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1. Introduction 
 

Although mechanics of isotropic and functionally 

graded structures have been studied for several times (Amar 

et al., 2017, Attia et al., 2018, Barati, 2017, Bellifa et al., 

2017, Bouderba et al., 2016, Dash et al., 2018, Ebrahimi 

and Barati, 2018, Guessas et al., 2018, Kaghazian et al., 

2017, Khetir et al., 2017, She et al., 2018, Sobhy, 2017, 

Yousfi et al., 2018, Zemri et al., 2015, She et al., 2019b, 

She et al., 2019a, Karami and Shahsavari, 2019, Karami et 

al., 2019d, Karami and Karami, 2019, Karami et al., 2019c, 

Lurie and Solyaev, 2018, Rajasekaran and Khaniki, 2017, 

Ghayesh et al., 2017, Lu et al., 2017, Ghayesh et al., 2019, 

Ghayesh, 2019, Shahsavari et al., 2018, Karami et al., 

2019e), but a few researches have been conducted on static 

and dynamic characteristics of anisotropic ones because of 

the complexity in the modeling of such structures (Ferreira 

and Batra, 2005, Ferreira et al., 2009, Chaudhuri, 2012, 

Soldatos, 2004, Batra et al., 2004, Kumar and Tomar, 2006, 

Singhal and Bindal, 2012, Karami et al., 2018b, Karami et 

al., 2018c, Karami et al., 2018a, Karami et al., 2019a, 

Karami et al., 2019b, Karami and Janghorban, 2019a). 

(Ferreira and Batra, 2005) studied the collocation method 

with multiquadrics basis functions and a first-order shear 

deformation theory are used to find natural flexural 

frequencies of a square plate made of orthotropic, 

monoclinic and hexagonal materials subjected to different 

boundary conditions. They found that computational effort  
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required with this approach is considerably less than that 

needed with the analysis of the three-dimensional elasticity 

equations by the finite element method. (Ferreira et al., 

2009) used the first-order shear deformation theory and a 

meshless method based on radial basis functions in a 

pseudo-spectral framework for predicting the free vibration 

behavior of thick orthotropic, monoclinic and hexagonal 

plates. (Chaudhuri, 2012) derived three-dimensional 

asymptotic stress field in the vicinity of the front of a semi-

i n f i n i t e  t h r o u g h - t h i c k n e s s  c r a c k / a n t i - c r a c k 

weakening/reinforcing an infinite monoclinic plate, of finite 

thickness and subjected to far-field anti-plane shear loading. 

(Soldatos, 2004) developed complex potential formalisms 

for the solution of the bending problem of inhomogeneous 

anisotropic plates, on the basis of the most commonly used 

refined plate theories. (Batra et al., 2004) presented the 

natural frequencies of thick square plates made of 

orthotropic, trigonal, monoclinic, hexagonal and triclinic 

materials using finite element method. (Kumar and Tomar, 

2006) proposed the free transverse vibration of monoclinic 

rectangular plates with continuously varying thickness and 

density. In 2012, on the basis of classical plate theory, 

vibration characteristics of monoclinic rectangular plate of 

exponentially varying thickness resting on elastic 

foundation were studied by (Singhal and Bindal, 2012). 

(Karami et al., 2018b) studied the ramen frequency and 

radial wave propagation of anisotropic nanoparticles via a 

three-dimensional model. In another work, the authors 

investigated the wave characteristics of monoclinic, 

triclinic, trigonal and hexagonal plates under the triaxial 

magnetic field effects (Karami et al., 2017). Further, wave 

propagation of doubly-curved shells made of different 

anisotropic materials is investigated by the same authors 

(Karami et al., 2018c). (Karami et al., 2018a) investigated 

the buckling response of functionally graded nanoplates  
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made of anisotropic materials where the problem were 

solved via the Galerkin method.   

As noted above, there are limited studies that examine 

the behavior of anisotropic materials, because the modeling 

of these materials is more difficult than isotropic ones (due 

to the more components of the stiffness matrix compared to 

isotropic materials). Hence, in this paper, after the modeling 

of the plate made of anisotropic materials, we will examine 

the possibility of replacing anisotropic models with a simple 

model in which the elastic components are less than 

anisotropic one. The fundamental question of this study is 

the possibility of damage to the anisotropic model at the 

time of its replacement with less elastic components.  

For the first time, using three dimensional elasticity 

theory, the static analysis of simply supported and fully 

clamped rectangular plates made of monoclinic materials is 

studied via the Differential Quadrature Method (DQM). Our 

results are verified with the results available in the literature 

and good agreement is achieved. The effects of different 

parameters such as geometry and boundary conditions on 

the displacements and stresses are also presented. 

According to the low effort on studying monoclinic 

materials, the present work can be used as bench mark for 

future works. 

  

 

2. Monoclinic Materials 
 

The most general stress-strain relationship (generalized 

Hooke's law) within the theory of linear elasticity is that of 

the materials without any plane of symmetry, i.e., 

anisotropic materials (see Fig. 1). If there is a plane of 

symmetry, the material is termed monoclinic. Itis important 

to keep in mind that a material which is anisotropic on one 

length scale may be isotropic on another (usually larger) 

length scale. In present work, although the formulation is 

derived for monoclinic materials but the investigation is 

take place on especially orthotropic plates, too (see in Table 

1). 

  

Table 1 Elastic constants for different kind of materials 

(Triclinic, Monoclinic, Orthotropic, Transversely isotropic, 

Isotropic) 

 
Independent 

Constants 

Nonzero 

On-axis 

Nonzero 

Off-axis 

Nonzero 

General 

Triclinic 21 36 36 36 

Monoclinic 13 20 36 36 

Orthotropic 9 12 20 36 

Transversely-

isotropic 
5 12 20 36 

Isotropic 2 12 12 12 

 

 

3. Governing equations 
 

According to the properties of monoclinic materials, the 

normal stresses are depending on both normal and shear 

strains. Shear stresses are also depending on both normal 

and shear strains. In the following equation, the general 

stress-strain relation with linear behavior is presented. The 

stress-strain relations for monoclinic materials can be 

written as follow 

[
 
 
 
 
 
σx

σy

σz

τxy

τxz

τyz]
 
 
 
 
 

=

[
 
 
 
 
 
C11C12C130C150
C12C22C230C250
C13C23C330C350

000C440C46

C15C25C350C550
000C460C66 ]

 
 
 
 
 

[
 
 
 
 
 
εxx 

εyy 

εzz 

γxy 

γxz 

γyz ]
 
 
 
 
 

 (1) 

where C11=10.89GPa, C22=11.47GPa, C33=11.32GPa, 

C12=4.57GPa, C13=6.45GPa, C15=0.78GPa, C23=1.51GPa, 

C25=0.23GPa, C35=0.04GPa, C44=3.67GPa, C46=-0.08GPa, 

C55=0.85GPa, C66=2.89GPa. 

The equilibrium equations for investigating the static 

analysis of monoclinic plates in Cartesian coordinates are 

defined as follow, 

∂σxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= 0 (2) 

 
Fig. 1 The most general stress-strain relationship. 
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∂σyy

∂y
+

∂τyz

∂z
+

∂τyx

∂x
= 0 

∂σzz

∂z
+

∂τxz

∂x
+

∂τyz

∂y
= 0 

The linear strain-displacements relations can be written 

as follow, 

εxx =
∂U

∂x
 

  εyy =
∂V

∂y
   

εzz =
∂W

∂z
 

γxy =
∂U

∂y
+

∂V

∂x
 

 γxz =
∂U

∂z
+

∂W

∂x
 

γyz =
∂W

∂y
+

∂V

∂z
 

(3)  

Now by substituting equation (3) in equation (1) and 

insert the result relations in equilibrium equation (2), the 

governing equations for monoclinic rectangular plates can 

be expressed as below, 

C11

∂2U

∂x2
+ C44

∂2U

∂y2
+ C55

∂2U

∂z2
+ C15

∂2W

∂x2

+ C46

∂2W

∂y2
+ C35

∂2W

∂z2

+
2C15 ∂2U

∂x ∂z
 

+(C12 + C44)
∂2V

∂x ∂y
+ (C46 + C25)

 ∂2V

∂y∂z
+ (C13

+ C55)
∂2W

∂x∂z
= 0 

(4)  

C44

∂2V

∂x2
+ C22

∂2V

∂y2
+ C66

∂2V

∂z2
+ (C12 + C44)

∂2U

∂x ∂y

+ (C46 + C25)
 ∂2U

∂y ∂z
 

+2C46

 ∂2V

∂x ∂z
+ (C25 + C46)

∂2W

∂x∂y
+ (C23

+ C66)
∂2W

∂y∂z
= 0 

(5)  

C15

∂2U

∂x2
+ C46

∂2U

∂y2
+ C35

∂2U

∂z2
+ C55

∂2W

∂x2

+ C66

∂2W

∂y2
+ C33

∂2W

∂z2
 

+(C13 + C55)
∂2U

∂x ∂z
+ (C46 + C25)

 ∂2V

∂x ∂y

+ (C23 + C66)
∂2V

∂y ∂z

+ 2C35

∂2W

∂x∂z
= 0 

(6)  

The boundary conditions for simply support and fully 

clamped rectangular plates are defined as, 

Fully clamped:     

 U = 0 , V = 0 ,W = 0at  x = 0 , x = a , y =
0 , y = b 

Simply support: 

σxx = 0 , V = W = 0    at  x = 0 , x = a 

  

σyy = 0 , U = W = 0    at  y = 0 , y = b 

(7)  

For both simply supported and Fully clamped 

boundary condition, one can have, 

τxz = 0 , τyz = 0 , σzz  = 0  at z = 0 

τxz = 0 , τyz = 0 , σzz  = q  at z = h 
(8)  

With substituting the appropriate elastic constant for 

monoclinic materials and using the above equations, the 

static analysis of monoclinic plates under mechanical 

loading can be studied. If it is not impossible to solve these 

equations analytically, it seems that it is difficult to obtain 

such a solution. Hence, here the differential quadrature 

method as an efficient and accurate numerical tool is 

employed to solve these systems of equations. 

  

 

4. Differential Quadrature method 
 

The basic idea of the differential quadrature method 

(Janghorban, 2011, Malekzadeh, 2007, Bacciocchi et al., 

2016, Tornabene et al., 2014, Karami and Janghorban, 

2019b) is that the derivative of a function, with respect to a 

space variable at a given sampling point, is approximated as 

the linear weighted sums of its values at all of the sampling 

points in the domain of that variable. In order to illustrate 

the DQ approximation, consider a function ),( f having 

its field on a rectangular domain a 0  and

 .0 b Let, in the given domain, the function values 

be known or desired on a grid of sampling points. 

According to DQ method, the rth derivative of a function

),( f can be approximated as 

( ) ( )

1 1( , ) ( , )

( , )
( , )

i j

N Nr
r r

im m j im mjr
m m

f
A f A f

 

 

   

 
 

 = ==


= =


    

for i=1,2,…,
N , j=1,2,…,

N and  r=1,2,…, 

1−N  

(9)  

From this equation one can deduce that the important 

components of DQ approximations are weighting 

coefficients and the choice of sampling points. In order to 

determine the weighting coefficients a set of test functions 

should be used in Eq. (9). For polynomial basis functions 

DQ, a set of Lagrange polynomials are employed as the test 

functions. The weighting coefficients for the first-order 

derivatives in  -direction are thus determined as specially 
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1

( )1
  for

( ) ( )

for

i

i j j

Nij

ij

j
i j

M
i j

L M

A

A i j








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=



 −


= 
− =




  

i, j=1,2…,
N   

(10)  

where
L is the length of domain along the − direction 

and  


=

−=



N

kik

kiiM
,1

)()(  (11)  

The weighting coefficients of second order derivative can 

be obtained as [16], 

2][]][[][ 
ijijijij AAAB ==  (12)  

In a similar manner, the weighting coefficients for η-

direction can be obtained. In numerical computations, 

Chebyshev-Gauss-Lobatto quadrature points are used, that 

is,  

1 ( 1)
{1 cos[ ]}

2 ( 1)

1 ( 1)
{1 cos[ ]}

2 ( 1)

for =1,2,?   and =1,2,?  

i

j

i

a N

j

b N

i N j N





 

 

 

−
= −

−

−
= −

−
      

(13)  

It can be mentioned that in some cases although using 
equal spacing between nodes may cause results with less 
accurate results, but it needs less nods than above spacing. 
It is a good idea that other researchers investigate other 
branches of differential quadrature method and compare the 
results to find out which of them is the most accurate 
numerical tool. 

Now by using the DQ method, the governing Eqs. (4-6) 
can be discretized as follow, 

C11 ∑ B(i,m)
x Umjk

Nx

m=1

+  C44 ∑ B(j,n)
y

Uink

Ny

n=1

+ C55 ∑ B(k,p)
z Uijp

Nz

p=1

 

+C15 ∑ B(i,m)
x Wmjk +

Nx

m=1

C46 ∑ B(j,n)
y

Wink   

Ny

n=1

+C35 ∑ B(k,p)
z Wijp

Nz

p=1

 

+2C15 ∑ ∑ A(i,m)
x A(k,p)

z Umjp

Nz

p=1

Nx

m=1

+ (C12 + C44) ∑ ∑ A(i,m)
x A(j,n)

y
Vmnk

Ny

n=1

Nx

m=1

 

(14)  

+(C46 + C25) ∑ ∑ A(j,n)
y

A(k,p)
z Vinp

Nz

p=1

Ny

n=1

+ (C13 + C55) ∑ ∑ A(i,m)
x A(k,p)

z Wmjp

Nz

p=1

Nx

m=1

= 0 

C44 ∑ B(i,m)
x Vmjk

Nx

m=1

+ C22 ∑ B(j,n)
y

Vink

Ny

n=1

+ C66 ∑ B(k,p)
z Vijp

Nz

p=1

 

(C12 + C44) ∑ ∑ A(i,m)
x A(j,n)

y
Umnk

Ny

n=1

Nx

m=1

+ (C25 + C46) ∑ ∑ A(j,n)
y

A(k,p)
z Uinp

Nz

p=1

Ny

n=1

 

+2C46 ∑ ∑ A(i,m)
x A(k,p)

z Vmjp +

Nz

p=1

Nx

m=1

(C46

+ C25) ∑ ∑ A(i,m)
x A(j,n)

y
Wmnk

Ny

n=1

Nx

m=1

 

+(C23 + C66) ∑ ∑ A(j,n)
y

A(k,p)
z Winp

Nz

p=1

Ny

n=1

= 0 

(15) 

C15 ∑ B(i,m)
x Umjk

Nx

m=1

+ C46 ∑ B(j,n)
y

Ny

n=1

Uink

+ C35 ∑ B(k,p)
z Uijp

Nz

p=1

+ C55 ∑ B(i,m)
x Wmjk

Nx

m=1

 

+C66 ∑ B(j,n)
y

Wink

Ny

n=1

+ C33 ∑ B(k,p)
z Wijp

Nz

p=1

+ (C13 + C55) ∑ ∑ A(i,m)
x A(k,p)

z Umjp

Nz

p=1

Nx

m=1

 

+(C25 + C46) ∑ ∑ A(i,m)
x A(j,n)

y
Vmnk

Ny

n=1

Nx

m=1

+ (C23 + C66) ∑ ∑ A(j,n)
y

A(k,p)
z Vinp 

Nz

p=1

Ny

n=1

 

+2C35 ∑ ∑ A(i,m)
x A(k,p)

z Wmjp

Nz

p=1

Nx

m=1

= 0 

(16) 
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Table 2 comparison of deflection W , normal stresses( σx, 

σy ) and shear stresses τxy in rectangular isotropic plate 

subjected to uniformly distributed load (a/b=1, h/a=0.1, 

W =
100∗E∗W(max)

q∗h∗S4  ,(σx, σy, τxy) = (
σx,σy,τxy(max)

q∗S2 ) 

Method W 𝜎𝑥 𝜎𝑦 𝜏𝑥𝑦 

(Ghugal and Sayyad, 2010) 11.34 0.638 0.245 0.277 

(Krishna Murty, 1986) 11.31 0.613 0.31 0.278 

(Reddy, 1984) 11.42 0.612 0.278 0.28 

(Mindlin, 1951) 11.42 0.61 0.277 0.276 

(Kirchoff, 1850) 11.06 0.61 0.278 0.277 

Present 11.378 0.612 0.282 0.278 

 

 

The boundary conditions can be discretized in a similar 

way by using DQ method. 

 

 
5. Numerical results 
 

In this work, static analysis is reported to study the 

mechanical characteristics of monoclinic plates by several 

numerical examples for the first time. After the validation 

of the developed differential quadrature method, it is used 

to present static behavior of the monoclinic plates. 

To examine the accuracy and convergence of the 

developed differential quadrature method, our results are 

compared with the results of different mathematical 

formulations in Table 2. One can easily find that our 

numerical results are in a good agreement with other results 

especially with the results of exact solution. 

Fig. 2 depicts the effects of length to thickness ratio on 

the normal stresses for fully clamped rectangular plate 

subjected to uniform load. It can be seen that for the normal 

stress in the z- direction, the results for thin plates are 

almost the same for monoclinic and especially orthotropic 

but for thick plates, the differences between the results 

cannot be ignored. 

The influences of length to thickness ratio on the 

displacements for fully clamped rectangular plate subjected 

to uniform load are demonstrated in Fig. 3. From this 

figure, one can find that for square plates (b/a=1), the 

displacements for monoclinic and especially orthotropic 

plates are almost the same but for rectangular plates b/a≠1, 

the differences are considerable. From this figure it is 

obtained that the aspect ratio plays an important role in 

studying bending of monoclinic plates especially for thick 

and moderately thick plates. 

In Fig. 4, the effects of aspect ratio on the normal 

stresses for fully clamped rectangular plate under uniform 

load is proposed. It is shown that with the increase of aspect 

ratio, the normal stresses in the x and z directions are 

increase but the stresses in the y direction are almost 

decrease. By studying the differences between our results 

for monoclinic plates and the results for especially 

orthotropic plates, one can easily find that it is worth to 

investigate the monoclinic plates to have more accurate 

results. 

 

 

 
Fig. 2 Normal stresses for fully clamped rectangular 

plate subjected to uniform load (b/a=2) 
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Fig. 3 Displacements for fully clamped rectangular plate 

subjected to uniform load (h/a=0.1). 

 

 

 

 
Fig. 4 Normal stresses for fully clamped rectangular 

plate subjected to uniform load (h/a=0.1). 

 

 
Fig. 5 Displacements for fully clamped rectangular plate 

subjected to sinusoidal loading (h/a=0.1). 
 

 

The displacements for fully clamped rectangular plate 
subjected to sinusoidal loading are illustrated in Fig. 5. By 
comparing this figure with Fig. 3, it is found that the 
general trend of displacements is the same although the 
displacements in the x-direction for plate under sinusoidal 
loading seem to be more than those for plate under uniform 
load. 

Fig. 6 shows the influences of aspect ratio on the 
displacements of simply supported rectangular plate 
subjected to uniform load. With considering this figure and 
figure 3 for fully clamped boundary condition, it may be 
concluded that the differences between the results of 
monoclinic and especially orthotropic plates are more 
significant for simply supported boundary condition. From 
this figure, it is also seen that in the most cases, increasing 
the aspect ratio will cause increasing the displacements in 
all directions. 

The effects of aspect ratios on the shear stresses of 
simply supported rectangular plate subjected to uniform 
load are investigated in Fig.7. In almost all the cases, with 
the increase of aspect ratio, the shear stresses decrease 
except for the 𝜏𝑥𝑧. It is also shown that for the all aspect 
ratios presented in these three figures, the shear stresses for 
monoclinic rectangular plate are more than those for 
monoclinic square plate.  

In Fig. 8, the influences of length to thickness ratio on 
the shear stresses of simply supported rectangular plate 
subjected to sinusoidal loading are studied. From this 
figure, it is found that the results are almost the same for 
specially orthotropic and monoclinic plates except for 𝜏𝑥𝑦. 
One can also find an unexpected behavior for shear stress in 
the xy plane for monoclinic plate which can be explained 
more in future works 
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Fig. 6 Displacements for simply supported rectangular 

plate subjected to uniform load (h/a=0.1). 

 

 

 

 
Fig. 7 Shear stresses for simply supported rectangular 

plate subjected to uniform load (h/a=0.1). 

 

 

 

 
Fig. 8 Shear stresses for simply supported rectangular 

plate subjected to sinusoidal loading (b/a=2) 
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6. Conclusions 
 

For the first time, a numerical study for static analysis of 

monoclinic plates was performed using three-dimensional 

elasticity theory without any approximation in the 

modeling. Differential quadrature method was utilized to 

solve the problem for different boundary conditions. It was 

also the first time that the monoclinic plate response for 

static problem were compared with their simple form 

(especially orthotropic plate). 

The influences of length-to-thickness ratio, width-to-

thickness ratio and boundary conditions on static 

characteristics of the monoclinic plate were studied. As a 

result, the following conclusions are notable. 

• Excellent accuracy and convergence were 

obtained by the developed differential quadrature method 

on the static response of rectangular plates. 

• For the same loading conditions, displacements 

obtained for simply supported monoclinic plate is higher 

than the fully clamped once. 

• By studying the differences between our results 

for monoclinic plates and the results for especially 

orthotropic plates, one could find that it is worth to 

investigate the monoclinic plates to have more accurate 

results.  
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