
Structural Engineering and Mechanics, Vol. 72, No. 1 (2019) 61-70 

DOI: https://doi.org/10.12989/sem.2019.72.1.061                                                                 61 

Copyright © 2019 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

Functionally graded materials (FGM) are, 

macroscopically, non-homogeneous compounds that are 

usually made from a mixture of metals and ceramics. FGM 

are considered as the most promising composite materials in 

various technology sectors such as aerospace, automotive, 

and defense industries, and recently electronics and 

biomedical industries. 

In addition, the increasing use of plates as structural 

components in various fields such as marine technology; 

civil and aerospace has made it necessary to study their 

mechanical behavior. Several studies have been undertaken 

on the mechanical behavior of FGM plates. Cheng and 

Batra (2000), Tounsi (2013), Adim (2018), Hassaine 

Daouadji (2016), Belabed (2018), Bellifa (2017), Zohra 

(2016), Abualnour (2018), Bouadi (2018), Benhenni (2018), 

Rabia (2018), Rabahi (2018), Bensatallah (2018), Abdelaziz 

(2017), Chadad( 2017), Tahar (2016) Benachour (2011), 

Hassaine Daouadji (2013) and Zenkour (2006), have 

studied the bending of a simply supported polygonal plate 

with a property gradient given by a first order shear 

deformation theory (FSDT). Praveen and Reddy (1998) also 

analyzed the nonlinear static and dynamic response of 

property gradient ceramic-metal plates in a constant 

temperature field and subjected to dynamic side loads by 

the finite element method. Park et al (2006) presented the 

post-buckling and thermal vibration behavior of the 

property gradient FGM plate, the nonlinear finite element  
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equations are based on the theory of first-order shear 

deformation plates and the stress relationship -Von 

Karman’s nonlinear displacement is used to account for the 

large displacement of the plate. Shen (2002) studied the 

nonlinear bending response of FG plates subjected to 

transverse loads and in a thermal environment.  

Moreover, the functionally graded materials (FGM) 

used in plates may contain a porosity volume fraction which 

is the result of the imperfection in their construction. Thus, 

it is important to take this aspect in the study of the 

mechanical behavior of this type of structures. Benferahat et 

al. (2016a, 2016b, 2016c) studied the effect of porosity on 

the bending and free vibration response of functionally 

graded plates resting on Winkler-Pasternak foundations by 

introducing in the mathematical formulation a volume 

fraction of porosity. 

The objective of this work is to use a refined theory of 

shear deformation to study the effect of the distribution 

form  of porosity on static behavior of FGM plates. The 

effect due to porosity is included using a modified mixture 

law covering the porosity phases proposed by 

Wattanasakulpong (2012), Zaoui (2019), Belkacem (2016), 

Zine (2018), Khalifa (2018), Abdelhak (2016), Attia (2018), 

Mantari (2012), Menasria (2017), El Haina (2017), Mokhtar 

(2018), Fourn (2018), Benchorra (2018), Tahar (2017), 

Bouhadra (2018), Adim (2016), Youcef (2018), Slimane 

(2018), Demirhan (2019) and Younsi (2018). The properties 

of the material of the FGM plate are supposed to vary 

according to a power law distribution of the volume fraction 

of the constituents. The equation of motion for FGM plates 

is obtained by the principle of virtual works. The effects of 

power index, pore volume fraction, geometry ratio, and 

thickness ratio on FGM plate deflection are also studied. 
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2. Geometric configuration and material properties  

 

Consider an FGM plate of length a, width b and total 

thickness h, made of mixture of metal and ceramics, in 

which the composition is varied from the top to the bottom 

surface. The material in top surface and in bottom surface is 

ceramic and metal respectively (Fig. 1).  

In this study, we consider an imperfect FGM plate with 

a volume fraction of porosity α (α << 1), with different form 

of distribution between the metal and the ceramic. The 

modified mixture rule proposed by Wattanasakulpong 

(2014) and Benferhat (2014) is 
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The puissance law of the volume fraction of the ceramic 

is assumed as 

 (2) 

The modified mixture rule becomes 
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Where, k is the power law index that takes values 

greater than or equals to zero. The FGM plate becomes a 

fully ceramic plate when k is set to zero and fully metal for 

large value of k. 

 

 

The Young’s modulus (E) of the imperfect FG can be 

written as a functions of thickness coordinate, Z (middle 

surface), as follows (Benferhat 2016b, Hassaine Daouadji 

2016, Ait Athmane 2015, Ait Yahia 2015, Hadji 2015a, 

2015b). 
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The material properties of a perfect FGM plate can be 

obtained when the volume fraction of porosity α is set to 

zero. Due to the small variations of the Poisson ratio ν, it is 

assumed to be constant. Several forms of porosity have 

been studied in the present work, such as “O”, “V” and X” 

(Table 1). 
 

 

3. Displacement field and strains 
 

Based on of the theory of the higher order shear 

deformation plate, displacement elements are assumed as 

follow 
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Linear deformation can be obtained from kinematic 

relationships as 

 

Fig. 1 Geometry and dimensions of the FGM plate resting on elastic foundation 

Table 1 Deferent distribution forms of porosity 
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The linear constitutive relationships of a FG plate can be 

written as 
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4. Equilibrium equations 
 

The equilibrium equations that govern can be derived 

using the principle of virtual displacements. The principle 

of virtual work in this case gives 
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Where Ω is the upper surface, fe is the density of the 

foundation reaction force. 

For the Pasternak foundation model, fe can written as 
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K0 and K1 are the transverse and shear stiffness 

coefficients of the foundation respectively.  

The stress resultants are given as 
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Stiffness components and inertias are given as 
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Following the Navier solution procedure, we assume 

that the following solution form u0, v0, wb and ws, satisfies 

the boundary conditions 
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Where: am / =  ,
bn / =

 et Umn, Vmn, 

Wbmn,Wsmn are arbitrary parameters to be determined. We 

obtain the equation of the following operator 

   FK =]([
 

(16) 

Where 
   t

sb WWVU ,,,=
. [K] is the stiffness 

matrices, represented as 



















=

44342414

34332313

24232212

14131211

][

aaaa

aaaa

aaaa

aaaa

K

 

(17) 

In which 

2

22

2

664455

2

66

2

115544

3

22

2

66

2

1235

661245

2

66

2

12

3

1134

22

10

4

22

22

66

22

12

4

1133

2

22

2

6625661224

3

2223

2

22

2

6622661215

2

66

2

1114

3

1113661212

2

66

2

1111

,2

)(,2

)(42

),(,

),(,

),(,















GGFa

GGFaEEEa

GGaEEEa

kkDDDDa

CCaCCaBa

AAaCCaCaCa

aBaAAaAAa

++=

++=−−−=

+=−−−=

++++++=

+=+=−=

+=+=+=

−=+=+=

 

(18) 

  

 

5. Results and discussion 
 

In this study, flexural analysis of fgm plates by the new 

hyperbolic theory of shear deformation of the plate is 

suggested for investigation, the effect of the distribution 

form of porosity is also studied; the Poisson’s ratio is fixed 

at υ=0.3. Comparisons are made with the solutions 

available in the literature in order to verify the accuracy of 

this analysis. The properties of the materials used in this 

analysis are presented in table 2. 
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The dimensionless deflections of simply supported fgm 

plates under uniformly distributed loading, for different 

values of thickness ratio a/h, are presented in table 3.  The 

calculated dimensionless deflections are compared with 

those reported in literature (Reddy 2001; Cooke and 

Levinson, 1983; Lee 2002, Zenkour and Radwan, 2018). 

 

 

As we can see on table 3, close agreements were 

obtained between the results of the present method and 

those of literature (when α =0; perfect plate). It can be noted 

that deflections increases by increasing the thickness ratio 

a/h. By introducing the volume fraction of porosity (α), it 

can be noted that the increase of this factor induces an  

Table 2 Materials proprieties 

 
Table 3 Maximum dimensionless deflections of fgm plates without elastic foundations under uniform loads 

 
Table 4 Effects of side-to-thickness ration on the deflections 10W of homogeneous square plate resting on elastic foundations 

under uniform loads for thickness ratio a/h=5. 

 
Table 5 Effects of side-to-thickness ration on the deflections 10W of homogeneous square plate resting on elastic foundations 

under uniform loads for thickness ratio a/h=10 
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Table 6 Effects of side-to-thickness ration on the deflections 10W of homogeneous square plate resting on elastic foundations 

under uniform loads for thickness ratio a/h=100 

 

Table 7 Nondimensional deflections 10w of homogeneous plates resting on elastic foundations and subjected to uniformly 

distributed loads (K0 = 10 ; K1 = 10) 

 
Table 8 Nondimensional deflections 10w of homogeneous plates resting on elastic foundations and subjected to uniformly 

distributed loads (K0 = 10 ; K1 = 100) 

 
Table 9 Nondimensional deflections 10w of homogeneous plates resting on elastic foundations and subjected to uniformly 

distributed loads (K0 = 100 ; K1 = 10) 
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Fig. 2 Effect of the shape of porosity distribution on the 

dimensionless deflections versus aspect ratio a/b of an   

Al/Al2O3 fgm plate resting on an elastic foundation 

(a/h=4; α=0.2) 

 
 

increase in dimensionless deflections, which shows that the 

porosity has a significant influence on the deflections of 

fgm plates. In table 4, 5 and 6, we present the Effects of 

side-to-thickness ration on the deflections 10W of 

homogeneous square plate resting on elastic foundations 

under uniform loads for deferent values of the thickness 

ratio a/h = 5, 10 and 100 respectively. By comparing  the 

deferent results presented in (tables) 4-6, It can be noted 

that the present method gives deflections values very closer 

to those obtained with other literature methods (Carrera 

2011;Thai  2013, Zenkour 2018). 

In tables 7-10, Nondimensional deflections 10w of 

homogeneous plates resting on elastic foundations and 

subjected to uniformly distributed loads, for deferent values 

of K0 and K1, for deferent thickness ratio and side to 

thickness ratio are presented. 

By analyzing the previous results presented in tables 7-

10 and compared to those of literature, it can be noted that 

the present method is in good agreement with the others 

literature methods for deferent cases (thickness ratio, 

deferent values of K0 and K1 and side to thickness ratio. The 

results presented in previous tables reveal that the increase 

in volume fraction porosity increase the deflections of fgm 

plates which is consistent with the previous results.  
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Fig. 3 Effect of the shape of porosity distribution on the 

dimensionless deflections versus aspect ratio a/b of an  

Al/ZrO2 fgm plate resting on an elastic foundation (a/h=4; 

α=0.2) 

 

In fig.2 and fig.3, we present the effect of the 

distribution shape of porosity on the dimensionless 

deflections of FG plate, resting on an elastic foundation for 

deferent aspect ratio a/b, made with Al/Al2O3 and Al/ ZrO2 

respectively.  As we can seen on fig.2 and fig. 3, the 

dimensionless deflections decrease in increasing the aspect 

ratio a/b (length to width). 

It can also be noted that the distribution shape of 

porosity slightly influences the variation of the 

dimensionless deflections as a function of the geometry 

ratio. The highest values of dimensionless were obtained for 

the “O” shape of porosity distribution while the lowest ones 

correspond to the “V” shape of porosity distribution.  

Comparing the two fgm plates, it can be noted that the 

deferent curves are spaced for the plate made with Al/Al2O3 

than for that made with Al/ZrO2. It can also be observed 

that the deferent curves respect the same order for deferent 

distribution shape of porosity. 

In fig.4 and fig.5, we present the effect of the 

distribution shape of porosity on the dimensionless 

deflections of fgm square plate, resting on an elastic 

foundation for deferent side to thikness ratio a/h, made with 

Al/Al2O3 and   Al/ZrO2 respectively.  It should be noted 

that the effect of the distribution shape of porosity on the 

dimensionless deflection is very significant by increasing 

thickness ratio (as the plate becomes thinner).  

Table 10 Nondimensional deflections 10w of homogeneous plates resting on elastic foundations and subjected to uniformly 

distributed loads (K0 = 100 ; K1 = 100) 
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Fig. 4 Effect of the shape of porosity distribution on the 

dimensionless deflections versus side-to-thickness ratio 

a/h of an Al/Al2O3 fgm square plate resting on an elastic 

foundation (a/b=1; α=0.2) 
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Fig. 5 Effect of the shape of porosity distribution on the 

dimensionless deflections versus side-to-thickness ratio 

a/h of an Al/ZrO2 fgm square plate resting on an elastic 

foundation (a/b=1; α=0.2) 
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Fig. 6 Effect of the shape of porosity distribution on the 

longitudinal stress across the thickness of an Al/Al2O3 fgm 

square plate resting on an elastic foundation (a/h=4; 

α=0.2) 
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Fig. 7 Effect of the shape of porosity distribution on the 

longitudinal stress across the thickness of an Al/Al/ZrO2 

fgm square plate resting on an elastic foundation (a/h=4; 

α=0.2) 
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Fig. 8 Effect of the shape of porosity distribution on the 

Normal stress σyy across the thickness of an Al/Al2O3 fgm 

square plate resting on an elastic foundation (a/h=4; 

α=0.2) 
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Fig. 9 Effect of the shape of porosity distribution on the 

Normal stress σyy across the thickness of an Al/ZrO2 fgm 

square plate resting on an elastic foundation (a/h=4; 

α=0.2) 
 

The effect of the distribution shape of porosity on the 

longitudinal stress across the thickness of an Al/Al2O3 and 

Al/ZrO2 fgm square plate resting on a Winkler-Pasterk type 

foundation is presented in fig.6 and fig.7, respectively.  
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Fig. 10 Effect of the shape of porosity distribution on the 

shear stress τxy across the thickness of an Al/Al2O3 fgm 

square plate resting on an elastic foundation (a/h=4; 

α=0.2) 
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Fig. 11 Effect of the shape of porosity distribution on the 

shear stress τxy across the thickness of an Al/ZrO2 fgm 

square plate resting on an elastic foundation (a/h=4; 

α=0.2) 

 

 

According to these figures, it is clear that the longitudinal 

stress is maximum for “X” distribution shape of porosity 

and it is minimal for “O” distribution shape of porosity. It 

can be noted particularly that the influence of the 

distribution shape of porosity is more significant for the 

Al/Al2O3 fgm plate than for the Al/ ZrO2 FG plate. 

The fig. 8 and fig.9 show the influence of distribution 

shape of porosity on the normal stress of an Al/Al2O3 and 

Al/ZrO2 fgm plate, respectively. The parameters of Winkler 

and Pasternak are taken equal to K0= K1=10. The volume 

fraction of porosity is taken equal to 0.2. The same 

tendency was observed for the influence of this parameter 

on the normal stress as on the longitudinal stress. As we can 

see on the fig. 10 and fig. 11, the shear stress decrease by 

increasing the thickness ratio a/h of an Al/Al2O3 and 

Al/ZrO2 FGM plate, respectively. It can be also noted that 

the distribution shape of porosity has an influence on the 

shear stress, particularly in the lower of the fgm plate (metal 

side). 

 

5. Conclusions 
 

The study was focused on the effect of the distribution 

shape of porosity on flexion fgm plates based on a two-

parameter elastic foundation. The mathematical formulation  

is based on the use of the refined theory of shear 

deformation. The properties of the material are assumed to 

vary according to the thickness direction of the plate and the 

rule of the mixture that has been reformulated to evaluate 

the characteristics of the materials with different 

distribution shape of porosity. The Navier method is used 

for analytical solutions of the fgm plate with simply 

supported boundary conditions. A parametric study was 

conducted, including volume fraction indices, geometry 

ratios, thickness ratios, foundation stiffness parameters and 

volume fraction of porosity. According to the typical results, 

it can be concluded that  distribution shape of porosity has 

a significant effect on the  deflections of fgm plates as well 

as on the normal and shear stress developed in the plate. 

Finally, it is up to the researchers and manufacturer to 

choose wisely the material combinations that gives rise to a 

fgm plate  offers rigidity, strength and most of all less 

greedy in terms of cost. In view of this research, it is very 

important to study the effect of boundary conditions, and to 

see how these boundary conditions can affect the stability 

of this type of porous plate. 
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