
Structural Engineering and Mechanics, Vol. 72, No. 1 (2019) 113-129 

DOI: https://doi.org/10.12989/sem.2019.72.1.113                                                                 113 

Copyright © 2019 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

Magneto-electro-elastic materials (MEEMs) as one of 

the special sorts of smart materials have received much 

attention in engineering structures during the recent years. 

In 1990s, in two-phase composites of piezoelectric and 

piezo-magnetic materials, a strong magneto-electrical 

coupling effect was discovered which has potential practical 

application in many fields (Benveniste, 1995) and reported 

that this coupling effect cannot be found in a single phase 

material. Furthermore, MEE materials shows some 

fascinating properties such as the piezo-electric, piezo-

magnetic and magneto-electric influences in which the 

elastic deformations may be produced directly by 

mechanical loading or indirectly by an application of 

electric or magnetic field. The mechanical behaviors of 

magneto-electro-elastic structures have received notable 

attention by many researchers in the recent years. Among 

them, analytical solutions for studying magneto-electro-

elastic responses of beams is presented by Jiang and Ding 

(2004). Chen et al. (2005) investigated vibrational 

responses of non-homogeneous isotropic MEE plates. 

Vibration characteristics of multiphase and layered 

magneto-electro-elastic beam is reported by Annigeri et  
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al. (2007). Kumaravel et al. (2007) researched thermal 

stability and vibrational behavior of layered and multiphase 

magneto‐electro‐elastic beams. By implementation of finite 

element method, transient dynamic response of multiphase 

magneto-electro-elastic cantilever beam is presented by 

Daga et al. (2009). Also, Liu and Chang (2010) provided 

closed solution for the vibration of an isotropic magneto-

electro-elastic plate. Razavi and Shooshtari (2015) 

presented nonlinear vibration investigation of a magneto-

electro-elastic laminated plate with all edges simply 

supported. They employed the first order shear deformation 

theory considering the von Karman’s nonlinear strains to 

obtain the equations of motion, whereas Maxwell equations 

for electrostatics and magneto-statics are used to model the 

electric and magnetic behavior. Most recently, based on 

three-dimensional elasticity theory and employing the state 

space approach, Xin and Hu (2015) presented semi-

analytical evaluation of free vibration of arbitrary layered 

magneto-electro-elastic beams. 

Functionally graded materials (FGMs) as a new class of 

composite structures have drawn the attention of many 

researchers in the smart materials and structures by 

minimizing or removing stress concentrations at the 

interfaces of the traditional composite materials. The 

material properties of FGMs varies continuously in one or 

more directions. Recently, FGMs have received wide 

applications as structural components in modern industries 

such as mechanical, civil, nuclear reactors, and aerospace 

engineering.  
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Abstract.  A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates 

made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an 

analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are 

estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly 

occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these 

materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential 

equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton’s 

principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An 

analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical 

field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient 

of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-

thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the 

dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG 

plates with porosity phases. 
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In the recent years, several researchers examined 

mechanical properties of structural elements made from 

magneto-electro-elastic functionally graded (MEE-FG) 

materials. Pan and Han (2005) provided exact solution for 

analysis of the rectangular plates composed of functionally 

graded, anisotropic, and linear magneto-electro-elastic 

materials. Furthermore, the plane stress problem of a MEE-

FG beam were inspected by Huang et al. (2007) using an 

analytical method. In another survey, Wu and Tsai (2007) 

examined static behavior of a doubly curved MEE-FG shell 

employing an asymptotic approach. Kattimani and Ray 

(2015) researched large amplitude vibration responses of 

MEE-FG plates. Static behavior of a circular MEE-FG plate 

is analyzed by Sladek et al. (2015) by using a meshless 

method. More recently, Vinyas and Kattimani contributed to 

the research community through their works which discuss 

the effect of various forms of thermal loading on the 

coupled static response of stepped-functionally graded MEE 

beams (Vinyas and Kattimani 2017a, b, c, d, e) and plates 

(Vinyas and Kattimani 2017f). Extending their evaluation 

on the same grounds, the influence of moisture was also 

briefed out (Vinyas and Kattimani 2017g; Vinyas et al. 

2018). With the rapid progression in technology of 

structural elements, structures with graded porosity can be 

introduced as one of the latest development in FGMs. The 

structures consider pores into microstructures by taking the 

local density into account. Researches focus on 

development in preparation methods of FGMs such as 

powder metallurgy, vapor deposition, self-propagation, 

centrifugal casting, and magnetic separation (Peng et al. 

2007). These methods have their own ineffectiveness such 

as high costs and complexity of the technique. An efficient 

way to manufacture FGMs is sintering process in which due 

to difference in solidification of the material constituents, 

porosities or micro-voids through material can create (Zhu 

et al. 2001). An investigation has been carried out on 

porosities existing in FGMs fabricated by a multi-step 

sequential infiltration technique (Wattanasakulpong et 

al.2012). According to this information about porosities in 

FGMs, it is necessary to study the porosity impact when 

designing and analyzing FGM structures. Porous FG 

structures have many interesting combinations of 

mechanical properties, such as high stiffness in conjunction 

with very law specific weight (Rezaei and Saidi 2016). A 

few studies on the vibration responses of porous FGM 

structures are available in literature. Wattanasakulpong and 

Ungbhakorn (2014) studied the linear and non-linear 

vibration of porous FGM beams with elastically restrained 

ends.  Ebrahimi and Mokhtari (2014) utilized DT method 

to investigate vibration of rotating Timoshenko FG beams 

with even porosities. They reported that porosity volume 

fraction has a significant effect on the vibrational response 

of the FG beams.  In order to predict flexural vibration of 

porous FGM Timoshenko beams, Wattanasakulpong and 

Chaikittiratana (2015) employed Chebyshev collocation 

method. Moreover, Ait Yahia et al. (2015) study the 

porosity effect on the wave propagation of FG plates by 

using various higher-order shear deformation theories. 

Ebrahimi and Zia (2015) applied the Galerkin and multiple 

scales methods to solve nonlinear vibration of porous FGM 

beams. Tang et al. (2018) investigated the buckling 

behaviour of two-directionally porous beam. Ebrahimi et al. 

(2016) presented thermo-mechanical vibration response of 

temperature-dependent porous FG beams subjected to 

various temperature risings. FG structures resting on elastic 

foundations have wide applications in modern engineering. 

The interaction of a plate with its foundation can be 

explained by suggesting various basic models in the 

literature (Shahsavari et al., 2018). One of the simplest 

model for the elastic foundation is Winkler model because it 

takes the foundation into account as a set of independent 

and separate springs. Pasternak improved this model later 

by introducing a new dependence parameter which takes the 

interactions between the separated springs in Winkler model 

into account. Many researchers use plates resting on 

foundations to model the interaction between elastic plates 

and media for many engineering problems. Ying et al. 

(2008) provided exact solution for bending and vibration 

embedded FG beam based on two dimensional elasticity 

theory. Thermo-mechanical vibration of FGM sandwich 

beam under variable elastic foundations by DQM analyzed 

by Pradhan and Murmu (2009). Temperature-dependent 

flexural wave propagation in nanoplate-type porous 

heterogenous material subjected to in-plane magnetic field 

was evaluated by Karami et al. (2018). 3-D free vibration of 

thick functionally graded plates on elastic foundations was 

examined by Malekzadeh (2009). Benchmark solutions for 

FG thick plates resting on Winkler–Pasternak elastic 

foundations was introduced by Huang et al. (2008).DSC 

method was utilized for non-linear analysis of laminated 

plates resting on Winkler–Pasternak elastic foundations 

firstly by Civalek and Akgoz (2011). Using DSC-HDQ 

coupled methodology and HDQ-FD coupled methodology, 

Civalek (2006, 2007) studied geometrically non-linear static 

and dynamic analysis of thin rectangular plates resting on 

Winkler–Pasternak elastic foundations. 3-D free vibration 

of thick circular plates on Pasternak foundation was 

introduced by Zhou et al. (2006). Also, 3-D free vibration 

analysis of annular plates on Pasternak elastic foundation by 

p-Ritz method was examined by Hosseini Hashemi et al. 

(2008). Atmane et al. (2015) applied an efficient beam 

theory to study the effects of thickness stretching and 

porosity on mechanical responses of FGM beams resting on 

elastic foundation. Recently, Mechab et al. (2016)developed 

a nonlocal elasticity model for free vibration of FG porous 

nanoplates resting on elastic foundations. Boutahar et 

al.(2016) presented a semi analytical method for non-linear 

vibration analysis of FGM porous annular plates resting on 

elastic foundations. 

Literature search in the area of vibration analyses of FG 

porous plate indicates that there is not any published work 

considering magneto-electrical field and elastic foundation 

effects on vibration characteristics of FG plates with 

different porosity models based on four-variable refined 

shear deformation theory. This paper focuses on free 

vibration of magneto-electro-porous FG plates resting on 

elastic foundations with various boundary conditions based 

on a four-variable refined plate theory which provides a 

constant transverse displacement and higher-order variation 

of axial displacement through the depth of the plate so that  
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Fig. 1 Geometry of embedded FGM plate under magneto-

electrical field 

 

 

there is no need for any shear correction factors. Two kinds 

of porosity distribution namely even and uneven through 

the thickness directions are considered. The modified 

power-law model is exploited to describe gradual variation 

of material properties of the porous MEE-FG plate. 

Applying Hamilton’s principle, governing equations of 

higher order MEE-FG plate are obtained together based on 

four-variable refined shear deformation theory and they are 

solved applying an analytical solution method. Several 

numerical exercises indicate that various parameters such as 

magnetic potential, external electric voltage, elastic 

foundation parameters, porosity volume fraction, types of 

porosity distribution, material graduation index and various 

boundary conditions have remarkable influence on 

fundamental frequencies of porous MEE-FG plate.  

 

 

2. Theoretical formulations 
 

2.1. The material properties of porous magneto-
electro-elastic FG plates 

 

Consider a magneto-electro-elastic functionally graded 

plate resting on elastic foundation with two different 

porosity distribution and rectangular cross-section of width 

b and thickness h according to Fig.1. Embedded MEE-FG 

plate is composed of BaTio3 and CoFe2O4 materials with the 

material properties presented in Table 1 and exposed to a 

magnetic potential γ(x,z,t) and electric potential Ф(x,z,t). 

The effective material properties of MEE-FG plate change 

continuously in the thickness direction according to 

modified power-law distribution. The effective material 

properties (Pf) of porous FGM plate by using the modified 

rule of mixture can be expressed by Wattanasakulpong and 

Ungbhakorn (2014) 

( ) ( )
2 2

u u l lfP P V P V
 

= +− −
 

(1) 

In which α denotes the volume fraction of porosities, for 

a perfect FGM α is set to zero, Pu and Pl are the material 

properties of top and bottom sides, Vu and Vl are the volume 

fraction of top and bottom surfaces, respectively and are 

related by 

1u lV V+ =
 (2) 

Table 1 Magneto-electro-elastic coefficients of material 

properties 

Properties 3BaTiO
 2 4CoFe O

 

11 22 (GPa)c c=
 166 286 

33c
 162 269.5 

13 23c c=
 78 170.5 

12c
 77 173 

55c
 43 45.3 

66c
 44.5 56.5 

-2
31 (Cm )e

 
-4.4 0 

33e
 18.6 0 

15e
 11.6 0 

31 (N/Am)q
 0 580.3 

33q
 0 699.7 

15q
 0 550 

9 2 -2 -1
11 (10 C m N )s −

 
11.2 0.08 

33s
 12.6 0.093 

6 2 2
11(10 C /2)Ns − −

 
5 -590 

33
 10 157 

11 22 33d d d= =
 0 0 

-3(kgm )
 

5800 5300 

 

 

Then the volume fraction of upper side(Vu)is defined as 

follows 

1
( )

2
u

Pz
V

h
= +

 
(3) 

where ( 0)p  is a non-negative parameter (power-law 

exponent or the volume fraction index) which determine the 

material distribution across the plate thickness. 

According to Eqs. (1)- (2), the effective material 

properties of porous MEE-FG (I) plates with even porosities 

are variable across the thickness direction with the 

following form 

( ) ( )
1

( )
2 2

p

u l l u l

z
z

h
P P P PP P


= − + +

 
 


− +
  

(4) 

It must be noted that, the top surface at z=+h/2 of 

embedded porous MEE-FG plate is fully CoFe2O4, whereas 

the bottom surface (z=-h/2) is fully BaTio3. Moreover, the 

MEE-FG (II) plate has porosity phases spreading frequently 

nearby the middle zone of the cross-section and the amount 

of porosity seems to be linearly decrease to zero at the top 

and bottom of the cross-section. Fig. 2 demonstrates cross-

section areas of FGM-I and-II with porosities phases. For 

uneven distribution of porosities, the effective material 

properties are replaced by following form. 

( ) ( )
1

( )
2

2
(1 )

2

p

u l l u l

z
z P P P P

h

z
P P

h


= − + +

 
  − + −
   

(5) 
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Fig. 2 Cross-section area of FGM plate with even and 

uneven porosities. 

 

 
2.2 Kinematic relations 

 
Based on new tangential-exponential refined shear 

deformation theory, the displacement field at any point of 

the plate can be expressed as 

( ) ( )1 , , , (, ), b su x y z t u x y
w w

f z
x x

t z= −
 

−
   

(6) 

( ) ( )2 , , , (, ), b su x y z t v x y
w w

f z
y y

t z= −
 

−
 

 

(7) 

3( , , , ) ( , , ) ( , , )b su x y z t w x y t w x y t= +
 
(8) 

In which u and v  are displacement of mid-plane along 

x, y-axis and wb, ws are the bending and shear components 

of transverse displacement of a point on the mid-plane of 

the plate and t is the time. f(z) denotes a shape function 

estimating the distribution of shear stress across the plate 

thickness. f(z) is considered to satisfy the stress-free 

boundary conditions on the top and bottom sides of the 

plate. So it is not required to use any shear correction factor. 

The present theory has a function in the form (Mantari et 

al., 2014) 

( )
sec ( )

2( )
( ) tan ( )

2
, 0.03

z

hz
f z r

h
r




 
 
  

=   =
   

(9) 

The electric potential and magnetic potential 

distributions across the thickness are approximated via a 

combination of a cosine and linear variation to satisfy 

Maxwell’s equation in the quasi-static approximation as 

follows (Ke et al. 2014) 

2(
( , , , ) cos (

)
)( ) ( , , )

z
x y z t z x y t V

h
C + = − +

 
(10) 

2(
( , , , ) cos ( ( ) ( )

)
) , ,

z
x y z t z x y t

h
  = − + 

 
(11) 

where ζ = π/h. Also, V and Ω are the external electric 

voltage and magnetic potential applied to the MEE-FG 

plate. Nonzero strains of the four-variable plate model are 

expressed by 

0

0

0

,

, 1

b s

x x xx

b s

y y y y

b s
xy xy xy xy

s

yz yz

s
xz xz

z f

f
g g

z

  

   

   

 

 

     
           

= + +       
       
           

      
= = −   

     

(12) 

where 

2

2

2

2

2
2

2

2

2

2

2
2

0

0 , ,

0

wb
u

xx

v wb

x

y y

u v
wby x

x y

ws

x

ws

b s
x x

b s
y y y

b s
xy xy xy

y

ws

x y

  

  

  

 
  
      
      
       

= =        
        
        

      
  

 




−


 
−

 

 
+ 

− 
 


−



−



−












= 





,
s

ws

y
s
yz

s

x
xz

w









        
=   

   
  


 












 

(13) 

According to Eq. (10), the relation between electric field 

(
, ,x y zE E E

) and electric potential (Ф), can be obtained as: 

, cos( ( )) ,x xE z
x





= − =

  
(14) 

, cos( ( )) ,y yE z
y





= − =

  
(15) 

,

2
sin ( ))(z z

V
E z

h
  = − = − −

 
(16) 

Also, the relation between magnetic field (Hx,Hy,Hz) and 
magnetic potential (ϒ) can be expressed from Eq. (11) as: 

, cos( ( )) ,x xH z
x





= − =

  
(17) 

, cos( ( )) ,y yH z
y





= − =

  
(18) 

,

2
sin ( ( ))z zH z

h
  


= − = − −

 
(19) 

Through extended Hamilton’s principle, the equation of 
motion can be derived by: 

0
( ) 0

t

S K W dt  − + =
 

(20) 

Here ΠS is strain energy, ΠW is work done by external 
forces and ΠK is kinetic energy. The virtual variation of 
strain energy can be written as: 

(

)

S

ij ij x x y y xy xy yz yz xz xz
v v

x x y y z z x x y y z z

dV

D E D E D E B H B H B H dV



                 

     



= = + + + +

− − − − − −

 

 

(21) 

Substituting Eqs. (12) and (13) into Eq. (21) yields 
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In which the variables at the last expression are 

expressed by 

( , , ) (1, , ) , ( , , )b s

i i i i
A

N M M z f dA i x y xy= =  

(23) 

, ( , )i i
A

Q g dA i xz yz= =  

(24) 

The first variation of work done by applied forces can 

be written in the form: 

0 0

0

2
0

2

( ) ( ) ( ) ( )
(

( ) ( ) ( )
2 ( ) )

L
b s b s b s b s

W x y

b s b s b s
xy W b s p

w w w w w w w w
N N

x x y y

w w w w w w
N k w w k dx

x y x

 


 

 +  +  +  +
 = +

   

 +  +  +
+ − + +

  



 

(25) 

where 𝑁𝑥
0, 𝑁𝑦

0, 𝑁𝑥𝑦
0 are in-plane applied loads and kW, kp 

are linear and shear coefficient of elastic foundation 

parameters. The first variational of the virtual kinetic energy 

of present plate model can be written in the form as 

 

(26) 

In which I0, I1, J1, I2, J2 and K2 are mass inertia and 

defined as 

 

(27) 

The following Euler–Lagrange equations are obtained 

by inserting Eqs. (22), (24) and (26) in Eq. (20) when the 

coefficients of δu, δv, δwb, δws, δϕ and δγ are equal to zero 

3 32

0 1 12 2 2

xyx b s
NN w wu

I I J
x y t x t x t

  
+ = − −

        
(28) 

3 32

0 1 12 2 2

xy y b s
N N w wv

I I J
x y t y t y t

   
+ = − −

        
(29) 

2 22
2

2 2

2

0 2

3 3

1 2 2

2 2
2 2

2 22 2

2 ( ) ( )

( )
( )

( )

( ) ( )

b bb
xy y E Hx

p b s

b s
W b s

b s

M MM
N N k w w

x x y y

w w
k w w I

t

u v
I

x t y t

w w
I J

t t

 
+ + − + −  +

   

 +
− + =



 
+ +

   

 
−  − 

 

 

(30) 

2 22

2 2

2

2

0 2

2 23 3
2 2

1 2 22 2 2 2

2

( ) ( )

( )
( )

( ) ( ) ( )

s ss
xy y yzx xz

E H

p b s

b s
W b s

b s

M M QM Q

x x y y x y

N N k w w

w w
k w w I

t

w wu v
J J K

x t y t t t

   
+ + + +

     

− + −  +

 +
− + =



  
+ + −  − 

     

 

(31) 

/2

/2
cos( ) cos( ) sin( ) 0

h yx
z

h
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For a linear MEE porous FG plate exposed to magneto-

electro-mechanical loading, the coupled constitutive 

relations may be rewritten as 

ij ijkl kl mij m nij nC e E q H = − −  (34) 

i ikl kl im m in nD e k E d H= + +  (35) 

i ikl kl im m in nB q d E H = + +  (36) 

which σij, Di, Bi denotes the components of stress, electric 

displacement and magnetic induction, ɛkl, Em and Hn are the 

components of linear strain, electric field and magnetic 

field. Additionally, ijklC , imk and in are the components of 

elastic stiffness, dielectric permittivity and magnetic 

permittivity coefficients; Finally, emij qnij and din are the 

piezoelectric, piezo-magnetic, and magneto-electric-elastic 

coefficients, respectively. Hence, the stress-strain relations 

can be expressed by 
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11 12 31 31xx xx yy z zc c e E q H  = + − −
 

(37) 

12 11 31 31yy xx yy z zc c e E q H  = + − −
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(45) 

15 11 11y yz y yB q d E H = + +
 

(46) 

31 31 33 33z xx yy z zB q q d E H  = + + +
 

(47) 

where , , , ,ij ij ij ij ijc e q d k and ij
 are reduced constants 

for the FG plate under the plane stress state [44] which are 

given as 
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(48) 

By integrating Eq. (37)-(47) over the area of MEE 
porous FG plate cross-section, the following relations for 
the force-strain and the moment-strain and other necessary 
relation of the refined FG plate can be obtained 
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In which the cross-sectional rigidities are defined as 

follows 
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The governing equations of refined four-variable shear 

deformation MEE porous FG plate in terms of the 

displacement can be derived by substituting Eqs. (49) -(56), 

into Eqs. (28) -(33) as follows:  
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s
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In this study it assumed that the porous MEE-FG plate is 

under external electric voltage, magnetic potential and the 

shear loading is ignored. So  𝑁𝑥𝑦
0 = 0 and 𝑁𝑥

0, 𝑁𝑦
0 are the 

normal forces induced by external electric voltage V and 

external magnetic potential Ω, respectively and are defined 

as 

0 0 E H

x yN N N N= = +
 

(72) 
/2

31
/2

/2

31
/2

2
,

2

h
E H

h

h

h

V
N e dz N

h

q dz
h

−

−

= −


= −





 

 

 

3. Solution procedure 
 

Here, an exact solution of the governing equations for 

free vibration of a MEE porous FG plate with simply-

supported (S), clamped (C) or free (F) edges or 

combinations of these boundary conditions is presented 

which they are given as 

⚫ Simply-supported (S) 

0b s x xw w N M= = = =  at x=0,a 

0b s y yw w N M= = = =   at y=0,b 

(73) 

⚫ Clamped (C) 

0b su v w w= = = =
 

at x=0,a and y=0,b 

(74) 

⚫ Free (F) 

0x xy xzM M Q= = =   at x=0,a 

0y xy yzM M Q= = =   at y=0,b 

(75) 

To satisfy above-mentioned boundary conditions, the 

displacement quantities are presented in the following form: 

1 1

( )
( ) ni tm

mn n

m n

X x
u U Y y e

x


 

= =


=




 

(76) 

1 1

( ) ( ) ni t

b bmn m n

m n

w W X x Y y e


 

= =

=
 

(77) 

1 1

( )
( ) ni tn

mn m

m n

Y y
v V X x e

y


 

= =


=




 

(78) 

1 1

( ) ( ) ni t

s smn m n

m n

w W X x Y y e


 

= =

=
 

(79) 

1 1

( ) ( ) ni t

mn m n

m n

X x Y y e


 

= =

= 
 

(80) 

1 1

( ) ( ) ni t

mn m n

m n

X x Y y e
 

 

= =

=
 

(81) 

where (Umn, Vmn, Wbmn Wsmn, Wsmn, Фmn, γmn) are the 

unknown coefficients and the functions Xm and Yn are 

tabulated in detail in Table 2 for different boundary 

conditions (α=mπ/a, β=nπ/b). Inserting Eqs. (76)-(81) into 

Eqs. (66)-(71) respectively, leads to 
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where 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 4 12
0 0

, , , ,
a b

r r r X x Y y X x Y y X x Y y X x Y y dxdy    =  
 (89) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 11
0 0

, , , ,
a b

r r r X x Y y X x Y y X x Y y X x Y y dxdy    =    
(90) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5 6 7
0 0

, , , ,
a b

r r r X x Y y X x Y y X x Y y X x Y y dxdy   =    (91) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 8 9 10
0 0

, , , ,
a b

r r r X x Y y X x Y y X x Y y X x Y y dxdy =  
 (92) 

By finding determinant of the coefficient matrix of the 

following equations and setting this multinomial to zero, we 

can find natural frequencies ωn. 
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4. Numerical results and discussions 
 

Through this section, the proposed model is verified by 

comparing the obtained results with those of perfect FGM 

plates presented by Thai and Choi (2012), as illustrated in 

Table 3. Further, the influence of elastic foundation 

parameters, porosity volume fraction, FG material 

gradation, magnetic and electric fields, different types of 

porosity distributions, various boundary conditions and side 

to thickness ratio on the natural frequencies of the MEE 

porous FG plate are evaluated. The non-dimensional natural 

frequency (λ) can be calculated by the relation in Eq. (94) as 

 

Table 3 Comparison of non-dimensional natural frequency 

ˆ ω ρ /m mh E =  of perfect FGM plates for various power-

law exponents (a=b=20h) 

B.C.   Power-law exponent  

   p=0 p=0.5 p=1 p=2 p=5 

SSSS 
TPT (Thai and Choi 

2012) 
 0.0291 0.0247 0.0222 0.0202 0.0191 

 
Present tangential-

exponential 
 0.029153 0.02470 0.022264 0.020241 0.019178 

        

CCSS 
TPT (Thai and Choi 

2012) 
 0.0424 0.0359 0.0324 0.0294 0.0278 

 
Present tangential-

exponential 
 0.043543 0.036905 0.033273 0.03025 0.028639 

 

Table 4 Variation of the non-dimensional frequency of 

MEE-FG plate with different foundation parameter and 

porosity distribution under various boundary conditions 

(a/h=100, Ω=0) 

0.2, 500V = =
 

kw=0, kp=0  kw=10, kp=10 

B.C Type of FGM p=0.2 p=1 p=5  p=0.2 p=1 p=5 

SSSS 
FGM1 4.41499 4.08636 3.83084  16.6333 16.2548 15.9136 

FGM2 4.5017 4.21842 3.99576  15.7441 15.4211 15.1288 

CSSS 
FGM1 6.31798 5.85629 5.50443  19.2486 18.7743 18.3567 

FGM2 6.44088 6.04276 5.73379  17.5098 17.87 17.5098 

CCSS 
FGM1 6.61037 6.11364 5.74164  18.484 18.0043 17.5889 

FGM2 6.73481 6.30611 5.98121  17.5803 17.1662 16.8064 

CCCC 
FGM1 8.30507 7.68116 7.21846  20.1921 19.6222 19.1401 

FGM2 8.45967 7.92106 7.5167  19.271 18.7762 18.3561 

CCFF 
FGM1 8.84641 8.17373 7.67913  19.9991 19.402 19.9049 

FGM2 9.00846 8.42752 7.99505  19.1278 18.6076 18.1729 

 

 

2

11

u

u

a

h c


 =

 

(94) 

Table 2 The admissible functions 𝑋𝑚(𝑥) and 𝑌𝑛(𝑦)(Sobhy, 2013) 

 Boundary conditions  The functions 𝑋𝑚 and 𝑌𝑛 

 At x=0, a At y=0, b  𝑋𝑚(𝑥) 𝑌𝑛(𝑦) 

SSSS 𝑋𝑚(0) = 𝑋𝑚
′′(0) = 0 𝑌𝑛(0) = 𝑌𝑛

′′(0) = 0  𝑆𝑖𝑛(𝛼𝑥) 𝑆𝑖𝑛(𝛽𝑦) 

 𝑋𝑚(𝑎) = 𝑋𝑚
′′(𝑎) = 0 𝑌𝑛(𝑏) = 𝑌𝑛

′′(𝑏) = 0    

CSSS 𝑋𝑚(0) = 𝑋𝑚
′ (0) = 0 𝑌𝑛(0) = 𝑌𝑛

′′(0) = 0  𝑆𝑖𝑛(𝛼𝑥)[𝐶𝑜𝑠(𝛼𝑥) − 1] 𝑆𝑖𝑛(𝛽𝑦) 

 𝑋𝑚(𝑎) = 𝑋𝑚
′′(𝑎) = 0 𝑌𝑛(𝑏) = 𝑌𝑛

′′(𝑏) = 0    

CSCS 𝑋𝑚(0) = 𝑋𝑚
′ (0) = 0 𝑌𝑛(0) = 𝑌𝑛

′(0) = 0  𝑆𝑖𝑛(𝛼𝑥)[𝐶𝑜𝑠(𝛼𝑥) − 1] 𝑆𝑖𝑛(𝛽𝑦)[𝐶𝑜𝑠(𝛽𝑦) − 1] 

 𝑋𝑚(𝑎) = 𝑋𝑚
′′(𝑎) = 0 𝑌𝑛(𝑏) = 𝑌𝑛

′′(𝑏) = 0    

CCSS 𝑋𝑚(0) = 𝑋𝑚
′ (0) = 0 𝑌𝑛(0) = 𝑌𝑛

′′(0) = 0  𝑆𝑖𝑛2(αx) Sin(βy) 

 Xm(a) = Xm
′ (a) = 0 Yn(b) = Yn

′′(b) = 0    

CCCC Xm(0) = Xm
′ (0) = 0 Yn(0) = Yn

′ (0) = 0  Sin2(αx) Sin2(βy) 

 Xm(a) = Xm
′ (a) = 0 Yn(b) = Yn

′ (b) = 0    

CCFF Xm
′′ (0) = Xm

′′′(0) = 0 Yn(0) = Yn
′ (0) = 0  Cos2(αx)[Sin2(αx) + 1] Sin2(βy) 

 Xm
′′ (a) = Xm

′′′(a) = 0 Yn(b) = Yn
′ (b) = 0    
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In Table 4, the effect of elastic foundation stiffness, 

porosity distribution and material gradation exponent on the 

non-dimensional frequency of the MEE-porous FG plates 

resting on two-parameter elastic foundation are listed for 

various boundary conditions (SSSS, CSSS, CCSS, CCCC 

and CCFF), elastic foundation (kw=0, 10, kp=0, 10), power-

law indexes (p = 0.2,1,5) and two porosity distributions 

(even, uneven) at (a/h=100, V=+500, Ω=0, 𝛼=0.2). 

Also table 5 present the non-dimensional frequency of 

MEE-porous FG plates resting on elastic foundation for 

different boundary conditions (SSSS, CSSS, CCSS, CCCC 

and CCFF), magnetic potentials (Ω=-500, 0, +500), power-

law indexes (p=0.2,1,5), porosity volume fraction (𝛼=0,  

 

 

𝛼=0.2) and two porosity distributions (even, uneven) at 

(a/h=100, V=+500, kw=0, kp=0). 

Form the results of these tables, it is concluded that 

increasing the power-law exponents leads to the reduction 

in the non-dimensional frequency of both porosity 

distributions. In fact, when p = 0, the plate is completely 

composed of CoFe2O4 and has the greatest frequency. 

Increasing the material gradation exponent from 0 to 

10changes the composition of the MEE-FG plate from a 

fully CoFe2O4 plate to a plate with a combination of 

CoFe2O4 and BaTiO3.Therefore, by increasing the metal 

percentage results in the lower value of Young's modulus of 

BaTiO3 with respect to CoFe2O4. Therefore, the stiffness of  

Table 5 Effect of porosity volume fraction and magnetic potential on the non-dimensional frequency of embedded MEE-FG 

plate under various boundary conditions 
( 100, 0, 0)p w

a
V k k

h
= = = =

. 

Even porosity 

B.C   
 

0 =   0.2 =  

SSSS 

p=0.2 p=1 p=5  p=0.2 p=1 p=5 

-500 3.29439 3.45350 3.75404  3.27061 3.46440 3.86939 

0 4.38393 4.16473 3.99715  4.42483 4.14321 3.92956 

500 5.25511 4.77109 4.22631  5.33491 4.72550 3.86939 

CSSS 

-500 5.32542 5.31110 5.47088  5.33702 5.30955 5.53937 

0 6.26380 5.93728 5.69035  6.32693 5.90799 5.59416 

500 7.07886 6.50344 5.90167  7.18166 6.45115 5.64842 

CCSS 

-500 5.75232 5.65300 5.73029  5.78241 5.64781 5.77172 

0 6.54592 6.18688 5.91901  6.61805 6.15812 5.81896 

500 7.25320 6.67823 6.10189  7.3594 6.62926 5.86581 

CCCC 

-500 7.50850 7.27597 7.24272  7.56624 7.26215 7.24582 

0 8.21775 7.75653 7.41413  8.31205 7.72166 7.28887 

500 8.87047 8.20901 7.58168  8.99625 8.15531 7.33166 

CCFF 

-500 8.12166 7.81959 7.72228  8.12166 7.81959 7.72228 

0 8.74729 8.24577 7.87495  8.74829 8.24577 7.87495 

500 9.33295 8.65098 8.02471  9.33295 8.65098 8.02471 

Uneven porosity 

B.C 
  

0 =   0.2 =  

SSSS 

p=0.2 p=1 p=5  p=0.2 p=1 p=5 

-500 3.29439 3.4535 3.75404  3.43608 3.59537 3.93172 

0 4.38393 4.16473 3.99715  4.51689 4.27447 4.0881 

500 5.25511 4.77109 4.22631  5.38498 4.85984 4.23871 

CSSS 

-500 5.32542 5.3111 5.47088  5.52171 5.49421 5.67797 

0 6.2638 5.93728 5.69035  6.45469 6.09373 5.81976 

500 7.07886 6.50344 5.90167  7.2689 6.63933 5.95818 

CCSS 

-500 5.75232 5.653 5.73029  7.45289 6.82326 6.17323 

0 6.54592 6.18688 5.91901  6.74667 6.34997 6.05357 

500 7.2532 6.67823 6.10189  5.95731 5.83844 5.93149 

CCCC 

-500 7.5085 7.27597 7.24272  7.76456 7.50016 7.47154 

0 8.21775 7.75653 7.41413  8.47046 7.96100 7.58261 

500 8.87047 8.20901 7.58168  9.12189 8.3966 7.69208 

CCFF 

-500 8.12166 7.81959 7.72228  8.39427 8.05427 7.95483 

0 8.74729 8.24577 7.87495  9.01806 8.46312 8.05382 

500 9.33295 8.65098 8.02471  9.60141 8.85311 8.15161 
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system and in turn the natural frequency of the structure 

diminishes. In addition, it can be witnessed that the elastic 

foundations tends to increase the non-dimensional 

frequency of MEE-porous FG plate. Also it is found that the 

effect of the magnetic field depends on the sign of magnetic 

potential, in other words negative values of magnetic 

potential leads to decrease the non-dimensional frequency 

of the smart FG porous plate while, for the positive values 

of magnetic potential, a reverse trend is noticed. It is 

concluded that for MEE-FG (I) plate, the natural 

frequencies are influenced of the porosity which rely on the 

material gradation index (p). But for MEE-FG (II) plate, 

higher values of porosity volume fraction provide larger 

values of the frequency for all material graduation index. 

Comparing results of even and uneven porosity 

distributions reveals that the porosity has more considerable 

impact on the natural frequencies of the MEE-FG (I) than 

MEE-FG (II) at every magnetic potentials and electric 

voltages. Comparing the non-dimensional frequency of  

 

 

smart FG plate for different boundary conditions expresses 

that the greatest non-dimensional frequency is obtained for 

MEE-porous FG plate with CCFF boundary condition 

followed with other boundary conditions. In order to 

evaluate the effect of the porosity volume fraction on the 

first non-dimensional frequencies of the smart SSSS MEE-

FGM-I &-II plate resting on elastic foundation, the natural 

frequency variation, versus the material gradation index for 

different volume fractions of porosity (𝛼=0, 0.1, 0.2) at a 

constant values of side-to-thickness ratio (a/h=100), elastic 

parameter foundations (kw=kp=0, 10), magnetic potential 

(Ω=0) and electric voltage (V=0) is plotted in Figs. 3. It is 

found that the porosity effect on the smart FG(I)&(II) plate 

resting on elastic foundation is as follow: the non-

dimensional frequency increases as the porosity parameter 

(𝛼) increases for every value of power-law indexes. 

Therefore, it is clear that the porosity effect becomes 

outstanding for MEE-FG plate resting on elastic foundation. 

The impact of electric voltage and magnetic potential on the  

  
(a) Even porosity (kw=0, kp=0) (b) Uneven porosity (kw=10, kp=10) 

Fig. 3. The variation of the first dimensionless frequency of SSSS MEE-FGM(I) &(II) plate resting on elastic foundations 

with material graduation and porosity parameter (a/h=100, Ω=0, V=0) 

 

  
(a) even porosity (b) uneven porosity 

Fig. 4. Effect of porosity volume index on the dimensionless frequency of the SSSS MEE-FGM(I) plate on elastic 

foundations with respect to applied electric voltage (a/h=100, Ω=0 p = 5, kw = 10, kp = 10). 
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(a) even porosity (b) uneven porosity 

Fig. 5 Effect of porosity volume index on the dimensionless frequency of the SSSS MEE-FGM(I) plate on elastic 

foundations with respect to applied magnetics potential (a/h=100, V=0, p = 5, kw = 10, kp = 10) 

 

  
(a) SSSS, uneven porosity (b) SSSS, even porosity 

  
(a) CCCC, even porosity (b) CCCC, uneven porosity 

Fig. 6 Influence of Winkler parameters on the dimensionless frequency of the SSSS MEE-FGM(I)&(II) plate for different 

porosity volume fractions and boundary conditions (a/h=100, V=200, Ω=0, p = 5, kp = 0)  
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non-dimensional frequencies of the simply-supported smart 

MEE-FG plates resting on elastic foundation with even and 

uneven porosity distribution for different values of porosity 

volume fractions at (a/h=100, p = 5, kw = 10, kp = 10) 

isillustrated in Figs. 4 and 5, respectively. 

It is obvious that when the intensity of external electric 

voltage and magnetic potential increases from negative to 

positive value, respectively the non-dimensional frequency 

of MEE porous plate reduce and increase for both porosity 

distributions. Also, it is observed that the impact of the  

external electric voltage and magnetic potential on the 

non-dimensional frequency of MEE-FG(II) resting on 

elastic foundation is more prominent than that of the MEE-

FG(I). Hence, it is very crucial to pay attention to the type 

of porosity distribution of MEE-FG porous plate. In 

addition, as can be seen with the change in the porosity 

volume fraction, with the presence of the elastic 

foundations, the non-dimensional frequency of the smart 

FG plate increases as the porosity parameter increases. 

Figures 6 and 7 indicate the variation of the 

dimensionless frequency of SSSS and CCCC MEE-FG 

porous plate exposed to electric voltage as a function of  

  
(a) SSSS, even porosity (b) SSSS, uneven porosity 

  
(c) CCCC, even porosity (d) CCCC, uneven porosity 

Fig. 7 Influence of Pasternak parameters on the dimensionless frequency of the SSSS MEE-FGM(I)&(II) plate for different 

porosity volume fractions and boundary conditions (a/h=100, V = 200, Ω=0, p = 5, kw = 0) 

 
( 10, 10)w pk k= =  

Fig. 8. Effect of porosity volume index on the 

dimensionless frequency of various boundary FGM(I) 

square plate resting on different elastic foundation 

parameter (a/h=100, V = 0, Ω=0, p = 5) 
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Winkler and Pasternak parameter for different porosity 

volume fraction (𝛼=0, 0.1, 𝛼=0.2) and two porosity 

distributions (even and uneven), at (a/h=100, V=200, Ω=0,  

P=5). It is known that improving the Winkler and 

Pasternak parameter lead to increasing of non-dimensional 

frequency for all of porosity volume fraction. In addition, it 

is found that the influence of porosity on natural 

frequencies of MEE-FG plate is more considerable with 

elastic foundation. In other words, effect of porosity is 

negligible at lower Winkler and Pasternak elastic 

parameters. Therefore, it is important to consider porosity 

effect in the analysis of MEE-FG plates resting on elastic 

foundation. In addition, it is seen that the influence of the 

Pasternak parameter on the non-dimensional frequency is 

more prominent than that of the Winkler parameter. Hence, 

it is very important to regard the shear layer of an elastic 

foundation in the analysis of MEE-FG plate with porosity. 

In order to investigate the effect of porosity on the 

vibration of the smart MEE-FG plates with elastic  

 

 

foundation, variations of the non-dimensional natural 

frequency of SSSS MEE-FGM-I plate as a function of 

porosity parameter for various boundary conditions at a 

constant value of side-to-thickness ratio (a/h=100), elastic 

parameters 
( , 10)p wk k =

, power-law index (p=5), 

magnetic potential (Ω=0) and electric voltage (V=0) is 

plotted at Fig. 8.  It can be concluded that the greatest 

frequency of MEE-FG plate is obtained for the plate with 

CCCC boundary conditions followed by CCFF, CSSS, 

CCSS and SSSS respectively. It can be pointed that the 

impact of porosity volume fraction on the natural frequency 

of MEEE-FG (I) plate with elastic foundation is similar 

previous conclusions for all boundary conditions. On the 

other hand, improving the porosity volume fraction with 

existence of elastic foundation respectively provide higher 

natural frequencies for MEE-FG(I) plate. So, existence of 

elastic foundation has significant role on vibration behavior 

of porous MEE-FG plates. 

To display the impact of side-to-thickness ratio on the 

  
(a) SSSS, α=0.2  (b) CCCC, α=0.2  

Fig. 9 Influence of side-to-thickness ratio on the dimensionless frequency of SSSS&CCCC MEE-FGM(I) square plate resting 

on elastic foundation for different porosity value and magnetic potentials (p = 5, kw = 10, kp = 10, V= 0, Ω=0)  

 

  
(a) SSSS (b) CCCC 

Fig. 10 Effect of aspect ratio on the dimensionless frequency of SSSS&CCCC MEE-FGM(I) square plate resting on elastic 

foundation for different porosity volume fraction (p = 5, kw = 10, kp = 10, V= 0, Ω=0) 
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non-dimensional frequency of MEE-FG (I) plate resting on 

elastic foundation for various external magnetic (Ω=500, 

200, 0, -200, -500), Fig.9 presents the frequency results 

versus side-to-thickness ratio with two boundary conditions 

(SSSS & CCCC) at constant value of power-law index 

(p=5), porosity parameter (𝛼=0.2), Winkler & Pasternak 

elastic parameter (kw = 10, kp = 10), magnetic potential 

(Ω=0) and electric voltage (V=0). As can be seen, at first 

increment of side-thickness ratio leads to increasing of non-

dimensional frequency of MEE-FG(I) for both boundary 

conditions and all of the magnetic potential. Then, with the 

increasing of a/h, it can be seen that Ω>0, Ω=0, Ω<0 

provided higher, approximately constant and lower 

dimensional frequency, respectively. In addition, it is 

observable that higher values of a/h have more significant 

influence on frequency response. 

Consequently, the difference between frequency results 

according to negative and positive values of electric and 

magnetic fields increases with the rise of side-to-thickness 

ratio.  Figure 10 shows the effect of aspect ratio a/b on the 

natural frequency of smart MEE-FG plate resting on 

Winkler- Pasternak elastic foundation for different 

boundary conditions (SSSS&CCCC) and porosity 

parameters (𝛼=0, 0.1, 0.2) at (p = 5, kw = 10, kp = 10, V= 0, 

Ω=0), respectively. It is pointed that increasing the aspect 

ratio is cause of increment in the non-dimensional 

frequencies of MEE-FG plate with even porosity for both 

boundary conditions. 

 

 

5. Conclusions 
In the present paper, vibration of porous magneto-

electro-elastic functionally graded (MEE-FG) plate resting 

on elastic foundation with various boundary conditions is 

studied within the framework of a four-variable higher 

order shear deformation theory in which shear deformation 

effect is involved without the need for shear correction 

factors. Two types of porosity distributions, namely even 

and uneven are considered. Mechanical properties of the 

smart porous MEE-FG plate are gradually variable in the 

thickness direction based on modified rule of mixture. The 

equations of motion and boundary conditions are derived by 

using Hamilton principle. An analytical solution method is 

used to solve governing partial differential equations for 

various boundary conditions. It is indicated that the 

vibration characteristics of embedded porous MEE-FGM 

plate are significantly affected by various parameters such 

as elastic parameters, magnetic field, external electric 

voltage, volume fraction of porosity, material graduation, 

various boundary conditions and porosity distributions. 

Numerical results show that: 

•  By increasing the material graduation index value, 

the non-dimensional frequencies of porous MEE-FG plate 

are found to decrease regardless of porosity value. 

•  For MEE-FGM (I) plate without elastic foundation, 

increasing the volume fraction of porosity first yields an 

increase in fundamental frequency, then this trend becomes 

vice versa for upper values of gradient index. But with 

existence of elastic foundation, increasing the volume 

fraction of porosity increases fundamental frequency of 

MEE-FGM (I) plate for all values of gradient index. 

•  Fundamental frequency of MEE-FG(II) plate with 

and without elastic foundation increases with increment in 

porosity parameters for all values of power-law index.   

•  Increasing magnetic potential yields increment of 

non-dimensional frequency of embedded porous MEE-

FGM plate. However, for the external electric voltage this 

behavior is opposite. 

•  Effect of porosity volume fraction on natural 

frequency depends on existence of elastic foundation, 

porosity distribution and power-law index. 

•  The non-dimensional frequency of porous MEE-

FGM plate resting on elastic foundation with CCCC 

boundary conditions is greatest, followed by CCFF, CSSS, 

CCSS and SSSS respectively. 

•  Effect of side-to-thickness ratio (a/h) on frequencies 

with respect to magnetic potentials is more prominent at its 

higher values. As side-to-thickness ratio increases, the 

difference between frequency results according to negative 

and positive values of magnetic fields increases and this 

difference is more noticeable for perfect MEE-FG plate.  

•  With the increasing of aspect ratio, the non-

dimensional frequency of porous MEE-FG plate resting on 

elastic foundation increase.  
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