 𝑦 ≤ 0

 (4) 

The Young’s modulus can be obtained by a linear rule of 

mixture:  

{
𝐸(𝑦) = 𝐸𝑡𝑉𝑐1(𝑦) + 𝐸𝑏(1 − 𝑉𝑐1(𝑦));  0 ≤ 𝑦 ≤

ℎ

2

𝐸(𝑦) = 𝐸𝑡𝑉𝑐2(𝑦) + 𝐸𝑏(1 − 𝑉𝑐2(𝑦)); −
ℎ

2
≤ 𝑦 ≤ 0

 (5) 
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Fig. 4 Variation of Young’s modulus through the thickness 

of M–FGM beam 

 

 
Fig. 5 Variation of Young’s modulus through the 

thickness of S–FGM beam 

 

 

Figs. 2-5 show the distribution of Young’s modulus 

through the dimensionless thickness of the FGM beam, 

which is obtained by the different methods (the material 

properties of this FGM beam are presented in Section 5).      

Many studies (Delale and Erdogan 1983, Ben–Oumrane 

et al. 2009, Guenfoud et al. 2016, Hadji et al. 2016, Ziou 

2017) indicated that the effect of Poisson’s ratio on the 

deformation is much less than the Young’s modulus. 

Therefore, in this paper, the Poisson's ration is assumed to 

be a constant. 

 

 

3. Saint Venant beam theory 
 

We consider the beam shown in Fig. 6, occupying a 

prismatic domain Ω of a constant cress-section 𝑆 and a  

 

Fig. 6 Geometry and loading on the beam (3D) 

 

 

Fig. 7 Actions on the beam (1D) 

 

 

length 𝐿. The beam is subjected to a body force density 𝑓 

on Ω, a surface force density 𝐻 on the lateral surface 𝑆𝑙𝑎𝑡, 
a surface force density 𝐻0  on 𝑆0  and a surface force 

density 𝐻𝐿  on 𝑆𝐿 . Where 𝑆0  and 𝑆𝐿  denote the cross-

section at 𝑧 = 0  and the cross-section at 𝑧 = 𝐿 , 

respectively. A point 𝑃 in  Ω is marked 𝑃 = 𝑧𝑛(𝑧) + 𝑋, 

where 𝑋 belongs to 𝑆. The materials constituting the beam 

are linear elastic and the elastic tensor 𝐾 is 𝑧 −constant. 

The 3D elasticity problem to be solved can then be 

written (Ladevèze and Simmonds 1998, El Fatmi and 

Zenzri 2002): 

 

Equilibrium equations 
Equilibrium equations of this problem can be written: 

𝑑𝑖𝑣𝜎 + 𝑓 = 0    𝑜𝑛 Ω   (6) 

𝜎𝑛(𝑥, 𝑦, 𝑧) = 𝐻    𝑜𝑛 S𝑙𝑎𝑡   (7) 

𝜎𝑛(𝑧) = 𝐻𝐿    𝑜𝑛 S𝐿   (8) 

−𝜎𝑛(𝑧) = 𝐻0    𝑜𝑛 S0   (9) 

 

Constitutive relation 
The constitutive relation is 

𝜎 = 𝐾𝜀(𝑈)    𝑜𝑛 Ω    (10) 

where 

𝜀(𝑈) =
1

2
(∇𝑡𝑈 + ∇𝑈)    𝑜𝑛 Ω   (11) 

where 𝑈 is the displacement vector, 𝜎 is the stress, K is 

Hooke’s tensor, 𝜀  the strain tensor, 𝑛(𝑥, 𝑦, 𝑧)  is unit 

normal and external to the boundary of domain Ω and 

𝑛(𝑧) is unit normal and external to cross-section of the z–

abscissa. 
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The resultant 𝑇  and the moment 𝑀  in the cross-

section of the stress vector 𝜎. 𝑛(𝑧) are classically named 

“generalized stresses” or “cross-sectional stress resultants”, 

they are defined by:   

𝑇(𝑧) = ∫ 𝜎(𝑛(𝑧))𝑑𝑠
 

𝑆
= {
𝑇𝑥
𝑇𝑦
𝑁

}    (12) 

𝑀(𝑧) = ∫ 𝑋 ∧ 𝜎(𝑛(𝑧))𝑑𝑠
 

𝑆
= {

𝑀𝑥
𝑀𝑦
𝑀𝑡

}    (13) 

where the components {𝑇𝑥, 𝑇𝑦, 𝑁,𝑀𝑥, 𝑀𝑦, 𝑀𝑡} are the six 

classical internal forces designated respectively by the shear 

forces, the normal force, the bending moments and the 

torsional moment. 

which verify the one–dimensional (1D) equilibrium 

equations: 

{
𝑇,𝑧 + 𝑝𝑑 = 0

𝑀,𝑧 + 𝑛(𝑧) ∧ 𝑇 + 𝜇𝑑 = 0
    (14) 

where (∙),𝑧 is the derivative with respect to 𝑧. 𝑝𝑑, 𝜇𝑑 are 

the linearized force densities associated with 𝑓, 𝐻 (Fig.7). 

𝑝𝑑 = ∫ 𝑓𝑑𝑆
 

𝑆
+ ∫ 𝐻𝑑𝜏

 

𝜕𝑠
    (15) 

𝜇𝑑 = ∫ 𝑋 ∧
 

𝑆
𝑓𝑑𝑆 + ∫ 𝑋 ∧ 𝐻𝑑𝜏

 

𝜕𝑆
  (16) 

The one–dimensional (1D) behaviour law of the beam is 

given by:  

ቄ
𝑇
𝑀
ቅ = Γ {

𝑢′ + 𝑛(𝑧) ∧ 𝜔

𝜔′
}  (17) 

and 

ቄ
𝛾
𝜒ቅ = {

𝑢′ + 𝑛(𝑧) ∧ 𝜔

𝜔′
} = Λ ቄ

𝑇
𝑀
ቅ (18) 

where Γ is the sectional stiffness operator (matrix 6×6) 

depending on the cross–section and the materials. We note 

Λ = Γ−1 the flexibility operator (compliance operator). 

The equilibrium Eq. (14) and the behaviour law Eq. (18) 

constitute the differential equations of the exact 1D beam 

theory. In order to be solved, the 1D problem has to be 

completed by boundary conditions (Ladevèze and 

Simmonds 1998, El Fatmi and Zenzri 2002, El Fatmi and 

Zenzri 2004). 

 
Three-dimensional Saint–Venant’s solution 

The Saint–Venant solution, denoted by (𝜎𝑆𝑉, 𝑈𝑆𝑉), is the 

single 𝑧–polynomial solution that exactly satisfies Eqs. (6)-

(7)-(10)-(11) and satisfies the boundary conditions of Eqs. 

(8)-(9) only in terms of resultant (force and moment) of the 

stresses applied on the extremity cross-sections. 

The 3D Saint–Venant’s solution is given as following 

(Ladevèze and Simmmonds 1998, El Fatmi and Zenzri 

2002, El Fatmi and Zenzri 2004, El Fatmi 2016):    

The 3D stress field in a cross-section is obtained by:   

𝜎𝑒(𝑥, 𝑦, 𝑧) = 𝑇𝑥
𝑒(𝑧). 𝜎1(𝑥, 𝑦) + 𝑇𝑦

𝑒(𝑧). 𝜎2(𝑥, 𝑦) + (21) 

𝑁𝑒(𝑧). 𝜎3(𝑥, 𝑦) + 𝑀𝑥
𝑒(𝑧). 𝜎4(𝑥, 𝑦) +

𝑀𝑦
𝑒(𝑧). 𝜎5(𝑥, 𝑦) + 𝑀𝑡

𝑒(𝑧). 𝜎6(𝑥, 𝑦)  

or in a compact form 

𝜎𝑒(𝑥, 𝑦, 𝑧) = ∑ 𝑋𝑖
𝑒(𝑧)𝜎𝑖(𝑥, 𝑦)6

𝑖=1   (22) 

where: 

𝑋𝑖
𝑒(𝑧) symbolizes the six (06) internal forces: 

𝑇𝑥
𝑒(𝑧), 𝑇𝑦

𝑒(𝑧), 𝑇𝑧
𝑒(𝑧),𝑀𝑥

𝑒(𝑧),𝑀𝑦
𝑒(𝑧),𝑀𝑡

𝑒(𝑧).  

They obtained from the one-dimensional (1D) 

equilibrium equations. 

𝜎𝑖(𝑥, 𝑦) is the section stress field that correspond to 

each of the unit internal forces 𝑋𝑖
𝑒 = 1 (unity). The six 

(06) unit stress fields 𝜎𝑖(𝑥, 𝑦) are depend only on the 

section nature (shape and materials), they are characteristics 

of the section (El Fatmi and Zenzri 2002). 

The expression of the displacement field derives from 

Saint Venant's 3D solution, is given by: 

𝑈𝑆𝑉(𝑥, 𝑦, 𝑧) = 𝑢𝑒(𝑧) + 𝜔𝑒(𝑧) ∧ 𝑋 + 𝑇𝑥
𝑒(𝑧). 𝑈1(𝑥, 𝑦) +

𝑇𝑦
𝑒(𝑧). 𝑈2(𝑥, 𝑦) + 𝑁𝑒(𝑧). 𝑈3(𝑥, 𝑦) +

𝑀𝑥
𝑒(𝑧). 𝑈4(𝑥, 𝑦) + 𝑀𝑦

𝑒(𝑧). 𝑈5(𝑥, 𝑦) + 𝑀𝑡
𝑒(𝑧). 𝑈6(𝑥, 𝑦)  

(23) 

or in a compact form 

𝑈𝑆𝑉(𝑥, 𝑦, 𝑧) = 

𝑢𝑒(𝑧) + 𝜔𝑒(𝑧) ∧ 𝑋⏞              

𝑟𝑖𝑔𝑖𝑑 𝑚𝑜𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

+∑𝑋𝑖
𝑒(𝑧)𝑈𝑖(𝑥, 𝑦)

6

𝑖=1

⏞          
𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

 

(24) 

where 

𝑢(𝑧)  and 𝜔(𝑧)  are the sectional translation and 

rotation vector respectively, are related to (𝑇,𝑀) by the 

one–dimensional structural behaviour of Eq. (18).  

𝑈𝑖(𝑥, 𝑦) are the six (06) sectional displacement modes 

of 3D Saint–Venant that correspond to each of the unit 

internal forces 𝑋𝑖
𝑒 = 1 (unity). Each one of the six 3D 

Saint–Venant modes  𝑈𝑖(𝑥, 𝑦) reflects the contribution of 

an internal force to the sectional deformation, describing 

Poisson’s effects (deformation in the plane of the section) 

and that out–of plane warpings. The six sectional 

displacement modes 𝑈𝑖(𝑥, 𝑦) depend only on the section 

nature (shape and materials); they are sectional 

characteristics. 

The first term of the Eq. (24) represents global motion of 

the section, and the second term expresses the section 

deformation. 
 

 

4. Mechanical characteristics of the section 
 

4.1 Homogeneous and isotropic section 
 
Structural flexibility operator 

The structural flexibility operator Γ  (matrix 6×6) is 

depends only on the cross-section nature (shape and the 

material), it is used to describe the one-dimensional (1D) 

behaviour of beam (see Eq. (18)). For the case of 

homogeneous and isotopic section, the structural flexibility 

operator is given by 
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Λ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝐺𝑆𝑥
+
𝑦𝑐
2

𝐺𝐽

−𝑥𝑐𝑦𝑐
𝐺𝐽

0 0 0
𝑦𝑐
𝐺𝐽

−𝑥𝑐𝑦𝑐
𝐺𝐽

1

𝐺𝑆𝑦
+
𝑥𝑐
2

𝐺𝐽
0 0 0

−𝑥𝑐
𝐺𝐽

0 0
1

𝐸𝑆
0 0 0

0 0 0
1

𝐸𝐼𝑥
0 0

0 0 0 0
1

𝐸𝐼𝑦
0

𝑦𝑐
𝐺𝐽

−𝑥𝑐
𝐺𝐽

0 0 0
1

𝐺𝐽 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (25) 

Where 𝐸 is the Young’s modulus, 𝐺 is the shear modulus, 

𝑆 the cross-section, 𝑆𝑥  and 𝑆𝑦  are the reduced sections 

related to the shear forces 𝑇𝑥 and 𝑇𝑦 respectively, 𝐼𝑥 the 

inertia moment with respect to 𝑥, 𝐼𝑦 the inertia moment 

with respect to 𝑦, 𝐽 the torsional inertia, 𝑥𝑐 and 𝑦𝑐 are 

the coordinates of the shear centre 𝐶. 

 
3D stress field 

For the case of a homogeneous and isotropic section, the 

stress field 𝜎𝑒(𝑥, 𝑦, 𝑧) is given, in (𝑥, 𝑦, 𝑧), by     

𝜎𝑒(𝑥, 𝑦, 𝑧) = [

0 0 𝜎𝑥𝑧
𝑒

0 0 𝜎𝑦𝑧
𝑒

𝜎𝑥𝑧
𝑒 𝜎𝑦𝑧

𝑒 𝜎𝑧𝑧
𝑒
]    (26) 

The axial stress 𝜎𝑧𝑧
𝑒  depends only on (𝑁𝑒 , 𝑀𝑥

𝑒 , 𝑀𝑦
𝑒) 

and the shear stresses (𝜎𝑥𝑧
𝑒 , 𝜎𝑦𝑧

𝑒 )  depend only on 

(𝑇𝑥
𝑒 , 𝑇𝑦

𝑒 , 𝑀𝑡
𝑒). 

Axial stress which is linear combination of (𝑁𝑒 , 𝑀𝑥
𝑒 , 𝑀𝑦

𝑒) 

is given by  

𝜎𝑧𝑧
𝑒 (𝑥, 𝑦, 𝑧) = 𝑁𝑒(𝑧). (

1

𝐴
) + 𝑀𝑥

𝑒(𝑧). (
𝑦

𝐼𝑥
) − 𝑀𝑦

𝑒(𝑧). (
𝑥

𝐼𝑦
)  (27) 

We can deduce the stress fields 𝜎𝑖  associated with 

(𝑁𝑒 , 𝑀𝑥
𝑒 , 𝑀𝑦

𝑒) and which reduce to the axial stress by: 

𝜎3(𝑥, 𝑦) = [

0 0 0
0 0 0

0 0
1

𝐴

]  

𝜎4(𝑥, 𝑦) = [

0 0 0
0 0 0

0 0
𝑦

𝐼𝑥

] 

𝜎5(𝑥, 𝑦) = [

0 0 0
0 0 0

0 0 −
𝑥

𝐼𝑦

]   

(28) 

These fields depend only on (𝐴, 𝐼𝑥, 𝐼𝑦), they are specific 

on the section.  

Shear stresses which are linear combination of 

(𝑇𝑥
𝑒 , 𝑇𝑦

𝑒 , 𝑀𝑡
𝑒) are written: 

𝜎𝑥𝑧
𝑒 (𝑥, 𝑦, 𝑧) = 𝑓𝑥

𝑥(𝑥, 𝑦). 𝑇𝑥
𝑒(𝑧) + 𝑓𝑥

𝑦(𝑥, 𝑦). 𝑇𝑦
𝑒(𝑧) +

𝑓𝑥
𝑡(𝑥, 𝑦).𝑀𝑡

𝑒(𝑧)  

𝜎𝑦𝑧
𝑒 (𝑥, 𝑦, 𝑧) = 𝑓𝑦

𝑥(𝑥, 𝑦). 𝑇𝑥
𝑒(𝑧) + 𝑓𝑦

𝑦(𝑥, 𝑦). 𝑇𝑦
𝑒(𝑧)

+ 𝑓𝑦
𝑡(𝑥, 𝑦).𝑀𝑡

𝑒(𝑧) 

(29) 

where the functions 𝑓𝑥
𝑥(𝑥, 𝑦) , 𝑓𝑥

𝑦
(𝑥, 𝑦) , 𝑓𝑥

𝑡(𝑥, 𝑦) , 

𝑓𝑦
𝑥(𝑥, 𝑦) , 𝑓𝑦

𝑦(𝑥, 𝑦)  and 𝑓𝑦
𝑡(𝑥, 𝑦)  depend on the section 

nature (shape and material) and which, they can only be 

determined numerically (with the exception of the circular 

section for which these functions can be determined 

analytically). 

 

3D displacement field  

The 𝑈𝑖(𝑥, 𝑦)  fields that express the strains of the 

section can be decomposed into a strain in the section plane 

(Poisson’s effects) and an out–of–plane strain (warping). 

For the case of a homogeneous and isotropic section, we 

can note that: 

Normal effort and the bending moments (𝑁,𝑀𝑥, 𝑀𝑦) 

only lead to Poisson’s effects: 

[𝑈3(𝑥, 𝑦), 𝑈4(𝑥, 𝑦), 𝑈5(𝑥, 𝑦) ]  so are plans (their 

component with respect to z is zero). 

Shear forces and torsional moments (T𝑥 , T𝑦, M𝑡) only lead to 

warping: [𝑈1(𝑥, 𝑦), 𝑈2(𝑥, 𝑦), 𝑈6(𝑥, 𝑦) ]  so are out–of 

plane (their components with respect to x and y are zero). 

 

4.2 Composite section 
 
For composite section where each material can be 

anisotropic, the 1D behaviour of Eq. (18) can be described 

by a full (6×6) matrix, and several elastic coupling can 

occur between extension, bending and torsion. These are 

due to several factors such as the non symmetry of the 

section, the position of each material and the anisotropy of 

the materials.  

For a composite section, we denote, by analogy to the 

homogeneous case, the stiffness constants as follows:  

𝐺𝑆�̃� the shear force stiffness /𝑥 

𝐺𝑆�̃� the shear force stiffness /𝑦 

𝐸�̃� the axial stiffness 

𝐸𝐼�̃� the bending stiffness /𝑥 

𝐸𝐼�̃� the bending stiffness /𝑦 

𝐺�̃� the torsional stiffness. 
 

3D stress field 

For the case of a homogeneous and isotropic section, the 

components 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑥𝑦 of the stress field were null 

(Eq. (26)), but these components are not zero for the case of 

any composite section (see Eq. (30)).  

It is sufficient, for example, that the Poisson’s effects are 

different from one material to another so that it generates 

stresses in the plane of the section, around the interfaces 

between the materials (supposed perfectly adherent)   

𝜎𝑒(𝑥, 𝑦, 𝑧) = [

𝜎𝑥𝑥
𝑒 𝜎𝑥𝑦

𝑒 𝜎𝑥𝑧
𝑒

𝜎𝑥𝑦
𝑒 𝜎𝑦𝑦

𝑒 𝜎𝑦𝑧
𝑒

𝜎𝑥𝑧
𝑒 𝜎𝑦𝑧

𝑒 𝜎𝑧𝑧
𝑒

]    (30) 

 

3D displacement field  

In contrast with the case of homogeneous and isotropic 

section, each cross-sectional stress (𝑇𝑥, 𝑇𝑦, 𝑁,𝑀𝑥, 𝑀𝑦, 𝑀𝑡) 

contributes to the Poisson’s effect deformation and to the 

out–of–plan warping of the section, this is due to the 

composite nature of the section (El Fatmi 2012). 
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Fig. 8 Simply supported FGM beam 

 
 
5. Application 

 
In this section, we study a simply supported FGM beam 

( 𝐿 = 1.6𝑚, ℎ = 0.10𝑚, 𝑏 = 0.10𝑚 ) subjected to a 

uniformly distributed load 𝑞  (Fig. 8). The beam is 

composed of Zirconia (𝑍𝑟𝑜2: 𝐸𝑐  =  200 𝐺𝑃𝑎, 𝜈 =  0.30) 

and aluminium ( 𝐴𝐿: 𝐸𝑚  =  70 𝐺𝑃𝑎, 𝜈 =  0.30 ); its 

properties varied through the thickness of the beam 

according to various methods presented in Section 2 (see 

Figs. 2-5). The bottom surface of the beam (𝑦 = − ℎ/2) is 

pure Zirconia, whereas the top surface of the beam (𝑦 =
+ ℎ/2) is pure Aluminum.  

Şimşek (2009) and Ziou (2017) studied the same FGM 

beam by Timoshenko and the higher order shear 

deformation beam theories. They assumed that the 

properties of this beam are varied according to power-law. 

A comparison between our results and those obtained by 

Şimşek (2009) and Ziou (2017) is present in this Section. 

 

5.1 Numerical tool 
 

The Matlab tool CSB, developed by El Fatmi and Zenzri 

(2002), is used in this work in order to study the behaviour 

of an FGM using the 3D Saint-Venant theory. 

CSB is a package of two complementary numerical 

tools named CSection and CBeam. For a given beam 

problem, Csection ensures the cross-section analysis by 

2D–FEM to provide the set of sectional modes (𝑈𝑖(𝑥, 𝑦)) 
which are then used by Cbeam to solve the beam problem 

by 1D FEM according to the displacement model. 

 

5.2 Modelling and results 
 
5.2.1 Modelling of the P-FGM 
In the work, we modelled the P-FGM beam using the 

3D Saint Venant’s beam theory. The materials properties of 

this beam are assumed that vary according to the power-law 

distribution. Fig. 2 (Section 2) shows the variation of 

Young’s modulus (modulus of elasticity) through the beam 

dimensionless thickness for various values of the power-law 

index P. For P = 0 and P = +∞, the beam corresponds to the 

isotropic metal and ceramic, respectively, whereas the 

composition of metal and ceramic is linear for P = 1. 

Delale and Erdogan (1983) indicated that the effect of  

 

Fig. 10 Deflection along the length of the beam obtained 

by Saint-Venant theory. 

 

 
Fig. 11 Non-dimensional deflection along the length of the 

beam obtained by Saint-Venant theory. 

 

 

Poisson’s ratio on the deformation is much less than that of 

Young’s modulus. Thus, Poisson’s ratio of the beams is 

assumed to be constant and is chosen to be 0.3. 

Figs. 10 and 11 show the deflection (w) and the non-

dimensional deflection (w/wstatic) of the FGM beam 

respectively. The static deflection of the fully aluminum 

beam under the uniformly distributed load is computed by:  

𝑤𝑠𝑡𝑎𝑡𝑖𝑐 =
5 × 𝑞 × 𝐿4

384 × 𝐸𝑚 × 𝐼
 (31) 

We see that the deflection of full metal (P = 0) is greater 

than that of full ceramic (P = +∞), this can be accounted for 

Young’s modulus of ceramic being higher than that of 

metal. The FGM beam deflection (P ≠ 0) is between those 

of beams made of ceramic and metal. Hence, for the FGM 

beam, transverse deflection decreases as the power-law 

exponent P is increased. This is due to the fact an increase 

in the power-law exponent yields a decrease in the bending 

rigidity of the beam. 
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Table 1 Non-dimensional deflection at mid–span of the 

FGM beam   

 Present work Şimşek (2009) Ziou (2017) 

P SVBT(1) RBT(2)  TBT(3)  HOSDT(4)  TBT(3) CBT(5)  

P = 0 1.00980 1.00816 1.00812 1.00975 1.00976 1.00001 

P = 0.5 0.63453 0.63317 0.63953 0.64065 / / 

P = 1 0.56612 0.56490 0.56615 0.56699 0.56585 0.56180 

P = 5 0.44441 0.44355 0.44391 0.44442 0.4451 0.44069 

P = ∞  0.35343 - 0.35284 0.35341 0.35341 0.35000 

(1) SVBT: Saint-Venant beam theory, (2) RBT: Refined Beam 

theory, (3)TBT: Timoshenko beam theory, (4)HOSDT: 

Higher order shear deformation theory, (5)CBT: Euler-

Bernoulli theory. 

 

 
Fig. 12 Non-dimensional deflection along the length of 

the beam (Şimşek 2009) 

 

 
Fig. 13 Non-dimensional deflection along the length of 

the beam (Ziou 2017) 
 

 

The non-dimensional deflections (Fig. 11), obtained by 

the Saint-Venant’s solution, are compared with those 

provided by Şimşek (2009) and Ziou (2017) using the 

higher order shear deformation and Timoshniko theories 

(see Figs. 12 and 13). It is observed that the results obtained 

by the three models are identical. 

Table 1 shows also a comparison of the non-dimensional 

deflections at mid-span of the FGM beam obtained using 

the theories proposed here with those given by Şimşek 

 

 
Fig. 14 Saint-Venant sectional modes (Poisson’s effects 

and out-of plane Warpings) for the case of FGM beam 

with P=5 

 

 
(2009) and Ziou (2017). It is seen that the non-dimensional 

deflections obtained with SVBT and RBT are very close to 

those obtained by TBT, HOSDT and CBT. 

Fig. 14 shows the six (06) Saint-Venant’s sectional 

modes related to the six classical internal forces 

(𝑇𝑥, 𝑇𝑦, 𝑁,𝑀𝑥, 𝑀𝑦, 𝑀𝑡): the three modes in red colour are 

related to the Poisson’s effects due to the axial force (𝑁) 

and the bending moments (𝑀𝑥 , 𝑀𝑦 ), whereas the three 

modes in blue colour are related to the out-of plane 

warpings due to the shear forces (𝑇𝑥 , 𝑇𝑦) and the torsional 

moment (𝑀𝑡). The six modes presented in Fig. 14 are given 

only for the case of FGM beam with P = 5. We note that 

these modes are specific only to the section nature (shape 

and materials).  
Fig.15 show the 3D Saint-Venant’s sectional stress field 

at mid-span of the beam for the two cases: firstly in the 
homogeneous cross-section in which P = 0 (Fig. 15(a)) and 
secondly in the FGM beam with P = 5 (Fig. 15(b)). We can 
see that the 3D stress distribution, for the homogeneous 
section (full metal), describes an inclined plane shape 
passes to the middle axis of the section (𝑥-axis), as shown 
in Fig. 15(a). However the shape of the 3D stress 
distribution, for the FGM beam case with P = 5, is not plane 
and does not pass to the middle axis of the section (𝑥-axis)), 
as shown in Fig. 15(b). 

Fig. 16 shows the axial stress distribution through the 
thickness at the mid-span of FGM beam for various values 
of P. We can see that axial stress distribution is linear only 
for the full metal (P = 0), but for the other cases (𝑃 ≠ 0) the 
axial stress distribution is not linear, and also the tensile 
stress values are greater than compressive stresses in FGM 
beam. We noted also that for full metal, the axial stress 
value is zero (𝜎𝑧𝑧 = 0) at the mid-plane (ℎ/𝑦 = 0) but it is 
clearly visible that for the other cases (𝑃 ≠ 0) the axial 
stresses values at the mid-plane of FGM beam are not zero. 
This indicates that the neutral plane of the beam moves 
towards the lower side of the FG beam. This is due to the 
variation of the modulus of elasticity through the thickness 
of the FGM beam. 

The axial stresses, 𝜎𝑧𝑧, are computed at the mid-span of 
the beam (Figs. 15 and 16), and the shear stresses, 𝜏, are 
evaluated at the support of the beam (Figs.19-20-21-22-23-
25).  
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Fig. 16 Axial stress distributions obtained by SVBT at 

𝑥 = −𝑏/2 

 

 

The axial and shear stresses are normalized by 

𝜎𝑍𝑍̅̅ ̅̅̅ =
𝜎𝑧𝑧 × 𝑏 × ℎ

𝑞 × 𝐿
 

𝜏𝑍𝑦̅̅ ̅̅ =
𝜏𝑧𝑦 × 𝑏 × ℎ

𝑞 × 𝐿
 

(32) 

Non-dimensional axial stresses, 𝜎𝑧𝑧̅̅ ̅̅ , obtained by Saint-

Venant’s beam theory from Eq. (32), are compared with 

these extracted from the works of Şimşek (2009) and Ziou 

(2017) (see Fig. 18). It can observed that, the results 

obtained by our investigation (Fig. 17) are in very good 

agreement with these of other investigations shown in Fig. 

18. 

 

 

 

Fig. 17 Non-dimensional axial stress distributions at 𝑥 =
−𝑏/2 

 

The 3D shear stress fields, 𝜏 = √(𝜏𝑧𝑥)
2 + (𝜏𝑧𝑦)

2
, obtained 

by Saint-Venant theory for various values of the power-law 

index P are illustrated in Figs. 19-20-21-22.  

Figs. 23 and 25 show the distribution of the shear stress 

through the thickness of the beam at 𝑥 = −𝑏/2 and 𝑥 =
0, respectively, their corresponding non-dimensional shear 

stress are presented in the Figs. 24 and 26. The latter are 

compared with those obtained by Şimşek (2009) and Ziou 

(2017). This comparison demonstrates that our results (Fig. 

26) are identical to those obtained by Şimşek (2009) using 

the higher order shear deformation theory (Fig.27(a)) and, 

on other hand to those obtained by Ziou (2017) using 

Timoshniko theory (Fig.27(b)). 
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−1.920𝑒6𝑃𝑎 ≤ 𝜎𝑧𝑧 ≤ 1.920𝑒6 𝑃𝑎  

−1.505𝑒6𝑃𝑎 ≤ 𝜎𝑧𝑧 ≤ 2.205𝑒6 𝑃𝑎 

(a) Axial stress distributions obtained by SVBT (P=0) (b) Axial stress distributions obtained by SVBT (P=5) 

Fig. 15 Axial stress distributions obtained by SVBT (P = 0) and (P = 5) 
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4.820𝑃𝑎 ≤ 𝜏 ≤ 1.375𝑒5 𝑃𝑎 

Fig. 19 Shear stress distributions obtained by SVBT (P=0) 

 

 
3.169𝑃𝑎 ≤ 𝜏 ≤ 1.388𝑒5 𝑃𝑎 

Fig. 20 Shear stress distributions obtained by SVBT 

(P=0.5) 

 

 

 

 
2.950𝑃𝑎 ≤ 𝜏 ≤ 1.433𝑒5 𝑃𝑎 

Fig. 21 Shear stress distributions obtained by SVBT (P=1) 

 

 
2.926𝑃𝑎 ≤ 𝜏 ≤ 1.468𝑒5 𝑃𝑎 

Fig. 22 Shear stress distributions obtained by SVBT (P =5) 

 

  
(a) Non-dimensional axial stress distributions (Şimşek 2009) (b) Non-dimensional axial stress distributions (Ziou 2017) 

Fig. 18 Non-dimensional axial stress distributions provided by Şimşek (2009) and Ziou (2017) 
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Fig. 23 Shear stress distributions at 𝑥 = −𝑏/2 

 

 
Fig. 24 Non–dimensional shear stress distributions at 𝑥 =
−𝑏/2 

 

 

It is to be noted that the maximum value of the shear 

stress is occurs at 𝑦/ℎ =  −0.1 for the cases of P = 0.5 

and P = 1. Whereas for the case of P = 5, the maximum 

value of 𝜏 is occurs at y/h = -0.05, not at the beam center 

as in the homogeneous case (shear stress is maximum on 

the neural axis of the homogeneous beam).  

Fig. 28 shows a comparison of the shear stress 

distribution through the thickness at 𝑥 = −𝑏/2 and 𝑥 = 0 

(for the case of P = 5). It can see that the shear stress at 𝑥 =
−𝑏/2 (distribution through the extremity of the section) is  

 

Fig. 25 Shear stress distributions at 𝑥 = 0 

 

 

Fig. 26 Non–dimensional shear stress distributions at 𝑥 = 0 

 

 

greater that the shear stress at 𝑥 =  0 (distribution through 

the central axis of the section). 

In the following part of this work, we study the 

behaviour of the same beam (Fig.8), but in this time, we 

consider a various material beams such as E-FGM, S-FGM 

and M-FGM beams. We present also a comparison between, 

on one hand, the results obtained for these beams and, on 

the other hand, the results of the P-FGM beam.  
 
5.2.2 Modelling of the E-FGM beam 
We will now study the behaviour of the previous beam,  

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.00E+00 5.00E+04 1.00E+05 1.50E+05

y
/h

Shear stress at x=-b/2 (Pa) 

P=5 P=1 P=0 P=0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

y
/h

Non-dimensional shear stress  at x=-b/2

P=5 P=1 P=0 P=0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 30000 60000 90000 120000

y
/h

Shear stress at x=0 (Pa) 

P=5 P=1 P=0 P=0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8

y
/h

Non-dimensional axial stress at x=0

P=5 P=1 P=0 P=0.5

266



 

Three-dimensional modelling of functionally graded beams using Saint-Venant’s beam theory 

 

 

Fig. 28 Shear stress distributions 

 

 

but this time we consider that the material properties of 

FGM beams are vary continuously through the thickness 

according to the exponential distribution method (E-FGM). 

Fig. 3 (Section 2) shows the variation of Young’s modulus 

through the beam dimensionless thickness. It can be 

observed that this variation is not linear.  

E-FGM deflection obtained by the Saint-Venant solution 

is shown in the Fig. 30. This deflection is compared with  

 

 

Fig. 29 Non–dimensional shear stress distributions 

 

 

the P-FGM beam deflections (for various values of P). We 

can observed that the non-dimensional deflection at mid-

span of E-FGM beam is close to that of P-FGM beam when 

P = 0.5 (see also Table. 2).  

The axial stress field, obtained by 3D Saint–Venant’s 

solution, is shown in Fig. 31. The shape of this 3D stress 

distribution, is not plane and does not pass to the middle 

axis of cross-section (𝑥-axis) as shown in Fig. 32. In order  
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Fig. 27 Non–dimensional shear stress distributions provided by Şimşek (2009) and Ziou (2017) 

267



 

Mourad Khebizi, Hamza Guenfoud, Mohamed Guenfoud and Rached El Fatmi 

 
Fig. 30 Comparison between P-FGM and E-FGM 

deflections obtained by Saint-Venant theory. 
 

Table 2 Comparison of the non-dimensional deflection 

values at mid-span of various FGM beams   

P P-FGM E-FGM S-FGM  M-FGM 

P = 0 1.00980 

0.60244 

1.00980 1.00980 

P = 0.5 0.63453 0.54491 0.67962 

P = 1 0.56612 0.56671 0.60135 

P = 5 0.44441 0.62011 0.46655 

P = ∞  0.35343 0.35343 0.35343 

 

 
−1.378𝑒6𝑃𝑎 ≤ 𝜎𝑧𝑧 ≤ 2.645𝑒6 𝑃𝑎 

Fig. 31 Axial stress distribution of E-FGM beam 
 

 

to compare the results of E-FGM beam and those of P-FGM 

beams, we consider an axial stress distribution through y-

axis passes by the abscissa 𝑥 = 0 (see Fig. 32 and Table. 

3). We see that the axial stress of E-FGM is close to that of 

P-FGM when 𝑃 =  0.5 and 𝑃 =  1. 

The 3D shear stress field of E-FGM beam is plotted in 

Fig. 33. It is to be noted that the maximum value is occurs 

at 𝑦/ℎ = −0.1 (Fig 34), whereas the shear stress of the 

homogeneous case is symmetric about the mid-plane of the 

beam.  

 

Fig. 32 Axial stress distributions obtained by SVBT 

 

 
7.681𝑃𝑎 ≤ 𝜏 ≤ 1.411𝑒5 𝑃𝑎 

Fig. 33 Shear stress distribution of E-FGM beam 

 

 
Fig. 34 Shear stress distributions at 𝑥 = −𝑏/2 of E-

FGM beam 
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Fig. 35 Comparison between S-FGM and E-FGM 

deflections obtained by Saint-Venant’s theory. 

 
 
5.2.3 Modelling of the S-FGM beam 
 
We study also the behaviour of same beam, in this time, 

the material properties of FGM beams are assumed to vary 

continuously through the thickness according to the sigmoid 

distribution method (S-FGM), the variation of Young’s 

modulus through the beam dimensionless thickness is 

depicted in Fig. 5 (Section 2).  

Fig. 35 shows the S-FGM deflections, for various values 

of index P, obtained by the Saint-Venant’s solution. These 

deflections are compared with that of E-FGM beam. From 

this comparison (Fig. 35 and Table. 2), we observed that the 

S-FGM deflection when 𝑃 = 5 is very close to E-FGM 

deflection. Table. 2 illustrates also a comparison between 

the non-dimensional deflections at mid-span of S-FGM 

beam and these of other FGM beams (P-FGM, E-FGM, and 

M-FGM). 
Fig. 36 shows the 3D Saint-Venant’s axial stress field 

computed on a cross-section at mid-span of the S-FGM beam. It 

can be noted that the shape of the 3D stress field is not plane and 

does not pass through the middle axis of cross-section (𝑥-

axis). 

We present also in Fig. 37 the trends of the axial stresses 

at 𝑥 = 0 (cut of 3D axial stress field shown in Fig. 36 at 

𝑥 = 0), for various values of index 𝑃. It can seen that the 

trend of the axial stress of S-FGM beam, with P = 1, is very 

close to that of E-FGM beam. The Table.3 shows also a 

comparison between the axial stress fields of S-FGM and 

those of other FGM beams (P-FGM, E-FGM, and M-FGM). 

The 3D Saint-Venant’s shear stress field of S-FGM 

beam when 𝑃 = 5 is shown in Fig. 38. It is observed form 

this figure that the maximum value of the shear stress is 

occurs at 𝑦/ℎ = −0.15 (see also Fig. 39).  

The trends of the shear stresses at 𝑥 = −𝑏/2, extracted 

from the three-dimensional shear stress for various values 

of index 𝑃, are show in Fig. 39, it can be observed that the 

distributions of the shear stresses are not parabolic excepted 

for beam made of pure material. 

 
−1.450𝑒6𝑃𝑎 ≤ 𝜎𝑧𝑧 ≤ 2.602𝑒6 𝑃𝑎 

Fig. 36 Axial stress distribution of S-FGM beam (P = 5) 

 

 
Fig. 37 Axial stress distributions obtained by SVBT at 𝑥 =
−𝑏/2 

 

 
−7.702𝑃𝑎 ≤ 𝜏 ≤ 1.496𝑒5 𝑃𝑎 

Fig. 38 Shear stress distribution of S–FGM beam (P=5) 
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Fig. 39 Shear stress distributions at 𝑥 = −𝑏/2 of S-

FGM beams 

 

 
Fig. 40 Comparison between M-FGM and E–FGM 

deflections obtained by Saint-Venant theory. 
 
 

5.2.4 Modelling of the M-FGM beam 
 

Finally, we study the behaviour of the previous beam, 

considering now that its materials are varied according to 

Mori-Tanaka schema (M-FGM). The variation of Young’s 

modulus through the dimensionless thickness of this M-

FGM beam is illustrated in Fig. 4 (Section 2). The M-FGM 

beam is modelled in this paper by the 3D Saint-Venant’s 

beam theory.  

The numerical results obtained show that the deflection 

of M-FGM beam when 𝑃 = 1 is identically to that of E-

FGM (see Fig. 40 and Table. 2). A comparison between the 

non-dimensional deflections at mid-span of M-FGM beam 

and those of other FGM beams are present in Table. 2.  

 
−1.376𝑒6𝑃𝑎 ≤ 𝜎𝑧𝑧 ≤ 2.641𝑒6 𝑃𝑎 

Fig. 41 Axial stress distribution of M–FGM beam (P=1) 

 

 

Fig. 42 Axial stress distributions obtained by SVBT 

 

 
8.551𝑃𝑎 ≤ 𝜏 ≤ 1.364𝑒5 𝑃𝑎 

Fig. 43 Shear stress distribution of M–FGM beam (P=1) 
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Fig. 44 Shear stress distributions at 𝑥 = −𝑏/2 of M-

FGM beams 

 

 

We noted also that the 3D axial stress of M-FGM when 

𝑃 = 1 (Fig. 41) is the same of E-FGM beam (see Fig.31). 

In order to facilitate the comparison between the axial 

stresses of M-FGM beam for various index 𝑃 and these of 

E-FGM, we represent in Fig. 42 the trend of axial stress 

distribution at 𝑥 = 0, the agreement between the results of  

M-FGM beam when 𝑃 = 1 and that of E-FGM is clearly 

observed. 

Table. 3 illustrates the axial stress distribution through 

non-dimensional thickness,𝑦/ℎ, at middle axis (𝑥 = 0) of 

the section and at mid-span of the beams (𝑧 = 𝐿/2 ), 

obtained for various FGM beams (P-FGM, E-FGM, S-

FGM, and M-FGM). These values are extracted from the 

three-dimensional axial stress field obtained by Saint-

Venant’s theory. The comparison of these results shows that 

the axial stress of E-FGM beam is close to that of P-FGM 

beam when 𝑃 = 0.5 ant 𝑃 = 1. We noted also that the 

axial stress of E-FGM beam is very close, on one hand to 

that of S-FGM beam with 𝑃 = 1, and on other hand to that 

of M-FGM beam when 𝑃 = 1. 

 

 

The 3D shear stress field of the M-FGM when 𝑃 = 1, is 

plotted in Fig.43. From the set of three-dimensional shear 

stress fields of the M-FGM beam obtained for various 

values of the index P, we extracted their trends at 𝑥 =
−𝑏/2 (Fig. 44). We clearly observed that these trends are 

asymmetric about the mid-plane of the beam (Fig. 44 shows 

that the maximum shear stress value for the case of 𝑃 =  1 

is occurs at 𝑦/ℎ =  −0.1).  

 
 
6. Conclusions 

 

In present paper, we study the mechanical behaviour of 

functionally graded materials beam using the 3D Saint-

Venant’s beam theory, in which the kinematic model 

includes sectional Poisson’s effects and out-of plane 

warpings. Various functions are used for distribution of 

mechanical properties through the thickness of FGM beam. 

A numerical application in the literature were studied in 

order to validate our results obtained by 3D Saint-Venant’s 

beam theory. In this application, we studied the behaviour 

of a simply supported FGM beam subjected to a uniformly 

distributed load. According to this application, it was noted 

that:  

•  3D sectional stress fields of FGM beam are well 

described by the Saint-Venant’s beam theory.  

•  A good agreement exists between the deflections 

obtained by our investigation and those obtained by other 

models in the literature (mainly for the P-FGM beam).  

•  A good agreement exists between the axial stress 

distribution at mid-span obtained by our investigation and 

those obtained by other models in the literature (mainly for 

the P-FGM beam). 
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