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1. Introduction 
 

Beams are very important structural elements which 

have been widely used in many engineering fields such as 

civil, bridge and mechanical engineering. Apart from 

continuous beams with invariable cross sections, beams 

with steps, internal supports, concentrate masses and 

spring-mass systems are also very popular in engineering 

practices. The free vibration of complicated beam systems 

such as stepped beams (Jang and Bert 1989 a, b, 

Naguleswaran 2002, Lin and Ng 2004, Lu et al. 2009, Mao 

and Pietrzko 2010), multi-span beams (Lin and Tsai 

2007,Lin 2009, Farghaly and EI-Sayed 2016), beams with 

intermediate elastic supports (Maurizi and Bambill 1987, 

De Rosa et al. 1995, Lin 2008), beams with intermediate 

concentrated masses (Maiz et al. 2007, Lin 2008, 2009), 

and beams carrying multiple spring-mass systems (Lin and 

Tsai 2007, Lin 2009) has been studied by many researchers 

in the past few decades. It is worthy to note that steps, 

supports, concentrated masses and spring-mass systems 

may lead to interface problems. Although there are many  
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kinds of numerical methods like finite element method 

(FEM) (Jang and Bert 1989 a, b), Smoothed FEM (Chai et 

al. 2018), central finite difference (CFD) (Li et al. 2019), 

generalized differential quadrature rule (GDQR) (Liu and  

2001), differential quadrature element method (DQEM) 

(Wang and Wang 2013), discrete singular convolution 

(DSC) (Wei 1999, Duan and Wang 2013, Civalek 2013, 

2017, Li et al. 2015, Song et al. 2012, 2016, Wang and 

Yuan 2017), and Chebyshev-tau method (Lee 2015), it can 

be found that interface problems can be solved easily by 

FEM and DQEM etc., while, due to the existence of 

interfaces, the CFD and DSC methods may not be applied 

near interfaces. 

Recently, the method of matched interface and boundary 

(MIB) has been proposed by Zhao and Wei (2004) to solve 

material interface problems, and its interpolation 

formulation (Zhou and Wei 2006) has also been used to 

handle stepped interfaces in the method of DSC (Duan and 

Wang 2013, 2014). During the past few years, MIB method 

has been widely used to solve partial differential equations 

with complex interfaces (Zhou et al.2006, Yu et al. 2007, 

2009, Zhao and Wei 2009). Many investigations reveal that 

MIB method has the ability to deal with arbitrarily complex 

interfaces and geometric singularities (Yu and Wei 2007, 

Wang et al.2015). Meanwhile, it is noted that a parameter L 

is required to determine the total number of grid nodes to 

approximate derivatives in the iterative computation of MIB 

(Zhao and Wei 2004, 2009), and the parameter L affects the 

accuracy of MIB. Up to date, only some empirical values or 

a small range of parameter L are given through some 

numerical tests (Zhao and Wei 2009). And there is no 

effective way to determine the parameter L, which limits  
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Fig. 1 Sketch of a beam with different interfaces 
 

 

the application of MIB. 

In this study, a new strategy is proposed to select the 

parameter L in the iterative computation of MIB. The low-

order free vibration of beams with various interfaces is 

analyzed by using a modified MIB (MMIB). Free edges, 

elastic restraints and edges with tip masses and various 

interfaces caused by steps, supports, concentrated masses 

and spring-mass systems are dealt with. The accuracy and 

convergence of MMIB are examined through various 

numerical tests. Numerical results are compared with those 

available in the literature to illustrate the performance of 

MMIB. Some important conclusions are drawn at the end of 

this study. 
 

 

2. Theory and algorithm 
 

2.1 Governing equation 
 

To analyze a beam with different interfaces, as shown in 

Fig.1, the beam is divided into six segments from each 

interface, so that the beam is uniform without any interfaces 

in each segment. The governing equation in each segment is 

(Mao and Pietrzko 2010) 
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where subscript j denotes the jth segment, n is the number 

of segments, E and ρ are the elastic modulus and density. uj, 

Ij , Aj , lj denote the displacement, sectional moment of 

inertia, sectional area, and the length of the jth segment, 

respectively. And l is the total length of the beam, and ω is 

the circular frequency.  

For simplicity, the following non-dimensional quantities 

are introduced 

luU jj /= , lxX jj /= , 4 42 / jjj EIlAΩ =  

(j =1,2,3, ... n) 

(2) 

And then Eq. (1) can be rewritten as 
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where Ωj denotes non-dimensional frequency of the jth  

segment. 
 

2.2 Interface and boundary conditions 
 

Five different interfaces caused by steps, intermediate 

rigid and elastic supports, concentrated masses with rotary 

inertia, and spring-mass systems are shown in Fig. 2. All the 

interfaces considered here are located on nodes. And the 

non-dimensional equations of these interface conditions can 

be expressed as follows: 

• The stepped interface (Duan and Wang 2013) 
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• The interface caused by single rigid support  
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• The interface caused by single elastic support 

with translational and rotational springs (Lin 2008) 
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• The interface caused by single concentrated mass 

with rotary inertia (Lin 2008, Maiz 2007) 
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where 
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• The interfaces caused by single spring-mass 

system (Lin et al. 2007) 
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where superscripts ‘-’ and ‘+’ denote the left and right sides 

of the interface, respectively. Although the above interface 

conditions are separated. In fact, these conditions can be 

combined together (Lin 2008). 

The common edges of beams such as simply-supported 

(S) edge, clamped (C) edge, free (F) edge, free edge with a 

tip mass, and the edge elastically restrained against 

translation and rotation are considered. The boundary 

conditions of these edges are given in the previous work (Li 

et al. 2016) and other publications (Liu and Wu 2001, Maiz 

et al. 2007, Mao and Pietrzko 2010). It can be observed that 

these boundary conditions can be obtained by reducing 

some physical quantities in the interface conditions. Thus, 

boundary conditions can be considered as special cases of 

interface conditions. 

 

 

2.3 MMIB procedures 
 

The mth-order derivative of a function f(x) at point xi 

can be approximated by using high order central finite 

difference (HO-CFD) (Zhao and Wei 2009, Li et al. 2019) 
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where 2W+1 is the computational bandwidth, N is the total 

number of grid points of the entire beam, and the weighting 

coefficients )(m

ikC can be computed by GDQ algorithm (Li 

et al. 2019) and the fast algorithm (Fornberg 1998) 

conveniently. And Eq. (3) can be discretized as 
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where )4(

ikC (i=0,1,…,N) denote the HO-CFD coefficients of 

the four-order derivatives. For convenience, the factor ηj is 

introduced as 
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and ηj=1 is set with j denoting the jth segment. Thus, Eq. 

(13) can be rewritten as 
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To illustrate MMIB procedures, the stepped beam is 

taken as an example. As shown in Fig.3, the grid nodes can 

be divided into two parts from the step, and the step is 

located on a node. In the MIB procedure, fictitious points 

(FPs) and known values of grid points on both sides of the 

interface are employed (Zhao and Wei 2004). And the 

values of FPs can be carried out by using the interface 

conditions repeatedly. Detail information on this procedure 

is not presented here, readers may refer to the publications 
(Zhao and Wei 2004, Zhou et al 2006). In the traditional 
MIB procedure, values of parameter L are the same in each 
iterative step. In the present MMIB procedures, values of 
parameter L are different in each iterative step and denoted 
as L1, L2, ... Ln (n is the number of iterative steps) which can 
be determined by using a new strategy introduced in the 
following part. 

In the first step, four FPs can be carried out (f1, f2, ... 
denote FPs) in which two FPs are gained in each sub-

 
(a) Single step 

 
(b) Single rigid support 

 
(c) Single elastic support 

 
(d) Single concentrated mass 

 
(e) Single spring-mass system 

Fig. 2 Sketch of various interfaces 
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domain, as shown in Fig. 4, and 2L1 -1 known values of 
grid points (g1, g2, ...) are employed. The stepped interface 
conditions in Eq. (4) can be discretized by the MIB scheme 
(Zhao and Wei 2004) 
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where only Eqs. (4b) - (4e) are used here. −

ijC ,
and +

ijC ,
(i=1, 

2, ..., L1+2, and j=1-4) are the coefficients of one-sided 
finite difference (FD) on the left and right sub-domains, 
which can be computed by using the fast algorithm 
(Fornberg 1998), and j represents jth order derivative 
approximation. Four FPs can be obtained from Eq. (16) in 
the first step. Through the iterative procedure in Fig.4, 2W 
FPs can be solved by using the stepped interface conditions 
in Eq. (4) repeatedly. Hence, in principle, 2(W-1) order 
accuracy can be achieved for fourth order derivatives. It is 
noted that four PFs can be solved by using the iterative step 
once, therefore, the iterative procedure is adapted to an even 
W. When W is odd, only two FPs are required in the final 
step, and thus, only Eqs. (16a) and (16b) are used to 
compute the two unknown FPs. The solutions of other FPs 
are the same as those for an even W. For other interfaces, 
similar iterative procedures can be constructed. When Eqs. 
(6), (8) and (10) are considered, Eqs. (6b), (8b), (10b) and 
(6e), (8e), (10e) can also be discretized as Eqs. (16a) and 
(16d), respectively. Eqs. (6c) and (6d) can be discretized as 
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where, ))()((5.0)( )1()1()1(

 XUXUXU +−− +=  is consider-

ed to improve the computational accuracy. −

ijC ,
and +

ijC ,

are defined in Eq. (16). And similarly, Eqs. (8c) and (8d) 

can be discretized as 
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and Eq.(8c) can also be expressed as  
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where, only L1+2 known function values of gi are used to 

approximate −)1(U and +)1(U , while two FPs and L1 known 

function values of gi are involved in these approximations in 

Eq.(18a). 

Eqs. (10c) and (10d) can be discretized as 
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When the interface caused by rigid support is 

considered, it can be observed from Eq. (5) that Eqs. (5b) 

and (5c) can be discretized as Eqs. (16a) and (16b). It 

should be noted that only these two equations can be used 

to gain two FPs, in which only one FP can be obtained on 

the right and left sides of the interface, respectively. The 

iterative procedure is shown in Fig. 5. For treatments of 

different boundary conditions, procedures similar to the 

above can be taken (Li et al.2015). 

In addition, in the traditional MIB (Zhao and Wei 2009, 

Li et al. 2019), when W is very large, CFD scheme is 

applied when the number of FPs is larger than L. Therefore, 

in MMIB, CFD scheme is also used for very large W 

(W>10). From the above analysis, the traditional MIB 

can be considered as a special case of MMIB. 

In order to use MMIB procedures to solve eigenvalue 

problems, one may not obtain the function values of FPs, 
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Fig 3 Sketch of gird nodes 

 

 
Fig 4 Sketch of the iterative procedure 

 

 

Fig. 5 Sketch of the iterative procedure for the interface 

caused by single rigid support 
 
 

and just gain the relationship between fi (i=1, 2, ... , 2W) and 

Uj (j= 0,1, ... , N). When the stepped interface is analyzed, 

one can gain 2W algebraic equations by using the iterative 

procedure in Fig. 4, and these algebraic equations can be re-

written in the form of matrix 

0BUAF =+  (21) 

where vector F=[f1, f2, ..., f2W]T , and vector U=[U0,U1, ... , 

UN]T, and the elements of matrix A and B can be 

determined by the iterative procedure. Thus, one can have 

BUAF
1−−=  (22) 

Considering Eq. (15), the following equation can be 

obtained 

UMU
4

1Ω=  (23) 

Eq. (23) is a typical eigenvalue equation and can be  

solved directly. 

Similarly, when the interface caused by single elastic 

support is analyzed by using Eq. (17), and Eq. (23) can al-

so be obtained and solved directly. And when the interface 

is caused by single rigid support, one can obtain the eigen-

value equation like Eq. (23) and solve it directly. 

When the interface caused by single concentrated mass 

with rotary inertia is analyzed. Considering Eq. (18), one 

can obtain 

0CUBUFAA =+++ 4

2

4

1 )( ΩΩ  (24) 

Then, yields 

UCBAAF ))( 41

2

4

1 ΩΩ ++−= −（  (25) 

and the final eigenvalue equation can be given as 

UUHMU
44)( ΩΩ =+  (26) 

where )( 4ΩH is a function of 4Ω . Obviously, Eq. (26) 

cannot be solved directly, and the iterative solution is 

needed to computeΩ . And when another approximation in 

Eq. (19) is employed, one can obtain 

0CUBUAF =++ 4Ω  (27) 

and 

CUABUAF
141 −− −−= Ω  (28) 

The eigenvalue equation of this case can be expressed as 

UGUMU
44 ΩΩ =+  (29) 

and by transformation, Eq. (29) can be re-written as 

UUM
4ˆ Ω=  (30) 

where MGIM
1)(ˆ −−= , and this equation can also be 

solved directly, which is non-iterative solution. However, it 

is noted that this solution is a little different from that for 

the stepped interface. From the above analysis, it is found 

that both the iterative solution in Eq. (26) and non-iterative 

solution in Eq. (30) can be employed in this case. In 

addition, when only the concentrated mass is considered, 

the final eigenvalue equation can be expressed as Eq. (30) 

and solved directly.  

When the interface caused by single spring-mass system 

is considered, considering Eq. (20), the final eigenvalue 

equation can be obtained as Eq. (26) and solved by using 

the iterative manner. From the above analysis, it can be 

found that when the interface is caused by one spring-mass 

system, the iterative solution is necessary. For other 

interfaces, the eigenvalue equations can be solved directly, 

and also, the iterative manner can be applied. Therefore, 

when there are various mixed interfaces caused by many 

factors, the iterative solution is recommended. 
 

2.4  New strategy 
 

To determine values of parameter Lk (k=1, 2, ..., n, n is 

the total number of steps) in MMIB procedures, a new 

strategy is proposed. Details are as follows: for fourth 

order derivatives discretized by FD method, in order to 
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gain 2(W-1) order accuracy, the number of discrete points 

should be at least 2(W+1). To this end, in each iterative step, 

the total number of FPs and known grid points should be at 

least 2(W+1). In the iterative procedure in Fig.4, the number 

of FPs and known grid points in k step is Lk+2k and in the 

last step is Ln+W. In this strategy, the total number is set 

to2(W+1). Therefore, values of parameter L in each iterative 

step can be chosen as 

Lk= 2(W+1)-2k (31) 

where k denotes the kth iterative step (k < n), and 

Ln= W+2 (32) 

in the final step. For example, when W=4, values of L1, L2 

are 8, 6, respectively, and when W=3, values of L1 and L2 

are 6 and 5, respectively. When the interface is caused by 

single rigid support, the iterative procedure in Fig.5 is 

taken. It is noted that only one FP on the right and left sides 

can be obtained in each iteration. Values of Lk can be 

selected as  

Lk= 2(W+1)-k (33) 

where k denotes the kth iterative step (k≤n). For example, 

when W=4, values of L1-L4 are 9-6, respectively, and when 

W=3, values of L1 - L3 are 7-5, respectively. Obviously, 

more iterative steps are needed in the iterative procedure in 

Fig.5 to gain the same PFs compared to the iterative 

procedure in Fig. 4. 
 

 

3. Numerical results for beams with single interfaces 
 

In this section, at first, several different boundary 

conditions are handled by using MMIB method. And then, 

various examples of beams with single interfaces caused by  

 

 

 

different factors are analyzed. To estimate the errors of 

results by using MMIB, the relative
2

~
L and

L
~ errors are 

employed (Li et al. 2019) 

%100)ˆ/ˆ(
1~

1

2

2 −= 
=

M

k

kkk
M

L   (34) 

and 

%100)ˆ/ˆmax(
~

−= kkkL   (35) 

where
k and

k̂ are the numerical and reference results, 

respectively, and the first M (10 or 5) frequencies are 

considered in Eq. (34). 

 
3.1 Case 1: beams with different boundary conditions 

 

Due to the fact that anti-symmetric and symmetric 

extensions have been applied to treatments of simply-

supported and clamped boundary conditions in the previous 

work (Li et al. 2015), free edge, elastic edge and free edge 

with a tip mass are considered here. The first example is a 

C-F beam. The convergence tests for W=2-7 are given in 

Table 1, and these results are also shown in Fig. 6. It can be 

observed that second- and fourth- order convergence rates 

can be achieved for W=2 and 3, respectively, and the results 

are convergent for other W. The accuracy of MMIB results 

increases with the increase of W such as W=2-6, but is 

degraded for W=7. The first ten non-dimensional 

frequencies with W=6 are listed in Table 2. It can be found 

that MMIB results agree well with the exact solutions, and 

the maximum relative error is only 7×10-4 % with N=30, 

which illustrates that MMIB results are highly accurate. In 

addition, comparisons between MMIB and the traditional 

MIB are presented in Fig.7. It can be seen that on the  

Table 1 Convergence tests of relative errors of the first ten non-dimensional frequencies Ω for a C-F beam 

N W=2           W=3            W=4                W=5              W=6              W=7 

 
2

~
L (%)   Rate   

2

~
L (%)    Rate   

2

~
L (%)    Rate    

2

~
L (%)    Rate      

2

~
L (%)    Rate     

2

~
L (%)    Rate 

20 4.79            1.19           4.33E-1          1.98E-1           3.65E-2           8.35E-2 

30 2.16    1.96   3.03E-1   3.39   6.32E-2   4.75    8.72E-3   7.70    4.24E-4   11.0    2.54E-3   8.61 

40 1.22    1.98   1.09E-1   3.55   1.58E-2   4.81    2.09E-3   4.98    3.38E-4   0.79    1.60E-3   1.61 

50 0.786   1.99   4.89E-2   3.60   5.82E-3   4.48    9.00E-4   3.76    2.45E-4   1.44    8.35E-4   2.91 

60 0.547   1.99   2.53E-2   3.60   2.76E-3   4.10    4.82E-4   3.42    1.55E-4   2.51    4.85E-4   2.98 

Table 2 The first ten non-dimensional frequencies Ω with W=6 by MMIB for a C-F beam 

Exact N=20 N=30 N=40 N=50 N=60 

1.875104            

4.694091      

7.854757 

10.995541      

14.137168         

17.278760   

20.420352   

23.561945  

26.703538  

29.845130 

1.875104 

4.694102 

7.854805 

10.995657 

14.137317 

17.278771 

20.420967 

23.568392 

26.725051 

29.868421 

1.875104 

4.694094 

7.854772 

10.995580 

14.137248   

17.278887  

20.420499  

23.562012  

26.703424  

29.845111 

1.875104 

4.694093 

7.854764 

10.995557 

14.137203 

17.278822   

20.420449 

23.562076 

26.703680   

29.845226 

1.875104    

4.694092     

7.854761     

10.995549    

14.137186    

17.278792     

20.420405    

23.562024     

26.703645      

29.845262 

1.875104     

4.694092       

7.854759     

10.995546      

14.137179      

17.278779    

20.420383      

23.561992     

26.703605     

29.845221 

2

~
L (%) 3.65E-2 4.24E-4 3.38E-4 2.45E-4 1.55E-4 

L
~ (%) 8.06E-2 7.34E-4 5.56E-4 4.44E-4 3.04E-4 
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whole, errors of MMIB are very close to the minimum 

errors of the traditional MIB, although there are some 

differences. Due to the fact that there is no effective way to 

select parameter L in MIB computation, MMIB is more 

convenient than the traditional MIB. 

MMIB is also used to solve free vibration of a clamped-

elastically restrained (C-E) beam and a cantilever beam 

with a tip mass (C-M) at free edge. Kt=100, Kr=10 are set 

for the translational and rotational springs of the C-E beam, 

Mc=0.5 is set for the tip mass of the C-M beam. Errors of 

the first ten non- dimensional frequencies of C-E and C-M 

beams are listed in Table 3. It can be observed that similar 

conclusions obtained from Table 1 can also be drawn from 

Table 3. 

 

3.2 Case 2: beams with single steps 
 

At first, it is assumed that continuous beams have single 

virtual steps in their midpoints. Thus, MMIB procedures 

can be used to solve these problems. S-S, C-C and C-F 

beams with single virtual steps are considered. Errors of the 

first ten non-dimensional frequencies of the S-S beam by 

MMIB with W=2-8 are presented in Table 4. It can be 

observed that the second-, fourth-, sixth-, eighth- and tenth- 

order convergence rates can be achieved for W=2-6, 

respectively, and the results for W=7 are convergent. The 

accuracy of results increases with the increase of W such as 

W=2-7, but is degraded for W=8. Obviously, the rates of 

convergence for W=4-6 are higher than those in Case 1. The 

first ten non-dimensional frequencies by MMIB with W=7 

are given in Table 5. It can be clearly seen that 
L

~ error 

decreases rapidly with the increase of N, and high accuracy 

can be obtained. Comparisons between MMIB and the 

traditional MIB are shown in Fig.8. It can be observed that 

on the whole, 
2

~
L errors of MMIB are very close to the 

minimum errors of the traditional MIB, although there are 

some differences, especially for W=6 and 7. Meanwhile, it 

is noted that the errors of MMIB are very small for W=6 

and 7 with large N. Due to the fact that there is no effective 

way to select parameter L in the traditional MIB, only some 

empirical values of parameter L are recommended for some 

 

 

Fig. 6 Log-log plot of errors with different W by MMIB or 

a C-F beam 
 

 

numerical tests (Zhao and Wei 2009), MMIB is a 

convenient and effective approach to deal with interfaces. 

Then, the C-C and C-F beams with single virtual steps 

are also analyzed. Errors of the first ten non-dimensional 

frequencies are listed in Table 6. It can be seen that similar 

findings as described in Table 1 can be obtained from Table 

6. Obviously, the rates of convergence for W=4-6 in Table 6 

are lower than those of the S-S beam in Table 4. In addition, 

it can also be observed from Tables 1 and 6 that errors of 

the C-F beam with single virtual step are extremely close to 

those of the C-F beam without virtual step, which implies 

that the treatment of steps may not cause a loss of accuracy. 

Other examples are S-S, C-C and C-F beams with single 

steps, which are selected from Mao and Pietrzkothe (2010). 

As shown in Fig.9, the geometric parameters are: b2/b1=0.5, 

l1:l2=3:5, thus, A2/A1=I2/I1=0.5. The convergence tests of 

results of the S-S beam with single step are presented in 

Table 7. It can be clearly observed that the results are 

convergent for all W, and second-, fourth-, sixth- and 

eighth- order convergence rates can be achieved for W=2-5, 

respectively, which is very similar to the conclusion 

obtained from Table 4. Comparisons of MMIB and the 

traditional MIB are shown in Fig.10. It can also be found 

that on the whole, errors of MMIB are close to the 

minimum errors by the traditional MIB, which is similar to 

the conclusion from Fig. 8. In addition, errors of C-C and 

Table 3 Convergence tests of relative errors of the first ten non-dimensional frequencies Ω for beams with different 

boundaries 

Example N W=2           W=3           W=4           W=5           W=6           W=7 

  
2

~
L (%)    Rate   

2

~
L (%)   Rate   

2

~
L (%)   Rate   

2

~
L (%)   Rate    

2

~
L (%)   Rate   

2

~
L (%)   Rate 

C-E 

20 4.77            1.24           4.65E-1        2.02E-1         6.49E-2        7.91E-2 

30 2.17     1.94   3.13E-1  3.40   6.55E-2  4.83   8.14E-3  7.92   8.45E-4  10.7   2.62E-3  8.40 

40 1.24     1.95   1.13E-1  3.54   1.59E-2  4.92   2.13E-3  4.67   3.25E-4  3.32   1.63E-3  1.65 

50 7.96E-1  1.99   5.04E-2  3.62   5.79E-3  4.53   9.25E-4  3.74   2.46E-4  1.25   8.48E-4  2.93 

60 5.55E-1  1.98   2.61E-2  3.61   2.74E-3  4.10   4.93E-4  3.45   1.57E-4  2.46   4.93E-4  2.97 

C-M 

20 4.60            1.12           3.51E-1         8.72E-2         4.55E-2         5.94E-2 

30 2.10     1.93   2.80E-1  3.42   4.78E-2  4.92   9.82E-3  5.39   1.08E-3  9.23   3.48E-3  7.00 

40 1.19     1.97   1.01E-1  3.54   1.28E-2  4.58   2.19E-3  5.22   4.01E-4  3.44   1.51E-3  2.90 

50 7.66E-1  1.97   4.50E-2  3.62   4.97E-3  4.24   8.67E-4  4.15   2.45E-4  2.21   7.84E-4  2.94 

60 5.33E-1  1.99   2.34E-2  3.59   2.44E-3  3.90   4.54E-4  3.55   1.48E-4  2.76   4.57E-4  2.96 
The first ten exact frequencies of these two examples are: 3.788815, 5.756179, 8.488866, 11.487601, 14.552369, 

17.642182, 20.745025, 23.855959, 26.972456, 30.093027; 1.419964, 4.111133, 7.190335, 10.298445, 13.421002, 

16.550279, 19.683265, 22.818506, 25.955221, 29.092950, respectively. 
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Fig. 9 A beam with single step 
 

 

C-F beams with single steps are presented in Table 8. It can 

be seen that similar findings as described in Table 6 can be 

obtained. 
 
3.3 Case 3: beams with single supports 

 
Examples of beams with single rigid supports are 

analyzed, and S-S and C-C boundary conditions, different 

locations of supports are considered. The convergence tests 

are listed in Table 9. It can be clearly observed that on the 

whole, similar findings obtained from Tables 7 and 8 can be  

 

 
 

observed from Table 9. However, it can be seen that the 
convergence rates are lower than those in Tables 7 and 8 for 
small values of N. The possible reason is that the procedure 
in Fig. 5 to treat rigid supports is different from that in Fig. 
4 for other interfaces, and more iterative steps are required 
to gain same fictitious points, which causes a loss of 
accuracy. 

The examples of beams with single elastic supports in 
Fig. 2(c) are studied next. The convergence tests of results 
are listed in Table 10. It can be found that similar 
conclusions from Table 8 can be drawn from Table 10. 

 
3.4 Case 4: beams carrying single concentrated 

masses 
 
In this case, examples of beams carrying single 

concentrated masses in Fig.2(d) are solved by MMIB. First, 
the convergence tests of results of beams carrying single 
masses are presented in Table 11. It can be found that the 
results are convergent for all W in the solutions of S-S and  

(a)  (b)  (c)  

(d)  (e)  

Fig. 7 Log-log plots of 
2

~
L  errors by MMIB and the traditional MIB with different W for a C-F beam 

(a)  (b)  (c)  

(d)  (e)  (f)  

Fig. 8 Log-log plots of errors by MMIB and the traditional MIB with different W for a S-S beam with single virtual step 
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Table 4 Convergence tests of relative errors of the first ten non-dimensional frequencies Ω for a S-S beam with single virtual 

step ( l1:l2=1:1 ) 

N  W=2         W=3           W=4            W=5           W=6           W=7           W=8 

 
2

~
L (%)  Rate   

2

~
L (%)   Rate   

2

~
L (%)   Rate    

2

~
L (%)   Rate    

2

~
L (%)   Rate   

2

~
L (%)   Rate   

2

~
L (%)   Rate 

20  4.84          1.19           4.33E-1         4.66E-2                        

30  2.20   1.94   2.88E-1  3.50   4.36E-2  5.66   6.50E-3  4.86   4.17E-3          1.26E-3         

40  1.25   1.97   9.96E-2  3.69   8.50E-3  5.68   9.26E-4  6.77   2.17E-4  10.3   5.13E-5  11.1   2.29E-5 

50 0.807  1.96   4.27E-2  3.80   2.43E-3  5.61   1.78E-4  7.39   1.71E-5  11.4   3.30E-6  12.3   4.09E-6  7.72 

60 0.563  1.97   2.11E-2  3.87   8.83E-4  5.55   4.49E-5  7.55   2.08E-6  11.6   1.16E-6  5.73   7.41E-6   － 

Table 5 The first ten non-dimensional frequencies Ω with W=7 by MMIB for a S-S beam 

Exact N=30 N=40 N=50 N=60 

3.14159265          

6.28318531          

9.42477796          

12.56637061      

15.70796327        

18.84955592        

21.99114858     

25.13274123       

28.27433388       

31.41592654 

3.14159267          

6.28318531         

9.42477796          

12.56637061          

15.70796432        

18.84955588         

21.99120475          

25.13282491    

28.27379012        

31.41701054 

3.14159269          

6.28318531          

9.42477796          

12.56637061          

15.70796328          

18.84955588          

21.99115058          

25.13274097       

28.27437313          

31.41595283 

3.14159272          

6.28318531          

9.42477796        

12.56637061           

15.70796327          

18.84955592          

21.99114865          

25.13274113        

28.27433674        

31.41592606 

3.14159276          

6.28318531        

9.42477796          

12.56637061          

15.70796327        

18.84955592        

21.99114858           

25.13274122          

28.27433410          

31.41592637 

2

~
L (%) 1.26E-3 5.13E-5 3.30E-6 1.16E-6 

L
~ (%) 3.45E-3 1.39E-4 1.01E-5 3.57E-6 

Table 6 Convergence tests of relative errors of the first ten non-dimensional frequencies Ω for beams with single virtual steps 

Example N  W=2          W=3            W=4           W=5           W=6          W=7 

  2

~
L (%)  Rate    

2

~
L (%)   Rate    

2

~
L (%)   Rate    

2

~
L (%)   Rate    

2

~
L (%)   Rate   

2

~
L (%)    Rate 

C-C 

l1:l2=1:1 

20  6.29         1.89           7.93E-1        1.89E-1 

30  2.94  1.88   5.08E-1  3.24   1.13E-1  4.81   2.27E-2  5.23   7.04E-3          8.61E-3 

40  1.69  1.92   1.92E-1  3.38   3.11E-2  4.48   6.02E-3  4.61   8.17E-4  7.49   4.08E-3  2.60 

50  1.10  1.92   9.00E-2  3.40   1.25E-2  4.08   2.41E-3  4.10   6.22E-4  1.22   2.11E-3  2.96 

60 0.767  1.98   4.74E-2  3.52   6.29E-3  3.77   1.25E-3  3.60   3.92E-4  2.53   1.23E-3  2.96 

C-F 

l1:l2=1:1 

20  4.51         1.04           4.50E-1        1.79E-1 

30  2.06  1.93   2.83E-1  3.21   6.32E-2  4.84   4.06E-3  9.34   1.84E-3         3.21E-3 

40  1.18  1.94   1.04E-1  3.48   1.49E-2  5.02   1.65E-3  3.13   3.45E-4  5.82   1.65E-3  2.31 

50 0.761  1.97   4.73E-2  3.53   5.43E-3  4.52   8.63E-4  2.90   2.35E-4  1.72   8.40E-4  3.03 

60 0.532  1.96   2.47E-2  3.56   2.60E-3  4.04   4.79E-4  3.23   1.54E-4  2.32   4.86E-4  3.00 

The first ten exact frequencies of these two examples are: 4.730041, 7.853205, 10.995608, 14.137165, 17.278760, 20.420352, 

23.561945, 26.703538, 29.845130, 32.986723; 1.875104, 4.694091, 7.854757, 10.995541, 14.137168, 17.278760, 20.420352, 

23.561945, 26.703538, 29.845130, respectively. 

Table 7 Convergence tests of relative errors of the first five non-dimensional frequencies Ω1 for a S-S beam with single step 

N  W=2               W=3              W=4              W=5              W=6 

 
2

~
L (%)     Rate     

2

~
L (%)    Rate     

2

~
L (%)      Rate     

2

~
L (%)    Rate      

2

~
L (%)     Rate 

24 9.48E-1               5.76E-2               3.15E-3 

32 5.39E-1    1.96     1.93E-2   3.81     6.71E-4   5.38     3.47E-5                6.54E-7 

40 3.48E-1    1.96     8.09E-3   3.90     1.90E-4   5.65     6.35E-6   7.61     1.56E-7    6.42 

48 2.43E-1    1.97     3.96E-3   3.92     6.77E-5   5.66     1.51E-6   7.88     2.98E-7     － 

56 1.79E-1    1.98     2.15E-3   3.96     2.76E-5   5.82     4.42E-7   7.97     3.00E-7     － 

The first five exact frequencies are: 3.08902397, 6.28314030, 9.46673623 ,12.50751459, 15.74913892. 
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C-C beams, and the second-, fourth- and sixth-order 

convergence rates can be achieved for W=2-4 in the  

solution of S-S beam, which is similar to that observed from  

Table 9. While only second-, and fourth-order convergence 

rates can be obtained for W=2, 3 in the solution of C-C 

beam, which is similar to that obtained from Tables 6 and 8. 

Then, the rotary inertia of concentrated mass is considered. 

The convergence tests of results of a S-S beam carrying 

single concentrated mass with rotary inertia are given in 

Table 12. It can be observed that results by using iterative 

and non-iterative manners are very close to each other, 

although there are some differences, which illustrates that  

 

both iterative and non-iterative manners can be used in this 

case. 

 
3.5 Case 5: beams carrying single spring-mass 

systems 
 

Examples of beams carrying single spring-mass systems 

with S-S and C-C boundary conditions are analyzed by 

using MMIB. As shown in Fig.2(e), the non-dimensional 

mass and spring coefficient are Me=0.2, Ke=3, respectively. 

The convergence tests of results are given in Table 13. It 

can be observed that similar findings as described in Table 

11 can be obtained from Table 13. 

Table 8 Convergence tests of relative errors of the first five non-dimensional frequencies Ω1 for beams with single steps 

 Example N  W=2           W=3           W=4          W=5          W=6          W=7 

   
2

~
L (%)    Rate   

2

~
L (%)   Rate    

2

~
L (%)   Rate    

2

~
L (%)   Rate   

2

~
L (%)    Rate  

2

~
L (%)   Rate 

 

C-C 

24  1.63          1.85E-1        3.26E-2 

 32 9.34E-1  1.94  7.16E-2  3.30  1.16E-2  3.59  2.48E-3         7.84E-4 

 40 6.05E-1  1.95  3.43E-2  3.30  5.50E-3  3.34  1.21E-3  3.22  4.21E-4  2.79  1.32E-3  

 48 4.23E-1  1.96  1.89E-2  3.27  3.06E-3  3.22  6.84E-4  3.13  2.47E-4  2.92  7.42E-4  3.16 

 56 3.12E-1  1.97  1.14E-2  3.28  1.89E-3  3.13  4.27E-4  3.06  1.57E-4  2.94  4.68E-4  2.99 

 

C-F 

24 8.39E-1        6.60E-2        1.03E-2 

 32 4.82E-1  1.93  2.52E-2  3.34  3.61E-3  3.64  7.66E-4        2.81E-4  

 40 3.12E-1  1.95  1.20E-2  3.32  1.73E-3  3.30  3.85E-4  3.08  1.38E-4  3.19  4.78E-4 

 48 2.19E-1  1.94  6.56E-3  3.31  9.74E-4  3.15  2.21E-4  3.04  8.04E-5  2.96  2.41E-4  3.76 

 56 1.62E-1  1.96  3.95E-3  3.29  6.04E-4  3.10  1.39E-4  3.01  4.93E-5  3.17  1.52E-4  2.99 

The first five exact frequencies of these two examples are: 4.816633, 7.842811, 11.040688, 14.079494, 17.301176; 

2.152629, 4.794976, 7.834272, 11.041393, 14.079613, respectively. 

 

Table 9 Convergence tests of relative errors of the first five non-dimensional frequencies Ω for beams with single rigid supports 

Example 
N     W=2              W=3             W=4             W=5            W=6 

      2

~
L (%)    Rate     

2

~
L (%)    Rate    

2

~
L (%)    Rate    

2

~
L (%)    Rate    

2

~
L (%)     Rate 

S-S 

l1:l2=1:1 

20     1.90             8.59E-2          3.62E-2 

30    8.72E-1   1.92    3.32E-2   2.34    6.08E-3   4.40    5.25E-4           6.45E-5 

40    4.96E-1   1.96    1.36E-2   3.10    9.41E-4   6.49    6.18E-5   7.43    1.23E-5   5.50 

50    3.18E-1   1.99    6.18E-3   3.53    2.19E-4   6.53    7.79E-6   7.20    3.95E-6   5.33 

60    2.22E-1   1.97    3.13E-3   3.73    6.85E-5   6.37    3.16E-6   4.95    3.16E-6   － 

S-S 

l1:l2=3:5 

24     1.27             6.47E-2          1.38E-2 

32    7.22E-1   1.96    2.82E-2   2.89    2.41E-3   6.07    1.71E-4           3.11E-5 

40    4.64E-1   1.98    1.31E-2   3.44    5.86E-4   6.34    1.95E-5   9.73    5.00E-6   8.19 

48    3.23E-1   1.99    6.68E-3   3.69    1.85E-4   6.32    2.50E-6   11.3       0      － 

56    2.37E-1   2.00    3.72E-3   3.80    7.14E-5   6.18       0      －        0      － 

C-C 

l1:l2=1:1 

20     3.03             3.61E-1           1.06E-1 

30     1.41     1.89    1.19E-1   2.74    2.79E-2   3.29    4.06E-3           1.62E-3 

40    8.05E-1   1.38    5.00E-2   3.01    8.86E-3   3.99    1.62E-3   3.19    5.61E-4   3.69 

50    5.19E-1   1.97    2.47E-2   3.16    4.02E-3   3.54    8.40E-4   2.94    3.01E-4   2.79 

60    3.62E-1   1.98    1.37E-2   3.23    2.21E-3   3.28    4.85E-4   3.01    1.77E-4   2.91 

The first five exact frequencies of these three examples are: 6.283185, 7.853205, 12.566371, 14.137166, 18.849556; 5.609582, 

9.117249, 11.062918, 15.478609,17.896480; 7.853205, 9.460081, 14.137165, 15.706409, 20.420352, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d)  (e)  

Fig. 10 Log-log plots of errors by MMIB and the traditional MIB with different W for a S-S beam with single step 
 

Table 10 Convergence tests of relative errors of the first five non-dimensional frequencies Ω for beams with single elastic 

supports 

Example N  W=2             W=3             W=4             W=5             W=6 

  
2

~
L (%)   Rate    

2

~
L (%)    Rate    

2

~
L (%)    Rate      

2

~
L (%)    Rate    

2

~
L (%)    Rate 

C-C 

Kt=100 

Kr=0 

l1:l2=1:1 

20 2.26            3.34E-1           7.21E-2          1.07E-2 

30 1.05    1.89    8.80E-2   3.29    1.46E-2   3.94    3.06E-3   3.09    9.26E-4 

40 6.00E-1   1.95    3.42E-2   3.29    5.50E-3   3.39    1.21E-3   3.23    4.20E-4   2.75 

50 3.88E-1   1.95    1.65E-2   3.27    2.69E-3   3.21    6.09E-4   3.08    2.18E-4   2.94 

60 2.71E-1   1.97    9.12E-3   3.25    1.53E-3   3.09    3.50E-4   3.04    1.26E-4   3.01 

C-C 

Kt=100 

Kr=10 

l1:l2=1:1 

20    2.26            3.38E-1              7.28E-2              1.09E-2 

30 1.05    1.89    8.92E-2   3.29    1.47E-2   3.95    3.09E-3   3.11    9.34E-4 

40 6.00E-1   1.95    3.46E-2   3.29    5.55E-3   3.39    1.22E-3   3.23    4.25E-4   2.74 

50 3.88E-1   1.95    1.67E-2   3.26    2.72E-3   3.20    6.13E-4   3.08    2.20E-4   2.95 

60 2.71E-1   1.97    9.22E-3   3.26    1.54E-3   3.12    3.52E-4   3.04    1.28E-4   2.97 

The first five exact frequencies of these two examples are: 5.230375, 7.853205, 11.033107, 14.137165, 17.288488; 

5.230375, 8.327341, 11.033107, 14.429777, 17.288487, respectively. 

Table 11 Convergence tests of relative errors of the first five non-dimensional frequencies Ω for beams with single 

concentrated masses 

Example N  W=2             W=3             W=4             W=5             W=6 

  2

~
L (%)    Rate    

2

~
L (%)    Rate    

2

~
L (%)   Rate      

2

~
L (%)    Rate    

2

~
L (%)    Rate 

S-S 

l1:l2=1:1 

Mc=0.5 

Jc=0 

20 1.14             8.89E-2              7.27E-3           2.13E-4 

30 5.13E-1   1.97    1.86E-2   3.86    6.81E-4   5.84    2.17E-5   5.60    2.46E-6 

40 2.90E-1   1.98    6.00E-3   3.93    1.22E-4   5.98    2.68E-6   7.27    3.07E-7   7.23 

50 1.86E-1   1.99    2.48E-3   3.96    3.21E-5   5.98    3.07E-7   9.71    3.07E-7   － 

60 1.30E-1   1.96    1.20E-3   3.98    1.06E-5   6.08    3.07E-7    －      3.07E-7   － 

C-C 

l1:l2=1:1 

Mc=0.5 

Jc=0 

20 2.06              2.89E-1           5.67E-2          1.13E-2 

30 9.39E-1   1.94    7.61E-2   3.29    1.27E-2   3.69    2.68E-3   3.55    8.67E-4 

40 5.34E-1   1.96    2.95E-2   3.29    4.86E-3   3.34    1.07E-3   3.19    3.84E-4   2.83 

50 3.44E-1   1.97    1.43E-2   3.25    2.38E-3   3.20    5.35E-4   3.11    2.02E-4   2.88 

60 2.39E-1   2.00    7.91E-3   3.25    1.35E-3   3.11    3.05E-4   3.08    1.20E-4   2.86 
The first five exact frequencies of these two examples are: 2.6393143, 6.2831853, 8.4744038, 12.5663706, 14.5616702; 

3.847071, 7.853205, 9.999906, 14.137165, 16.099838, respectively.  
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Table 12 Convergence tests of relative errors of the first five non-dimensional frequencies Ω for S-S beams carrying single 

concentrated masses with rotary inertia 

Example 
N W=2             W=3             W=4             W=5             W=6 

 
2

~
L (%)    Rate    

2

~
L (%)    Rate    

2

~
L (%)    Rate    

2

~
L (%)    Rate    

2

~
L (%)    Rate 

Iterative 

solution 

20 8.31E-1             7.55E-2           5.74E-3 

30 3.73E-1   1.98    1.56E-2   3.89    5.69E-4   5.70    2.57E-5             1.33E-6 

40 2.10E-1   1.99    5.01E-3   3.95    1.02E-4   5.98    3.13E-6   7.32    5.69E-7   2.95 

50 1.35E-1   1.98    2.06E-3   3.98    2.76E-5   5.86    7.82E-7   6.22    5.69E-7    － 

60 9.36E-2   2.00    9.98E-4   3.97    9.34E-6   5.94    5.69E-7   1.74    5.69E-7    － 

Non- 

Iterative 

solution 

20 8.89E-1             2.31E-2           2.25E-2 

30 3.70E-1   2.16    1.33E-2   1.36    9.97E-4   7.69    9.45E-5             2.01E-5 

40 2.08E-1   2.00    4,81E-3   3.54    1.17E-4   7.45    1.62E-6   14.1    1.11E-6   10.1 

50 1.34E-1   1.97    2.04E-3   3.84    2.76E-5   6.47    7.82E-7   3.26    9.69E-7   0.61 

60 9.31E-2   2.00    9.93E-4   3.95    9.03E-6   6.13    5.69E-7   1.74    5.69E-7   2.92 

Note: the relevant parameters are l1:l2=1:1, Mc=0.5, Jc=0.005. The first five exact frequencies are : 2.6393143, 5.6977598, 

8.4744038, 9.3696109,14.4411245. 

Table 13 Convergence tests of relative errors of the first five non-dimensional frequencies Ω for beams with single spring-

mass systems 

Example N W=2             W=3              W=4             W=5             W=6 

  2

~
L (%)    Rate    

2

~
L (%)    Rate     

2

~
L (%)   Rate    

2

~
L (%)    Rate    

2

~
L (%)    Rate 

S-S 

l1:l2=1:1 

20 8.34E-1           4.66E-2           2.20E-3              2.10E-4 

30 3.75E-1   1.97    9.97E-3   3.80    2.71E-4   5.16    9.71E-6   7.58 

40 2.12E-1   1.98    3.24E-3   3.91    5.33E-5   5.65    1.07E-6   7.67 

50 1.36E-1   1.99    1.34E-3   3.96    1.47E-5   5.77    3.56E-7   4.93 

60 9.50E-2   1.97    6.50E-4   3.97    5.00E-6   5.91       0      － 

C-C 

l1:l2=1:1 

20 1.58            1.85E-1           3.37E-2          7.54E-3 

30 7.23E-1   1.93    4.96E-2   3.25    8.42E-3   3.42    1.84E-3   3.48    6.25E-4 

40 4.11E-1   1.96    1.96E-2   3.27    3.34E-3   3.21    7.51E-4   3.11    2.68E-4   2.94 

50 2.65E-1   1.97    9.56E-3   3.22    1.66E-3   3.13    3.81E-4   3.04    1.41E-4   2.88 

60 1.84E-1   2.00    5.34E-3   3.19    9.50E-4   3.06    2.19E-4   3.04    8.16E-5   3.00 

The first five exact frequencies of these two examples are: 1.9337069, 3.1965661, 6.2831853, 9.4265737, 12.5663706 ; 

1.960155, 4.748343, 7.853205, 10.996725, 14.137165, respectively. 

Table 14 The first ten frequencies (Hz) of a simply-supported beam with three steps 

MMIB    DSC 
DQEM FEM 

W=3      W=4       W=5       W=6      W=7  W=3 W=7 

0.43369    0.43369    0.43369    0.43369    0.43369 

1.80275    1.80276    1.80276    1.80276    1.80276 

4.41469    4.41470    4.41470    4.41470    4.41470 

9.54111    9.54133    9.54133    9.54133    9.54133 

13.26560   13.26609   13.26609   13.26609   13.26609 

19.35734   19.35884   19.35885   19.35885   19.35885 

25.75681   25.76028   25.76032   25.76032   25.76032 

34.99384   35.00395   35.00419   35.00419   35.00419 

43.20179   43.21838   43.21880   43.21882   43.21882 

55.62708   55.66141   55.66232   55.66242   55.66242 

0.43369    0.43369 

1.80276    1.80276 

4.41471    4.41470 

9.54118    9.54133 

13.26588   13.26609 

19.35805   19.35885 

25.76000   25.76031 

34.99914   35.00414 

43.21409   43.21867 

55.63908   55.66238 

0.43369     0.43369 

1.80276     1.80276 

4.41470     4.41470 

9.54133     9.54133 

13.26609    13.26609 

19.35885    19.35885 

25.76032    25.76032 

35.00420    35.00420 

43.21882    43.21882 

55.66242    55.66242 

Cited from Duan and Wang (2013) 
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4. Numerical results for beams with multiple 
interfaces 

 

In Section 3, free vibration of beams with single interfaces 

has been discussed and the accuracy and convergence of 

MMIB have been validated. In this section MMIB is applied 

to the free vibration analysis of beams with various multiple 

interfaces. 

 

 

 
4.1 Case 6: beams with multiple steps 
 

The first example is a S-S beam with three steps in 

Fig.11, which is selected from the literature (Duan and 

Wang 2013, Lin and Ng 2014, Lee 2015). The geometric 

dimensions are: l1=5000 mm, h1=200mm, h2=100 mm, and 

b=200 mm. The elastic modulus and the density are: 

E=34GPa and ρ=2830 kg/m3. The first ten frequencies by 

MMIB with W=3-7 and N=72 are listed in Table 14, and the  

Table 15 The natural frequencies (Hz) of a cantilever beam with twelve steps 

Type        Mode MMIB DSC DQEM        FEM 

W=2      W=3      W=4      W=5 W=4 

Flap- 

wise 

1 

2 

3 

4 

5 

10 

120 

140 

10.745    10.745     10.745    10.745 

67.467    67.473     67.473    67.473 

189.515   189.559    189.559   189.559 

373.295   373.460    373.461   373.461 

621.820   622.271    622.274   622.274 

2858.614  2867.510    2867.621  2867.626 

2.597E+5  3.344E+5   3.731E+5  3.940E+5 

3.161E+5  5.170E+5   6.479E+5  6.510E+5 

10.745 

67.470 

189.546 

373.426 

622.198 

2867.061 

3.009E+5 

5.531E+5 

10.746       10.745 

67.473       67.473 

189.559      189.559 

373.461      373.460 

622.274      622.271 

2867.629     2867.583 

8.966E+5     4.562E+5 

2.450E+6     6.222E+5 

Chord 

-wise 

1 

2 

3 

4 

5 

10 

120 

140 

54.4963   54.4965    54.4965   54.4965 

344.789   344.808    344.808   344.808 

977.660   977.812    977.813   977.813 

1950.780   1951.407   1951.410   1951.409 

3299.763   3301.632   3301.639   3301.639 

17415.488  17463.515  17464.085  17464.096 

1.821E+6  2.403E+6   2.643E+6  2.773E+6 

2.149E+6  3.077E+6   3.796E+6  3.853E+6 

54.496 

344.793 

977.740 

1951.199 

3301.141 

17460.834 

2.538E+6 

3.352E+6 

54.495       54.499 

344.808      344.807 

977.812      977.809 

1951.409     1951.398 

3301.639     3301.606 

17464.100    17463.810 

4.569E+6     2.819E+6 

1.300E+7     3.838E+6 

 Cited from Duan and Wang (2013) 

Table 16 The first five non-dimensional frequencies Ω of S-S beams with multiple supports 

 MMIB Maiz et al.   

Example     W=3  W=4  W=5  W=6 (2007) 

 N=40    N=60  N=40    N=60  N=40    N=60  N=40    N=60  

l1=l2=0.25l 

l3=0.5l 

7.1710  7.1711       

12.5657  12.5662        

13.7729  13.7738        

16.6390  16.6412        

19.8465  19.8523 

7.1711  7.1711        

12.5663  12.5664        

13.7740  13.7741        

16.6417  16.6419        

19.8535  19.8539 

7.1711   7.1711       

12.5664  12.5664      

13.7741  13.7741      

16.6419  16.6419       

19.8540  19.8539 

7.1711   7.1711      

12.5664  12.5664         

13.7741  13.7741       

16.6419  16.6419      

19.8540  19.8539 

7.1711 

12.5664 

13.7741 

16.6419 

19.8539 

l1=l3=0.25l 

l2=0.5l 

7.8531   7.8532     

12.5657  12.5662       

14.1358  14.1369        

15.7038  15.7059       

20.4132  20.4186 

7.8532  7.8532       

12.5663  12.5664      

14.1371  14.1372         

15.7063  15.7064        

20.4197  20.4203 

7.8532   7.8532       

12.5664  12.5664        

14.1372  14.1372        

15.7064  15.7064       

20.4204  20.4204 

7.8532   7.8532       

12.5664  12.5664       

14.1372  14.1372       

15.7064  15.7064      

20.4204  20.4204 

7.8532 

12.5664 

14.1372 

15.7064 

20.4204 

Table 17 The first five non-dimensional frequencies Ω of S-S beams with two masses 

Example 

MMIB Maiz et al.   

 W=3  W=4  W=5 (2007) 

N=40 N=60  N=40 N=60  N=40 N=60  

l1= l2=0.25l 

l3=0.5l 

Mc1=Mc2=0.5 

Jc1=Jc2=0 

2.4946         

5.3428    

7.9643         

12.5655       

14.2156 

2.4946          

5.3428         

7.9643          

12.5662        

14.2168 

2.4946         

5.3428         

7.9643         

12.5664         

14.2170 

2.4946         

5.3428         

7.9643         

12.5664         

14.2171 

2.4946        

5.3428        

7.9643         

12.5664         

14.2171 

2.4946         

5.3428         

7.9643          

12.5664          

14.2171 

2.4946 

5.3428 

7.9643 

12.5664 

14.2171 

l1= l2=0.25l 

l3=0.5l 

Mc1=Mc2=0.5 

Jc1=Jc2=0.005 

2.4824          

5.0881         

7.2183        

8.8187        

9.6265 

2.4824        

5.0881         

7.2183        

8.8187        

9.6262 

2.4824        

5.0881         

7.2183         

8.8187        

9.6262 

2.4824         

5.0881         

7.2183         

8.8187        

9.6262 

2.4824        

5.0881         

7.2183         

8.8187         

9.6262 

2.4824         

5.0881         

7.2183         

8.8187         

9.6262 

2.4824 

5.0881 

7.2183 

8.8187 

9.6262 
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Fig. 11 A S-S beam with three steps 

 
Fig. 12 A cantilever beam with twelve steps 

 

 

existing results by DSC, DQEM and FEM are given for 

comparisons. It can be observed that the accuracy of MMIB 

results increases with the increase of W, and the MMIB 

results agree well with those highly accurate results by 

DSC, DQEM and FEM with fine meshes. In addition, it can 

be found that results of MMIB with W=7 and N=72 are 

more accurate than those of DSC with W=7 and N=70 

(Duan and Wang 2013), while, the accuracy of results of 

MMIB is lower than that of DSC for W=3. 

Another example is a cantilever beam with twelve steps 

selected from Duan and Wang (2013), as shown in Fig. 12  

 

 

The geometric dimensions and material properties are: 

l=463.55mm, l1=25.4mm, l2=50.8mm, l3=31.75mm, 

h1=25.4mm, h2=12.7mm, b=3.175mm, E=60.6GPa, ρ=2664 

kg/m3 Two types of bending vibrations, i.e. chord-wise and 

flap-wise, are taken into account. The natural frequencies 

by MMIB with W=2-5 and N=146 are presented in Table 

15, and compared with the existing results by DSC, DQEM 

and FEM. Due to the limit of grid nodes, parameters 

L1=L2=8 and L3=7 are chosen for W=5. For other cases, 

selections of parameter Lk in each iterative step are based on 

the proposed strategy. It can be found that MMIB results  

 

 

coincide well with those by DSC and DQEM for low order 

frequencies and agree well with those by FEM with fine 

meshes for higher order frequencies. In addition, it can also 

be observed that results of MMIB with W=4 and N=146 are 

more accurate than those of DSC with W=4 and N=150 

(Duan and Wang 2013) for low and high order frequencies. 

Of course, more comparisons of MMIB and DSC associated 

with the interpolation polynomial need further 

investigation. 

 

4.2 Case 7: beams with multiple intermediate 
supports 

 
A continuous beam with two intermediate supports in 

Fig.13 is considered, and two different locations of supports 

are analyzed. The first five non-dimensional frequencies Ω  

Table 18 The first five frequencies (rad/s) of beams with multiple spring -mass systems 

Example 

MMIB Wu and Lin and 

W=3   W=4 Chou Tsai 

   N=40     N=60      N=80  N=40      N=60          N=80 (1999) (2007) 

l1=0.1l 

l2=0.3l 

l3=0.4l 

l4=0.2l 

152.7341   152.7341   152.7341 

185.0950   185.0950   185.0950 

247.8314   247.8314   247.8314 

677.5958   677.5960   677.5960 

2548.6419  2548.6536  2548.6564 

152.7341   152.7341   152.7341 

185.0950   185.0950   185.0950 

247.8314   247.8314   247.8314 

677.5961   677.5961   677.5961 

2548.6613  2548.6573  2548.6577 

152.7341     152.7339 

185.0950     185.0949 

247.8314     247.8313 

677.5961     677.5959 

2548.6577    2548.6572 

l1=0.1l 

l2=0.1l 

l3=l4= 

l5=l6= 

0.2l 

150.9571   150.9571   150.9571 

169.4729   169.4729   169.4729 

187.9147   187.9147   187.9147 

217.1279   217.1279   217.1279 

247.9868   247.9868   247.9868 

150.9571   150.9571   150.9571 

169.4729   169.4729   169.4729 

187.9147   187.9147   187.9147 

217.1279   217.1279   217.1279 

247.9868   247.9868   247.9868 

150.9571     150.9571 

169.4729     169.4728 

187.9147     187.9146 

217.1279     217.1278 

247.9868     247.9867 

Table 19 The first five non-dimensional frequencies Ω of beams with multiple various interfaces 

Example 

MMIB 

Lin (2008)   W=3   W=4 

     N=40       N=60       N=80   N=40       N=60       N=80 

S-S 

6.613064    6.613083    6.613084         

8.214093    8.214074    8.214077     

9.236036    9.235986    9.235991      

11.506351   11.506636   11.506639        

13.353904   13.353652   13.353663 

6.613091    6.613084    6.613084             

8.214129    8.214078    8.214078        

9.236134    9.235994    9.235994        

11.506463   11.506642    11.506641        

13.354285   13.353669   13.353669 

6.613083  

8.214078  

9.235993  

11.506641  

13.353669 

 C-F 

4.089862    4.089876    4.089878          

7.633775    7.633886    7.633904           

10.002353   10.002601   10.002639            

10.943865   10.947141   10.947672           

11.986449   11.986838   11.986868 

4.089869    4.089876    4.089880 

7.633846    7.633888    7.633915 

10.002602   10.002621   10.002663           

10.945893   10.947269   10.948018 

11.986651   11.986865   11.986886 

4.089879  

7.633916  

10.002664  

10.948062  

11.986887 
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Fig. 13 A continuous beam with two internal supports 

 

 
Fig. 14 A S-S beam with two concentrated masses 

 

 

 

of these continuous beams by MMIB with W=3-6 are listed 

in Table 16, in which due to the limit of grid nodes, 

parameters L1=L2=L3=11, L4=10, L5=9, and L6=8 for W=6 

and N=40 are selected in iterative procedure in Fig.5. For 

other cases, choices of parameter Lk are based on the 

proposed strategy. It can be seen that MMIB results show 

good agreements with the solutions of Maiz et al. (2007), 

and the accuracy of MMIB results increases with the 

increase of W.  

 

4.3 Case 8: beams carrying multiple concentrated 
masses 

 
A S-S beam carrying two concentrated masses in Fig.14 

is studied, and the effect of rotary inertia is also considered. 

The first five non-dimensional frequencies Ω of beams with 

two concentrated masses by MMIB method with W=3-5 is 

listed in Table 17. For convenience, non-iterative solution is 

taken in the analysis of rotary inertia. Due to the limit of 

grid nodes, the total number of grid nodes to approximate 

the first order derivatives is set to 10 in Eq. (19) in each step 

for W=5 and N=40, and the proposed strategy is applied in 

other cases. It can be seen that MMIB results agree well 

with the solutions of Maiz et al. (2007), and MMIB yields 

more accurate results with large W.  

 

4.4 Case 9: beams carrying multiple spring-mass 
systems 

 
A S-S beam carrying multiple spring-mass systems is 

considered. As shown in Fig.15, cited from Lin and Tsai 

(2007), beams carrying three and five spring-mass systems 

are taken into account. The geometric dimensions and 

material properties are: elastic modulus 2.069×1011N/m2, 

sectional moment of inertia 3.06796×107m4, mass per unit 

length 15.3875kg/m, and total length l=1m. The parameters 

of non-dimensional masses and spring coefficients are: 

Me1=0.2, Ke1=3, Me2=0.5, Ke2=4.5, Me3=1.0, Ke3=6.0, as 

shown in Fig.15(a); Me1=0.2, Ke1=3, Me2=0.3, Ke2=3.5, 

Me3=0.5 , Ke3=4.5, Me4=0.65, Ke4=5.0, Me5=1.0, Ke5=6.0, as 

shown in Fig.15(b). The first five frequencies of beams by 

MMIB with W=3 and 4 are given in Table 18, and the 

iterative solution is applied to these two examples. Due to 

the limit of gird nodes, parameters L1=L2=5 for W=3 and 4, 

N=40, and L1=L2=6 for W=4, N=60 are selected in the  

 
(a) A beam with three spring-mass systems 

 
(b) A beam with five spring-mass systems 

 

Fig. 15 S-S beams with multiple spring-mass systems 

 

 

 
Fig. 16 A beam with multiple various interfaces 

 

 

iterative computation. And the proposed strategy is used in 

other cases. It can be seen that the MMIB results agree well 

with the existing results (Wu and Chou 1999; Lin and Tsai 

2007), and MMIB results show excellent convergence. 

 

4.5 Case 10: beams carrying multiple various 
interfaces 

 

In this case, beams carrying multiple various interfaces 

are considered. As shown in Fig.16, cited from Lin (2008) 

and Farghaly and EI-Sayed (2016), multiple concentrated 

masses with rotary inertia, intermediate rigid and elastic 

supports are taken into account. The parameters of 

geometric dimensions, concentrated masses with rotary  

inertia and spring coefficients are (Lin 2008): l1=l2=l3=l4 

=l6=l7=0.1l, l5=l8=0.2l, l is the total length, Mc1=0.3, Jc1= 

0.001, Mc2=0.6, Jc2=0.002, Mc3=0.9, Jc3=0.003, Kt1=10, Kr1 

=3, Kt2=20, and Kr2=4. Due to mixed interfaces, iterative 

solution is employed here. The first five non-dimensional 

frequencies of beams with two different boundaries 

conditions are given in Table 19. Due to the limit of grid 

nodes, small values of parameter Lk in the iterative 

procedures should be selected in some cases. Parameter L=5 

for N=40, W=3 and 4 is chosen in each iterative step; 

L1=L2=L3=7, L4=6 for N=60 and W=4 are taken in the 

iterative computation of beams with rigid supports; L1=7 

and L2=6 for N=60 and W=4 are chosen in the iterative 

solutions of beams with concentrated masses and elastic 

supports. And the proposed strategy is applied in other 

cases. It can be observed that MMIB results are in good 

agreements with the solutions of Lin (2008) for S-S and C-F 

beams, respectively, and MMIB results show excellent 

convergence. 
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5. Conclusions 
   

In this study, a new strategy is proposed to detemine the 

parameter L in each iterative step of MMIB computation, so 

that MMIB can be applied as if there would be no selection 

of parameter L. Various single and multiple interfaces 

caused by steps, intermediate rigid and elastic supports, 

concentrated masses and spring-mass systems are analyzed 

by using MMIB. The numerical results of MMIB are 

compared with the existing highly accurate solutions. A 

number of examples show that for beams with single 

interfaces, high order convergence and high accuracy can be 

achieved, and the accuracy of results increases with the 

increase of W, but too large W may cause the decrease of 

accuracy. For beams with multiple interfaces, MMIB also 

shows high accuracy and excellent convergence. Therefore, 

MMIB is considered as a highly accurate and convergent 

approach for solving various interfaces on beams. 

In addition, the comparison between MMIB and the 

traditional MIB is conducted in some case studies, it can be 

observed that on the whole, errors of MMIB are very close 

to the minimum errors by the traditional MIB. Due to the 

fact that only some empirical values of parameter L are 

recommended (Zhao and Wei 2009), and there is no 

effective way to select parameter L. Therefore, MMIB is 

very convenient and effective for interface treatments, 

especially for interface problems without reference 

solutions.  

Finally, it can be seen that MMIB can deal with arbitrary 

interfaces on beams, not just the stepped interfaces (Duan 

and Wang 2013), which extends applications of MIB 

method. In addition, the comparison analysis shows that 

MMIB works better than the interpolation formulation in 

some cases.  
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