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1. Introduction 
 

The piping components of power plants, offshore oil and 

gas industry are generally subjected to cyclic loading and it 

is found that several failures are due to fatigue/cyclic 

loading. The failures are observed to occur well below the 

allowable stress limits under normal operating conditions 

and they are attributed to the presence of flaws. To evaluate 

structural integrity of piping components, a detailed 

analysis is required where in the reliable fracture parameter, 

stress intensity factor (SIF) is to be evaluated. Under linear 

elastic fracture mechanics domain, SIF governs design. 

Further, to design the structural component by leak before 

break (LBB) concept, evaluation of SIF is must. By using 

SIF, crack growth, remaining life and residual strength can 

be predicted which are very important for in-service 

inspection planning. In general, SIF can be determined by 

two ways, namely, numerical and analytical. 

SIF can be determined by using a handbook (Tada et al. 

1973; Sih, 1973; Rooke and Cartwright, 1976) or by 

employing numerical methods (Bergman and Brickstad, 

1991, Zahoor, 1985, Zareei and Nabavi, 2016, Miyazaki 

and Mochizuki, 2011, and Kumar et al. 1985). Typical 

remaining life prediction process is explained in Fig. 1 

(Yaguo Lei, 2017). From Fig. 1, it can be noted that Stage I  
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indicates a normal operation stage and Stage II is an 

accelerated degradation stage throughout design period. 

During Stage I, the pipe is in healthy condition. After the 

damage or deterioration starts, the pipe condition goes to 

Stage II, where in remaining useful life (RUL) prediction is 

very important. The time to start prediction is defined as the 

first predicting time (FPT), which is denoted by tFPT in Fig. 

1. From Fig. 1, it can be observed that FPT is the transition 

between Stage I and Stage II. Fig. 1, (A) describes the RUL 

prediction process at a single time point tk, and Fig. 1 (B) 

presents the real-time RUL prediction during Stage II. The 

real-time RUL prediction can be obtained by carrying out 

the RUL prediction from tFPT to tEoL. 

 Fatigue crack growth studies were also carried out on plate 

specimens with part through crack (Bhargava et al. 1998, 

Brennan et al. 2008) and on carbon steel pipes (Singh et al. 

2003). In the present paper, an alternative approach based 

on statistical method for prediction of SIF is proposed. 

From the literature, it was observed that several advanced 

statistical models, namely, Gaussian regression process,  

extreme learning machine, least squares support vector 

machine, Artificial Neural Network, Relevance vector 

machine, support vector machine, multivariate adaptive 

regression splines are available to develop the models for 

the desired output  (Yuvaraj et al.2013a, Yuvaraj et al. 

2013b, Yuvaraj et al. 2014a, Yuvaraj et al. 2014b, 

Shantaram et al. 2014, Vishal et al. 2014, Susom Dutta et 

al. 2017, Jaideep Kaur et al. 2017, Erdem, 2017, Engin et 

al. 2015, Mansouri et al. 2016, Keprate, 2017).  From the 

literature, it was observed that each model has its own 

merits and limitations. 
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Abstract.  Structural integrity assessment of piping components is of paramount important for remaining life prediction, 

residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter 

is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength 

materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical 

procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an 

alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed 

to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and 

regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse 

representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for 

the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement 

with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components. 
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Fig. 1 Typical remaining useful life prediction process 

(Yaguo Lei, 2017) 
 

 

In the present investigation, it is proposed to employ 

relevance vector machine (RVM) to predict SIF of a pipe 

with circumferential crack subjected to cyclic loading. 

RVM is an intelligent learning technique based on sparse 

Bayesian framework and the number of relevance vectors 

required for RVM is smaller compared to support vectors in 

support vector machine (Tipping, 2001, John et al. 2010). 

For the past several years, support vector machine (SVM) 

has been popular which is based on an alternative kernel 

technique for development of models. Although, SVM 

performance is significant, due to certain drawbacks, RVMs 

based approach has been proposed by improving the 

concepts of SVMs in a Bayesian context and can be 

effectively used for regression and classification problems. 

RVM offers several advantages that include the 

probabilistic predictions, automatic estimation of 

parameters, and the facility to utilise arbitrary basis 

functions.  Further, there is no need to set the penalty 

parameter in RVM, which makes RVM more convenient to 

use than SVM. Sparsity can be achieved because in practice 

the posterior distributions of many of the weights are 

sharply peaked around zero. We call those training vectors 

associated with the remaining non-zero weights 'relevance' 

vectors, in deference to the principle of automatic relevance 

determination which motivates the approach (MacKay, 

1994, Neal, 1996). The significant feature of RVM is that it 

uses lesser kernel functions. Further, it was mentioned that 

the run time of RVM is considerably faster than SVM. 

Numerous applications of RVM were observed in the 

literature to predict the desired output (Wahyu et al. 2009, 

Dawei et al. 2002, Wei et al. 2005, Sarat Kumar Das and 

Pijush Samui 2008, Achmad et al. 2009, Xiaodong Wanga 

et al. 2009, Kefei Liu and Zhisheng Xu, 2011, Yuvaraj et al. 

2014b). Enrico and Francesco (2012) predicted the crack 

growth in a structure by using RVM. Nurcihan (2014)  

 

 

predicted uniaxial compressive strength of volcanic rocks 

by using RVM and SVM. Sheng et al. (2015) presented the 

hybrid model of wavelet decomposition and artificial bee 

colony algorithm-based relevance vector machine 

(WABCRVM) for wind speed prediction. Recently, 

Prasanna et al. (2018) predicted compressive strength of 

various GGBS based concrete mixes for 28, 56, 90 and 180 

days by using RVM. 

The main objective of this manuscript is to present the 

mathematical background and the procedure for building, 

training and testing of the RVM model which will be used 

to predict SIF of pipeline. 

 

 

2. Stress intensity factor for A Pipe with 
circumferential crack 

 

Experiment was carried out on a piping component 

under fatigue loading. The nature of the crack is part-

through in the circumferential direction. The details of the 

specimen are given below (Table 1) (Singh et al. 2003).  

 From the experiment, the out put such as number of 

cycles to failure, crack depth, crack length etc. were 

recorded under cyclic loading (Singh et al. 2003). SIF has 

been evaluated based on the crack profile obtained with 

respect to definite number of cycles. Although, several 

methods are available to evaluate SIF, RCC-MR approach 

has been followed in the present study. Brief details about 

RCC-MR are given below (Marie et al. 2007)). SIF for the 

case of piping component with part through external crack 

is given by (Fig. 2) 

KI = {σ0i0 + σ1i1(a/t) +  σgbFgb}√(πa)   for deepest 

point 

KI = {σ0i0 +  σ1i1(a/t) +  σgbFgb}√(πc)   for surface 

point 

Where,  

In the present study, there is no internal pressure and 

thermal expansion is neglected. Only σgb is considered. 

σ0= [N1/{π(Rout
2– Rin

2)] + [P{ Rin
2/ (Rout

2-Rin
2)}] + 

{(2Eαθ1 Rout/2(1-µ)3t)*(1-[2 Rin
2/ Rout  (Rout+ Rin)])} 

σ1= - Eαθ1/2(1-µ) 

σgb= M2 Rout/ [(π/4)( Rout
4– Rin

4)] 

 SIF at deepest point: 

SIF_Max ={(F_gb_deep*σ_gb_max)*(√(π*a))} (1) 

SIF_Min ={(F_gb_deep*σ_gb_min)*(√(π*a))} (2) 

σ_gb_max = (M_max * re) /{(π/4)*(re
4- ri

4)} (3) 

σ_gb_min = (M_min * re) /{(π/4)*(re
4- ri

4)} (4) 

 

Table 1 Specimen details 

Pipe Material 

Yield stress (MPa) 

Ultimate tensile stress (MPa) 

Elongation % 

Young’s modulus (GPa) 

Fracture toughness (MPa√m) 

SA 333 Gr.6 

302 

450 

36.7 

203 

55 

Diameter of pipe (mm) 

Thickness of pipe (mm) 

Length of pipe (mm) 

Initial crack depth, a, mm 

Initial notch length, 2c, mm 

Crack growth constants, C 

m 

219 

15.13 

3003 

5.5 

113.2 

8.346 x 10-11 

2.3 

32
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where,  

F_gb_deep = Geometric factor at the deepest point of 

crack depth 

σ_gb_max = Maximum global bending stress, 

σ_gb_min = Minimum global bending stress 

a = Crack depth,   

h = t = Thickness of pipe 

In the present studies, SIF at deepest point is reported as 

it governs the design. SIF at deepest point has been 

evaluated from the Eq. 1 & 2 and the results are presented 

in Table 2. 

P_Max =160 kN,  

P_Min =16 kN, since the load ratio is 0.1 

From the Eq. 3 & 4 the maximum and the minimum 

global bending stresses are computed corresponding to 

maximum and minimum load. 

σ_gb_max = 140.1667 MPa, 

σ_gb_min = 14.1667 MPa 

From Eqns. 5 & 6, the number of cycles and the change 

in crack length at the surface direction for the 

corresponding change in crack depth is computed. 

Paris Law 

𝐝𝐚

𝐝𝐍
= 𝐂 (∆𝐊)𝐦 (5) 

𝐝𝐜

𝐝𝐍
= 𝐂 (∆𝐊)𝐦 (6) 

Typical flow chart for computation of SIF at deepest and 
surface point is presented in Fig. 3.   
 

 

3. Relevance vector machine 
 

Relevance vector machine was initially proposed by 
Tipping (2001), is a special case of a sparse kernel model, 
adopts bayesian treatment of a generalized linear model of  

 
 

identical functional form as in the case of support vector 

machine (SVM). RVM produces simple models that have 

both a structure and a parameterization process together 

with respect to the data type. RVM is a probabilistic based 

approach, introduces a prior over the model weights 

governed by a set of hyperparameters associated with each 

weight, whose most probable values are iteratively 

determined from the data. RVM is based on a hierarchical 

prior, where an independent Gaussian prior is defined based 

on the weighted parameters in the first level, and an 

independent Gamma hyper prior is used for the variance 

parameters in die second level. The efficacy of the model 

will depend upon the calibration of related parameters and 

RVM uses the parameters (C, Ɛ, and r) and a kernel 

parameter (σ), respectively. In the present study, cross 

validation approach has been employed to determine the 

parameters of SVM (C and Ɛ) for various kernel parameter 

trials (σ). This section discusses a brief description about 

RVM. Full details about model are available in Tipping 

(2000, 2001). As already mentioned that RVM is an 

extension of SVM which employs Bayesian model and 

kernel function (Tipping 2001).  

RVM starts with the base of linear models, i.e. the 

function of y(x) to be predicted at some arbitrary point x 

given a set of (typically noisy) measurements of the 

function t= (t1, y, tN) and with some training points x = 

(x1,y, xN) 

( ) iii εxyt +=
 

(7) 

Where, i is the noise component of the measurement 

with mean zero Gaussian and variance σ2. With a linear 

model assumption, the unknown function y(x) can be 

written as a linear combination of some known basis 

function i.e 

   
GEOMETRY OF THE TUBE: 

ri – internal radius 

re – external  radius 

rm – average  radius 

h – thickness 

Ltube – length of tube 

a: depth of defect 

2c : length of the defect ( 2c = 2βre) 

2β: angle of the defect (in radians)symmetrical position in 

relation to the bending plane 

Loads: 

P – Internal  pressure 

M1 – Torsional moment along the axis 1 

ɸ1 – Rotation of section around axis 1 

M2 – Global bending  moment along the axis 1 

ɸ1 – Rotation of section around axis 2 

N1 – Axial load (without pressure effect on the end closure) 

u1 – axial elongation 

θ1 – linear temperature gradient 

θ2 – quadratic temperature gradient 

Fig. 2 Schematic diagram of piping component with part-through crack configuration 
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Fig. 3 Typical flow chart for determination of SIF 

 Compute ∆K (∆K = K_MAX – K_MIN) 

Calculate dN and dc using Paris equation (eq. 5 & 6)  

Update  new crack length and  crack depth for the next iteration 

anew= a + da ; 2cnew = 2c+dc 

 

Evaluate geometric factor by RCC-MR approach corresponding to  ‘a/t’ , ‘a/c’ , ‘t/ri’ 

Using global bending stress and geometric factor, compute the SIF at deepest point (Eq.1 &2) 

Check, If  

K_max > fracture toughness 

NO YES 

Compute global bending stresses using   Eq. 3 & 4 for the given input (P_max & P_min, a, t, 2c) 

NO 

YES 

START 

 Check, If  

a/t >0.8 

PRINT RESULTS 

STOP 

34
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Table 2 No. of fatigue cycles vs Stress intensity factor 

No. of fatigue 

Cycles, N (Experimental) 

Crack depth, a 

mm 

(Experimental) 

Geometric Factor ( Fgb) SIF at deepest 

point,(MPa √m ) at deepest point at surface point 

2000 5.83 1.454 0.388 27.599 

4000 6.03 1.467 0.400 28.319 

8000 6.09 1.472 0.403 28.424 

10000 6.13 1.476 0.405 28.743 

12000 6.21 1.497 0.416 29.625 

14000 6.33 1.498 0.416 29.892 

15000 6.47 1.512 0.424 30.240 

16000 6.53 1.518 0.428 30.503 

18000 6.58 1.523 0.432 30.713 

19000 6.65 1.530 0.436 31.027 

20000 6.73 1.538 0.441 31.376 

21000 6.91 1.556 0.454 32.158 

22000 7.03 1.567 0.463 32.677 

23500 7.42 1.604 0.482 34.348 

25000 7.63 1.622 0.489 35.235 

26000 7.81 1.638 0.496 35.988 

27200 7.93 1.648 0.501 36.485 

29040 8.53 1.695 0.526 38.920 

30000 8.59 1.699 0.529 39.158 

31000 8.67 1.705 0.533 39.474 

32220 8.73 1.709 0.536 39.711 

33000 8.86 1.720 0.547 39.918 

33500 9.19 1.743 0.557 41.559 

34000 9.43 1.765 0.568 42.608 

34200 9.48 1.769 0.571 42.824 

34520 9.53 1.773 0.573 43.039 

35000 9.58 1.777 0.576 43.251 

35500 9.60 1.781 0.578 43.464 

36000 9.63 1.783 0.578 43.483 

36000 9.64 1.786 0.579 43.506 

36560 9.73 1.789 0.583 43.884 

37000 9.81 1.793 0.588 44.094 

37530 9.93 1.805 0.594 44.712 

38010 10.01 1.810 0.599 45.038 

38500 10.14 1.820 0.606 45.561 

38800 10.23 1.826 0.611 45.918 

39000 10.43 1.839 0.624 46.698 

39250 10.68 1.844 0.640 47.645 

39500 10.73 1.853 0.650 48.198 

39730 10.79 1.863 0.651 48.293 

39910 10.83 1.872 0.651 48.378 

40000 10.88 1.875 0.651 48.505 

41000 10.95 1.878 0.659 48.633 

42000 11.2 1.882 0.677 49.514 

42500 11.35 1.888 0.689 50.027 

43000 11.5 1.895 0.700 50.530 

43500 11.72 1.904 0.718 51.246 

44000 11.8 1.907 0.725 51.500 

44500 11.92 1.911 0.735 51.875 

45000 12.1 1.917 0.750 52.425 
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(x)φwy(x) i

M

1i

i
=

=

 

(8) 

where, wi = (w1,…,wM) = a vector consisting of the 

linear combination weights 

y(x) = the output, a linearly-weighted sum of M, 

generally nonlinear and fixed basis functions  

( ) ( ) ( )( )TM21i xφ...,,.........xφ,xφ(x)φ = . 

For better predictions, the majority of parameters are 

default set to zero for the development of model (Tipping 

2000, 2001). 

εΦwt +=  (9) 

where, Φ= NxM design matrix, whose ith column is formed 

with the values of basis function Φi(x) at all the training 

points 

i = (1,…, N), the noise vector. 

RVM starts with a set of data input {x𝑛}𝑛
𝑁 = 1 and their 

corresponding target vector {t𝑛}𝑛
𝑁 = 1.  

The basic aim of the ‘training’ set is to learn a model of 

the dependency of the target vectors on the inputs to make 

accurate prediction of t for previously unseen value of x.   

In SVM, the prediction is made by assuming the 

function of the form given below 

( ) ( ) 0i

N

1i

i wxx,Kwxy +=
=  

(10) 

where, wi= w1, w2,…, wN, weight vector 

K(x,xi) = a kernel function and w0 is the bias 

In the present study, radial basis kernel function is 

employed and the related expression is given below 

( )
( ) ( )











 −−
−=

2

i

T

i
i

2σ

xxxx
expx,xK

 

(11) 

where, xi and x = the training and test patterns, 

respectively. 

d = a dimension of the input vector, σ = width of the 

basis function. 

For a given input dataset, it is assumed as{x𝑛, t𝑛}𝑛
𝑁 = 1 

. Further, it is assumed that p (t|x) is Gaussian N (t|y(x), σ2). 

The mean of this distribution for a given x is modelled by 

y(x) as mentioned in Eq. (10). 

Due to the assumption of tn independence, the likelihood 

of the total dataset can be written as 

( )








−−=
− 2

2

2/22

2

1
exp2),( wtwtp

N




 

(12) 

Where,
( )TN1i t...,tt =

, 
( )N0i ω,...,ωω =

 and  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

















=

nn2n1n

n22212

n12111

T

x,xKx,xKx,xK1

x,xKx,xKx,xK1

x,xKx,xKx,xK1

Φ









 
Where, K(xi,xn) is the kernel function 

Simple parameters are generally preferred to constrain 

an explicit zero-mean Gaussian prior probability 

distribution over weights 

( ) ( )
=

−=
N

0i

1
ii ,0wNwp

 

(13a) 

where α is a vector of N+1 hyperparameters, takes care 

the deviation of weight (Caesarendra 2010). By applying 

Bayes’ rule, the posterior all unknowns can be computed, 

given the defined non-informative prior-distributions. To 

complete the specification of the hierarchical prior-

distribution, hyperpriors over α are to be defined with noise 

variance σ2. These quantities are examples of scale 

parameters and suitable priors are Gamma Distributions 

(Tipping 2000) 

( ) ( ),b,aGammap
N

0i

i
=

=

 

(13b) 

( ) ( )
=

=
N

0i

d,cGammap

 

(13c) 

Where, β = σ-2 .  

Hence, for α and σ, the distribution is "gamma" and for 

w, it is normal distribution and after the prior-distributions, 

Bayes rule is followed.  

( ) ( )
)t(p

,,wp,,wtp
t,,wp

22
2 

=




 

 

(14a) 

For a new test point (X*) corresponding to target (t*), the 

predictive distribution is as follows 

( ) ( ) ( ) 222

** dσ dα dwtσα,w,p σα,w,tpttp =  
(14b) 

Since the above equation cannot be solved directly, it 

can be solved by decomposition of posterior (equation 15) 

by assigning appropriate weights due to the property of 

normalising integral, which is convolution of Gaussians 

( ) 




 =





  t,p,,twpt,,wp 222

 
(15) 

Equation (15) can be modified as 

( ) ( ) ( )

),t(p

,wp,wtp
,,twp

2

2
2




=

 

(16) 

By employing the Bayes rule, the equation (16) can be 

modified as 

( )

( ) ( )








−−−

=

−−

+−





ww

twp

T

N

12/1

2/)1(2

2

1
exp

)2(,,

 

(17) 

The posterior covariance,  

( ) 1T2 A
−− +=

 
(18) 
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Mean, 
tT2 = −

 
(19) 

A = diag(α0, α1… αN).  

Maximization of p(𝛼, 𝛼ϵ𝑛
2 |𝑦)𝛼p(y|𝛼, 𝛼ϵ𝑛

2 )p(𝛼)p(αϵ𝑛
2 ) 

with respect to a α and σ2, results in a search for the hyper-

parameters posterior. 

For the general case of uniform hyperpriors, 

maximization is need to be done for the term p(y|𝛼, 𝛼ϵ𝑛
2 ), 

which can be computed as follows 

( ) ( ) ( )dwαwpαw,ypαα,yp 22

nn   =
 

( )














 +−

+=

−
−



−


−

yAIy
2

1
exp

AI2

1
T12T

2/1
T122/1

n

n

 

(20) 

At convergence of the hyperparameter determination 

process, predictions can be based on the posterior 

distribution on the weights, conditioned on the maximized 

most probable values of α and σϵ𝑛
2 , 𝛼MP and 𝜎2

MP 

respectively. 

( )

( ) ( )
*

2

* MP MP

2 2

MP MP MP

p y y,α ,σ

p y w,σ  p w y,α , σ  dw

=


 (21) 

From the equation (21), it can be noted that the both the 

terms in the integrand are Gaussian, It can be re-written as 

( ) ( )2

*

2

MPMP σ,tyNσ,αy,yp
***

=
 

(22) 

( )*

T

* xΦμt =
 

(23) 

With 
( ) ( )*

T

*

2

MP

2

* xΦxΦσσ +=
 (24) 

The predictive variance is the sum of two variance 

components, namely, the estimated noice on the data and 

uncertainity in the prediction of the weights. 

 
3.1 RVM based analysis 
 

For prediction of the stress intensity factor for the piping 

component having part-through crack in the circumferential 

direction under cyclic loading, RVM model has been 

developed. From Table 2, it can be noted that SIF is a 

function of applied load, geometric parameter and crack 

configuration. Normalization of the data has been carried 

out before presenting the input to statistical machine 

learning algorithm. MALAB software has been used for 

development of RVM model. Thus, equation 25 has been 

used for the linear normalization of the data to the data 

values between 0 and 1. 

minmax

min

ii

i

a

in

i
xx

xx
x

−

−
=

 

(25) 

where, 𝑥𝑖
𝑎  and 𝑥𝑖

𝑛  are ith components of the input 

vector before and after normalization, respectively, 

𝑥𝑖
𝑚𝑎𝑥and 𝑥𝑖

𝑚𝑖𝑛 are the maximum and minimum values of 

all the components of the input vector before the 

normalization.  

 

3.1.1 Development of RVM model  
SIF data of about 50 are tabulated for development of 

model. About 70 % of data set has been used for the 
development of RVM model and remaining 30% of the data 
set has been used for testing and verification of the 
developed model. Testing and verification of the model is 
done by comparing the predicted values obtained by using 
RVM model with the computed values. The important 
aspect of development of RVM model is that the selection 
of kernel width which was obtained by using post 
modelling analysis (Wahyu et al.2010). Post-modelling 
analysis of the training and testing R values is associated 
with the number of relevance vectors (NRV) involved in the 
model and their corresponding weights & variation in the 
kernel width (σ). The value of σ is initially assumed as 0.13 
and for the assumed value of σ, the model has been 
developed. Fig. 4 shows the typical process of development 
of RVM model. The developed model provides the NRVs 
used and their corresponding weights (wi). The quality of 
the developed model is evaluated based on the coefficient 
of correlation (R). 
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where, Eai and Epi are the actual and predicted values, 
respectively.  

𝐸̅𝑎 and 𝐸̅𝑝 are mean of actual and predicted E values 
corresponding to n patterns.  In each iteration, R value is 
computed and the model is finalized when the R value is 
closer to one. 

It is observed that the testing R value achieved its 
maximum at kernel widths shown in   Table 3 for the 
corresponding models, involving minimum number of 
relevance vectors. The training and testing R values 
obtained for models are presented in Table 3. 

Table 4 shows the weights for RVM model for the 

prediction of SIF. By using equations 20,21 and Table 4 

with wo as zero, the following equation has been obtained 

from the developed RVM model.  

Variance for training and testing data set for the 

developed model is plotted and shown in Figs. 5 and 6. 

 

 

Table 3 Performance of developed RVM model 

Parameters 
Coefficient of correlation (R) width 

(σ) 

No. of RVs used 

out of total 35 

dataset Training Testing 

RVM model 

for SIF 
0.994 0.992 0.13 24 
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Table 4 Values of weights (wi) for prediction of SIF 

i =1,2…35 wi i =1,2…35 wi 

1 0.1 19 0.01 

2 0.022 20 0.041 

3 0.02 21 0.01 

4 0 22 0.05 

5 0.12 23 0.062 

6 0.03 24 0.045 

7 0.14 25 0.085 

8 0.12 26 0.01 

9 0.04 27 0.03 

10 0.120 28 0.072 

11 0.11 29 0.053 

12 0.05 30 0.01 

13 0.043 31 0.024 

14 0.092 32 0.04 

15 0.11 33 0.08 

16 0.11 34 0.021 

17 0.102 35 0.02 

18 0.1   

 

 
The normalised output vector obtained from the RVM 

model is converted back to original value by using the 

equation below. 

( ) minminmax

iii

n

i

a

i xxxxx +−=
 

(28) 

where, 𝑥𝑖
𝑛 is the normalized result obtained after the test 

for the ith component.  

 

 

 

Fig. 5 Variance of training data set for stress intensity 

factor 

 

 
Fig. 6 Variance of testing data set for stress intensity 

factor 

 

 
Fig. 4 Schematic diagram- development of RVM model 
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Table 5 Predicted and analytical SIF values 

Crack depth, a 

mm 

(Experimental) 

SIF at deepest point, (Mpa √m ) 

Analytical Predicted 

6.13 28.743 27.45 

6.33 29.892 27.9 

6.47 30.240 28.34 

6.58 30.713 30.87 

6.91 32.158 31.93 

7.42 34.348 32.86 

7.93 36.485 34.87 

8.67 39.474 40.21 

9.19 41.559 42.78 

9.58 43.251 41.98 

10.01 45.038 42.87 

10.68 47.645 48.21 

10.95 48.633 48.11 

11.92 51.875 50.12 

12.1 52.425 49.52 

 

 

𝑥𝑖
𝑎 is the actual result obtained for ith componenet, and 

𝑥𝑖
𝑚𝑎𝑥and 𝑥𝑖

𝑚𝑖𝑛 are the maximum and minimum values of 

all the components of the corresponding input vector before 

the normalization.  

The developed RVM model has been verified with the 

remaining 15 data sets and the results are presented in Table 

5. 

From Table 5, it can be observed that the predicted SIF 

is in very good agreement with the corresponding analytical 

values. The maximum % of difference between predicted 

and Analytical is ±5%. Fig. 6 shows predicted and 

analytical SIF w.r.t crack depth and the comparison plot of 

predicted and the corresponding analytical SIF is shown in 

Fig. 7. From Table 5 and Figs. 6 and 7, it can be concluded 

that the developed model is robust and reliable. 
 

 

4. Summary and Conclusions 
 

An advanced statistical model based on relevance vector 

machine has been developed to predict stress intensity 

factor for the piping component having part through crack 

in the circumferential direction. To develop model, the 

experimental data such as number of cycles, crack depth, 

crack length, and the applied load has been taken. Stress 

intensity factor has been analytically computed by using 

RCC-MR approach. MATLAB software has been used for 

training and development of RVM based model. About 70% 

of the data (35 dataset) has been used for development of 

model and the remaining 30% of the data (15 dataset) is 

used validation. It was observed that the developed RVM 

model can produce a sparse solution, indicating that a with 

that of analytically obtained values and the proposed 

equation can be used to compute SIF of a pipe with part 

significant number of the weights are minimum, which 

produces compact, computationally capable models that are 

also simple. The predicted SIF is found to be very close 

 
(a) Predicted 

 

 
(b) Analytical 

Fig. 7 Crack depth vs. SIF 

 

 

Fig. 8 Predicted vs. analytical SIF 
 

 

through crack in the circumferential direction. The R value 

for the developed model is found to be closer to 1 indicating 

better predictability of the model. The predicted SIF is 

useful for crack growth studies, remaining life prediction 

and residual strength evaluation of piping component which 

in turn useful for in-service inspection scheduling and 

repair.  
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