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1. Introduction 
 

The theoretical investigations of dynamics of the 

underground structures which as usual are modelled as 

hollow cylinder surrounded with an elastic medium, under 

the action of the high-speed wheelers are required for the 

safety of these structures and for preventing various type 

accidents. Under these investigations the high-speed 

wheelers are modelled as i) a moving load (let us name it 

the first model) or as ii) oscillating moving load (let us 

name it the second model). It is obvious that in the cases 

where the frequency of the oscillation of the moving load is 

greater than a certain frequency the second model is more 

real than the first one and this certain frequency depends on 

the mechanical and geometrical properties of the system.  

Now we consider a brief review of the investigations 

carried out within the scope of the foregoing models and 

related to the layered elastic systems. We begin this review 

with the paper (Achenbach et al. (1967)) which studies the 

dynamics of the moving load acting on the “covering layer 

+ half-space” system. In these studies, the motion of the 

covering layer is described within the scope of the 

Timoshenko plate theory, however, the motion of the half- 
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space is described with utilizing of the exact equations of 

elastodynamics in the plane-strain state case. The 

subsequent developments of this study are made in the 

papers (Dieterman and Metrikine (1997)), and (Metrikine 

and Vrouwenvelder (2000)) and others listed therein. Note 

that the investigations carried out in the paper (Dieterman 

and Metrikine (1997)) is made within the framework of the 

second model for the infinite slab resting on the rigid 

foundation, however the investigation carried out in the 

paper (Metrikine and Vrouwenvelder (2000)) is made 

within the framework of the first model for the beam which 

is embedded in the slab which also rests on the rigid 

foundation and the Euler-Bernoulli beam theory is 

employed for describing the motion of this beam. In all the 

foregoing investigations the critical velocity of the moving 

load is determined, under which the resonance type 

phenomenon takes place. The critical velocities of the 

moving load within the scope of the first model are also 

determined in the papers (Babich et al. (1986, 1988, 2008a, 

2008b), Akbarov et al. (2007), Akbarov and Ilhan (2008) 

and Dincsoy et al. (2009). Moreover, in the papers by 

Akbarov et al. (2007), Akbarov and Ilhan (2008) and 

Dincsoy et al. (2009)) in which not only the motion of the 

half-space but also the motion of the covering layer is 

described with utilizing the exact equations of the 

elastodynamics. The corresponding investigations carried 

out within the scope of the second model are made in the 

papers (Akbarov and Ilhan (2009), Akbarov and Salmanova 

(2009) and Akbarov et al. (2015)) and the results of these 

papers are also discussed in the monograph (Akbarov 
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(2015)).   

Within the scope of the first model the paper (Shi and 

Selvadurai (2016)) studies the dynamic response on the 

moving load acting on a Bernoulli-Euler beam supported 

with poroelasticity subgrade material and it is employed the 

concept of the equivalent stiffness of the half-space. Also, 

within the scope of the first model the paper ( Zhenning et 

al. (2016)) studies the 3D steady-state dynamic response of 

the multi-layered transversely isotropic half-space 

generated by a point-located moving load acting on the face 

plane of this half-space and under this study it is assumed 

that the materials of the layers are hysteretic viscoelastic 

ones.   

Thus, with this, we restrict ourselves to consider the 

review of the investigations related to the plane-layered 

system. Note that the review of the investigations related to 

the action of the moving load on beams, plates and other 

types of elements of construction is not considered here. 

This review can be found in the paper (Quyang (2011)) and 

in the more recent investigations carried out in the papers 

(Sarvestan et al. (2017), Song et al. (2016), Sudheesh 

Kumar et al. (2015), Kiani et al. (2015)) and in other ones 

listed therein.   

Now we consider investigations related to the dynamics 

of the moving load acting in the interior of the cylinder 

surrounded by an elastic medium. Apparently, the first 

attempt in this field is made in the paper (Parnes (1969)) in 

which within the scope of the first model the dynamics of a 

line normal load moving in the axial direction and applied 

along a transverse circle of the cylindrical cavity contained 

into the infinite elastic medium, are investigated. The 

supersonic regime is considered and the theoretical analyses 

are made for the 3D problem, however, the numerical 

results on the stress and displacements are presented only 

for the axisymmetric loading case.  

In the subsequent paper of the same researcher, i.e. in 

the paper (Parnes (1980)) the problem considered in the 

paper (Parnes (1969)) is made for the case where on the 

cylindrical cavity the torsional moving load acts.  It should 

be noted that in these investigations the question related to 

the critical velocity which is one of the main issues of the 

dynamics of the moving load, is not appear. This is because 

in the investigations (Parnes (1969, 1980)) the medium on 

which the moving load acts is a homogeneous medium and 

the supersonic regime is considered. It should be also noted 

that the question related to the critical velocity appear for 

the piece-wise homogeneous medium under satisfaction of 

certain conditions. For instance, the question on the critical 

velocity appears in the case where the moving load acts in 

the interior of the hollow cylinder which is surrounded with 

the elastic medium the modulus of elasticity of which is less 

than that of the hollow cylinder. Consequently, this 

statement must be taken into consideration under 

investigations of the problem related to the dynamics of the 

moving load acting on the piece-wise homogeneous infinite 

cylindrically layered systems. The examination of such 

problems is considered in the several works the review of 

which we begin with the paper (Chonan (1981)) in which 

within the scope of the first model the dynamic response of 

a cylindrical shell imperfectly bonded to a surrounding 

infinite elastic continuum under the action of moving 

axisymmetric ring pressure, is studied. In this study, the 

thick shell theory is employed for describing the motion of 

the cylinder, however, the movement of the surrounding 

elastic medium is described with the exact equations of 

elastodynamics, and axisymmetric case is considered. 

Numerical results on the critical velocity and on the radial 

displacement are presented and discussed.  

The moving load problem within the scope of the first 

model for the system consisting of a thin cylindrical shell 

and surrounding transversally isotropic infinite medium is 

investigated in the paper (Pozhuev (1980)). The motion of 

the shell is described with utilizing the thin shell theory, 

however the exact equations of elastodynamics is employed 

for the surrounding elastic medium and axisymmetric case 

is considered. A few numerical results on the displacements 

and a radial normal stress are presented. However, 

numerical results regarding the critical velocity are not 

presented.   

The paper (Abdulkadirov (1981)) through the 

investigation of low-frequency resonance of axisymmetric 

longitudinal waves’ propagation in the system “hollow 

cylinder + surrounding elastic medium” studies within the 

scope of the first model the critical velocity of the moving 

ring load acting in the interior of the cylinder. Note that 

under “resonance waves”, the cases for which the relation    

/ 0dc dk =  occurs, are understood, where c is the wave 

propagation velocity and k is the wavenumber. In this paper 

the motion of the cylinder and surrounded elastic medium 

are written by employing the exact field equations of 

elastodynamics and numerical results on the critical 

velocity are presented.   

The effect of imperfect bonding on the axisymmetric 

elastodynamic response of the system consisting of an 

isotropic hollow cylinder and surrounding poroelastic soil 

due to a moving ring load within the scope of the first 

model is studied in the paper (Hasheminejad and Komeili 

(2009)). It is also presented numerical results related to the 

critical velocity.  

The critical velocity of the moving internal pressure 

acting in the cylindrical layered system with finite thickness 

within the framework of the first model is studied in the 

paper (Zhou et al. (2008)) and under this study two types 

approaches is used. The first approach is based on first 

order refined sandwich shell theories, while the second 

approach is based on the exact equations of linear 

elastodynamics for orthotropic bodies with effective 

mechanical constants. Within each approach, as in the paper 

(Abdulkadirov (1981)), critical velocities are determined 

through the dispersion curves of the axisymmetric 

longitudinal waves. According to comparison of the 

numerical results obtained within scope of the first 

approach with the corresponding ones obtained within the 

scope of the second approach, it is established that (as can 

be predicted) these results are sufficiently close to each 

other for the low wavenumber cases. However, the 

difference between these approaches increases with the 

wavenumber and becomes so great that it appears necessary 

to determine which approach is more accurate. Note that 

this accuracy can be determined only with the comparison 
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of those with the corresponding ones obtained within the 

scope of the benchmark solution which can made within the 

scope of the pricewise homogeneous body model by 

utilizing the exact equations of elastodynamics.   

In recent years the corresponding dynamic problems 

related to the hydroelastic systems have been also 

investigated. For instance in the paper (Akbarov and 

Ismailov (2015)) within the scope of the first model and in 

the paper (Akbarov and Ismailov (2016a)) within the scope 

of the second model the dynamics of the moving load acting 

on the hydroelastic systems consisting of elastic plate, 

compressible viscous fluid and rigid wall are studied. Note 

that corresponding forced vibration problems for this 

system are investigated in the papers (Akbarov and 

Ismailov (2014, 2016b, 2017) and Akbarov and Panakhli 

(2015, 2017)). 

Moreover, in recent years in series investigations, such 

as the investigations (Forrestand and Hunt (2006), Shenk et 

al. (2006), Hung et al. (2013), Hussein et al. (2014), Yuan 

et al. (2017)) and many other listed in these investigations, 

within the scope of the first model numerical and analytical-

numerical solution methods are developed and employed 

for studying the dynamical response of tunnel (modelled as 

a hollow elastic cylinder) + soil (modelled as surrounding 

elastic or viscoelastic medium) systems generated by the 

moving load acting on the interior of the tunnels. At the 

same time, it should be noted that the focus in these studies 

is on the displacement distribution of the soils caused by the 

moving load and there is no detailed analysis related to the 

critical velocity and to the response of the interface stresses 

to the moving load.  

Such analysis is made in the paper (Akbarov et al. 

(2018)) within the scope of the first model for the 3D non-

axisymmetric problem for the moving load acting on the 

certain arc of the internal circle of the cylinder's cross-

section and moving with constant velocity along the 

cylinder's axis.  Moreover, in this paper it is determined 

whether the values of the critical speed of the moving load 

depend on the non-axisymmetricity of this load or whether 

the critical velocity determined for the corresponding 

axisymmetric moving load case occurs also for the non-

axisymmetric moving load case. It is also considered 

interface stress distribution caused by the moving load. At 

the same time, in the paper (Akbarov and Mehdiyev 

(2018a)) the corresponding 3D forced vibration problem is 

studied.   

Nevertheless, the investigations carried out in the paper 

(Akbarov et al. (2018)) are made within the scope of the 

first model and the results of these investigations cannot be 

applied in the cases where the moving wheels has 

oscillation with a certain frequency. All the investigations 

carried out within the scope of the second model show that 

the oscillation of the moving load acts not only in 

quantitative sense but also in the qualitative sense on the 

dynamics of the moving load. All the investigations carried 

out within the scope of the second model show that the 

oscillation of the moving load acts not only in a quantitative 

sense but also in a qualitative sense to the dynamics of the 

moving load. In connection with this, in the present paper, 

within the scope of the piecewise homogeneous body model 

by employing 3D exact equations of elastodynamics we 

examine the dynamics of the oscillating moving load which 

acts on the certain arc of the internal circle of the cylinder's 

cross section and this load moves with constant velocity 

along the cylinder's axis. The main attention in the present 

investigations is focused on the influence of the so-called 

“gyroscopic effect” on the values of the critical velocity and 

on the distribution of the interface stresses.  

Finally, note that the corresponding axi-symmetric 

problem is considered in the paper (Akbarov and Mehdiyev 

(2018b)).  
 

 

2. Formulation of the problem and governing field 
equations 

 

We consider a bi-material elastic system consisting of a 

hollow circular cylinder with thickness h and with external 

radius R and of an infinite surrounding elastic medium. The 

sketch of this system is shown in Fig. 1 and the cylindrical 

system of coordinates Orzθ is ass-ociated with the axis of 

the cylinder.  Assume that on the arc of the inner circle of 

the cross section of the cylinder the continuously distributed 

normal time-harmo-nic forces act and these forces move 

with a constant velocity V along the cylinder’s axis, i.e. in 

the Oz axis direction (Fig. 1). Thus, within these 

frameworks we investigate the corresponding 3D non-

axisymmetric problem for the dynamics of the oscillating 

moving load and under this investigation we indicate the 

values related to the hollow cylinder (to the surrounding 

elastic medium) with the upper index (2) (with the upper 

index (1)).  

We write the corresponding 3D field equations and 

boundary and contact conditions. 

Equations of motion 
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Assume that the materials of the constituents of the 

system are isotropic and homogeneous, and we write the 

following elasticity relations: 
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Fig. 1 The sketch of the considered system (a) and the 

sketch of the distribution of the non-axisymmetric normal 

forces (b) 
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(2) 

A conventional notation is used in equations (1) and (2). 

According to Fig. 1, the following boundary conditions can 

be written. 

   ( )
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where Pα is determined from the following relation. 
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(4) 

It follows from the equation (4) that the vertical 

component of the summation of the external forces does not 

depend on the angle α (Fig. 1b) and this summation is 

constant. 

We suppose that on the interface surface between the 

cylinder and surrounding elastic medium the following 

perfect contact conditions are satisfied.    
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(5) 

At the same time, we assume that  

 (2) (1)
2 2min ;V c c  , 

( ) ( ) ( )
2 /
m m mc  = , 

1,2m = , 

(6) 

i.e., we assume that the velocity of the moving load is 

subsonic.  

According to physical-mechanical consideration, 

although we consider the subsonic moving velocity of the 

external forces as a result of the vibration of those we must 

satisfy the following conditions at “infinity” for the sought 

values instead of the decay conditions which are taken into 

consideration in the paper (Akbarov et al. (2018)). 

 (2) (2)(2) (2) (2); ;...; ; ;...; 0rr r zr z u u    →  as 

z Vt− → + ,

 (1) (1)(1) (1) (1); ;...; ; ;...;rr r zr z u u M const =     

as 
2 2( )r z Vt+ − → + . 

(7) 

This completes the formulation of the problem. Note 

that in the case where ω = 0 and 0V   this formulation 

coincides with that made in the paper (Akbarov et al. 

(2018)), however, in the case 0   and 0V =  this 

formulation coincides with that made in the paper (Akbarov 

and Mehdiyev (2018a)) in which the 3D non-axisymmetric 

problem on the forced vibration for the system under 

consideration has been studied. Also, note that the 

corresponding axisymmetric problem on the forced 

vibration has been examined in the paper (Akbarov and 

Mehdiyev (2018b)). 
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3. Method of solution 

 
We use the following Guz’s representation for solution 

to the boundary value problem (1)-(7) 
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where the functions Ψ(m) and X(m) are the solutions of the 

equations 
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(9) 

Note that this decomposition was proposed in the paper 

(Guz (1970)) and developed and applied under 

investigations of numerous concrete problems detailed in 

the monographs (Guz (1986a, 1986b, 1999, 2004)) and in 

many others listed therein.    

Instead of Guz’s foregoing decomposition (8) and (9), 

the well-known, classical Lame (or Helmholtz) 

decomposition can also be used as described, for instance, 

in the monograph (Eringen and Suhubi (1975)). It must be 

recalled that the classical Lame (or Helmholtz) 

decomposition is given for the case where the material of 

the considered body is isotropic. This decomposition 

contains one scalar and one vector potential (divergence of 

which is equal to zero) and each of them satisfies the well-

known Helmholtz equation. Moreover, an additional 

equation for the components of the vector potential is 

obtained by equating to zero the divergence of this vector 

potential. For instance, if the material of the cylinder (or of 

the surrounding medium) is transversally-isotropic with the 

Oz symmetry axis, then the Lame decomposition is not 

applicable. Namely, for such cases and for the cases where 

the cylinder and surrounding elastic medium have 

homogeneous initial stresses such as 𝜎𝑧𝑧
0 =  𝑐𝑜𝑛𝑠𝑡𝑧;  and 

𝜎𝑧𝑧
0 =  𝜎𝜃𝜃

0 = 𝑐𝑜𝑛𝑠𝑡𝑟  (here the upper index 0 denotes that 

these quantities regard the initial state), then as in the 

monographs (Guz (1986a, 1986b, 1999, 2004)) and other 

related works listed therein, the decomposition (8) and (9) is 

proposed for the solution to the equations of the three-

dimensional linearized theory of wave propagation in 

elastic bodies with initial stresses. Consequently, the 

representation (8) and (9) is more general and available and, 

as the present investigation may be continued for the cases 

mentioned above, then it can also be used here. Note that 

the representation (8) and (9) has also been used under 

investigation of many dynamical problems, examples of 

which can be found in the monograph (Akbarov (2015)) 

and others listed therein. 

Thus, we turn to the solution of the foregoing equations 

and for this purpose introduce a moving cylindrical 

coordinate system O′r′θ′z′ which is connected to the 

reference cylindrical coordinate system Orθz through the 

following relations 

'r r= , ' = , 'z z Vt= −  (10) 

According to coordinate transform (10), in the moving 

coordinate system O′r′θ′z′ the operators ∂/∂r, ∂/∂θ and ∂/∂z 

remain as are, i.e. they must be replaced with the operators 

∂/∂r′, ∂/∂θ′ and ∂/∂z′ respectively. Using the presentation 

g(r′,θ′,z′,t) = g̅(r′,θ′,z′)eiωt of the sought values in the moving 

coordinate system by direct verification we establish that 

the operator ∂/∂t must be replaced with the operator 

(V∂/∂z′−iω), and consequently, the operators ∂2/∂t2 and 

∂4/∂t4 with the operators (V∂/∂z′−iω)2 and (V∂/∂z′−iω)4 

respectively. Thus, making these replacing in all the 

foregoing equations and relations we obtain the equations 

and relations in the moving coordinate system and for 

solution to these equations we employ the exponential 

Fourier transform 𝑓𝐹 = ∫ 𝑓(𝑧′)𝑒𝑖𝑠𝑧′𝑑𝑧′
+∞

−∞
 with respect to 

the moving coordinate z′ (where s is a transformation 

parameter). For convenience below, we will omit the upper 

primes over the coordinates. 

 Note that in the case where ω = 0 as in the paper 

(Akbarov et al. (2018)), as well as in the case where V = 0 

as in the paper (Akbarov and Mehdiyev (2018a)), according 

to the symmetry and asymmetry of the sought values with 

respect to the plane z=0, the originals are presented through 

their cosines and sines, respectively Fourier transforms. 

However, in the present case, i.e. in the case where 

0V   , as a result the so-called “gyroscopic effect” the 

mentioned symmetry and asymmetry are violated and 

therefore the originals of the sought values are presented by 

the following relation   

1
( , , ) ( , , )

2

isz
Fg r z g r s e dz 



+
−

−

=   (11) 

 Using the expression (11) for each sought values and 

substituting their into the foregoing governing field 

equations and relations rewritten in the moving coordinate 

system, it is obtained the following equations for the 

functions 𝛹𝐹
(𝑚)

 and 𝑋𝐹
(𝑚)
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As it must be the periodicity of the mechanical 

quantities with respect to the circumferential coordinate , 

therefore, the Fourier transform of all the sought functions 

as well as the functions 𝛹𝐹
(𝑚)

 and 𝑋𝐹
(𝑚)

can be presented in 

the Fourier series form as follows. 
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Using expressions in (13) we obtain the following 

equations for the unknown functions 𝛹𝐹𝑛
(𝑚)

(𝑟, s)  and 

𝑋𝐹𝑛
(𝑚)

(𝑟, 𝑠) from the equations in (12). 
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n n Fn    − − = , 

2 2

1 2 2

d d

dd
n

n

r rr r
 = + − , 

(14) 

where  

( ) 2
( ) 2 2
1 ( )

( )
( )

m
m

m

sV
s

 




−
= −  (15) 

and solutions of the equation 

( ) ( ) 4 ( ) 2 ( ) 2( ) ( ) ( )m m m m sV− − − −


      

2 ( ) ( )( 2 )m ms + + 

( )
( )

( ) 2 2 ( )

( ) ( )
( )

2

m
m m

m m
sV s


  

 
− − − +

+
 

2 ( ) ( ) 2 ( ) 2
2

( ) ( ) ( ) ( )

( ) ( )

2 2

m m m

m m m m

s sV
s

  + − −
+ −  

 + +  

   

   
 

(16) 

( )( ) 2 2 ( )( ) 0m msV s− − − =   , 

are taken as 
( ) 2
2( )
m  and 

( ) 2
2( )
m  in (14). 

Thus, taking the conditions (6) and (7) into 

consideration, we determine the solution to the equations in 

(14) as follows. 

For the hollow cylinder 

(2) (2) (2) (2) (2)
1 1 1 1( ) ( )n nFn n nA I r B K r  = + , 

(2) (2) (2) (2) (2)
2 2 3 3( ) ( )n nFn n nA I r A I r  = + +  

(2) (2) (2) (2)
2 2 3 3( ) ( )n nn nB K r B K r + . 

(17) 

For the surrounding elastic medium 

(1) (1) (1)
1 1( )nFn nB K r = , 

(1) (1) (1) (1) (1)
2 2 3 3( ) ( )n nFn n nB K r B K r  = + . 

(18) 

In (17) and (18), ( )nI x  and ( )nK x  are the modified 

Bessel functions of the n−th order of the first and second 

kinds, respectively. Moreover in (17) and (18) the 

coefficients
(1)
1nB , 

(1)
2nB , 

(1)
3nB  

(2)
1nA , 

(2)
2nA , 

(2)
3nA , 

(2)
1nB  

and 
(2)
2nB are unknown constants which will be determined 

from the boundary (3) and contact (5) conditions.   

Thus, using the expressions (17), (18) and (13) we 

obtain the following expressions for the stresses and 

displacements from the equations in (8) and (2) which enter 

into the boundary and contact conditions given in (3) and 

(5). 

 For the surrounding elastic medium 

(1)
(1) (1)

120 13020 30(1)

( , )
( ) ( )rrF r s

B b r B b r= + +



 

(1) (1)
11 121 2

1

( ) ( )n nn n
n

B b r B b r


=

 + +
  

(1)
133 ( ) cos( )nnB b r n


 , 

(1)
(1) (1)

21 221 2(1)
1

( , )
( ) ( )r F

n nn n
n

r s
B b r B b r



=

= + +



 

(1)
233 ( ) sin( )nnB b r n


 , 

(1)
(1) (1)

320 33020 30(1)

( , )
( ) ( )rzF r s

B b r B b r



= + +  

(1) (1)
31 321 2

1

( ) ( )n nn n
n

B b r B b r


=

 + +
  

(19) 
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(1)
333 ( ) cos( )nnB b r n


 , 

(1) (1) (1)
420 43020 30( , ) ( ) ( )rFu r s B b r B b r= + +  

(1) (1)
41 421 2

1

( ) ( )n nn n
n

B b r B b r


=

 + +
  

(1)
433 ( ) cos( )nnB b r n


 , 

(1) (1) (1)
51 521 2

1

( , ) ( ) ( )n nF n n
n

u r s B b r B b r


=

= + +
  

(1)
533 ( ) sin( )nnB b r n


 , 

(1) (1) (1)
620 63020 30( , ) ( ) ( )zFu r s B b r B b r= + +  

(1) (1)
61 621 2

1

( ) ( )n nn n
n

B b r B b r


=

 + +
  

(1)
633 ( ) cos( )nnB b r n


  

For the hollow cylinder 

(2)
(2) (2)

120 13020 30(2)

( , )
( ) ( )rrF r s

A d r A d r= + +



 

(2) (2)
120 13020 30( ) ( )B c r B c r+ +  

(2) (2) (2)
11 12 131 2 3

1

( ) ( ) ( )n n nn n n
n

A d r A d r A d r


=

 + + +
  

(2) (2) (2)
11 12 131 2 3( ) ( ) ( ) cos( )n n nn n nB c r B c r B c r n+ +


, 

(2)

(2)

( , )r F r s


=  

(2) (2) (2)
21 22 231 2 3

1

( ) ( ) ( )n n nn n n
n

A d r A d r A d r


=

 + + +
  

(2) (2) (2)
21 22 231 2 3( ) ( ) ( ) cos( )n n nn n nB c r B c r B c r n+ +


, 

(2)
(2) (2)

320 33020 30(2)

( , )
( ) ( )rzF r s

A d r A d r= + +



 

(2) (2)
320 33020 30( ) ( )B c r B c r+ +  

(2) (2) (2)
31 32 331 2 3

1

( ) ( ) ( )n n nn n n
n

A d r A d r A d r


=

 + + +
  

(20) 

(2) (2) (2)
31 32 331 2 3( ) ( ) ( ) cos( )n n nn n nB c r B c r B c r n+ +


, 

(2) (2) (2)
420 43020 30( , ) ( ) ( )rFu r s A d r A d r= + +  

(2) (2)
420 43020 30( ) ( )B c r B c r+ +  

(2) (2) (2)
41 42 431 2 3

1

( ) ( ) ( )n n nn n n
n

A d r A d r A d r


=

 + + +
  

(2) (2) (2)
41 42 431 2 3( ) ( ) ( ) cos( )n n nn n nB c r B c r B c r n+ +


, 

(2)
( , )Fu r s =

(2) (2) (2)
51 52 531 2 3

1

( ) ( ) ( )n n nn n n
n

A d r A d r A d r


=

 + + +
  

(2) (2) (2)
51 52 531 2 3( ) ( ) ( ) cos( )n n nn n nB c r B c r B c r n+ +


, 

(2) (2)
62020( , ) ( )zFu r s A d r= +

(2) (2) (2)
630 620 63030 20 30( ) ( ) ( )A d r B c r B c r+ + +  

(2) (2) (2)
61 62 631 2 3

1

( ) ( ) ( )n n nn n n
n

A d r A d r A d r


=

 + + +
  

(2) (2) (2)
61 62 631 2 3( ) ( ) ( ) cos( )n n nn n nB c r B c r B c r n+ +


 

The expressions of the functions 1 ( )k nb r , 2 ( )k nb r , 

3 ( )k nb r , 1 ( )k nd r , 2 ( )k nd r , 3 ( )k nd r , 1 ( )k nc r , 

2 ( )k nc r  and 3 ( )k nc r  in (19) and (20) are given in 

Appendix A through the formulas (A1) and (A2). 

Now we consider the Fourier transform of the boundary 

(3) and contact (5) conditions and note that the second and 

third conditions in (3), and all the contact conditions in (5) 

remain valid as for the corresponding Fourier transforms. 

At the same time, the first condition in (3) is transformed to 

the following one. 

 (

 )

(2)

for / 2 / 2

0 for ,

/ 2, / 2

rrF
r R h

P

= −

− −  


=  − + −


−

   

   

 

 (21) 

Employing the Fourier series expansion to the 

expression in (21) we obtain 

(2)

2rrF
r R h

P
= −

= − −





 

1

2sin( / 2) 1
cos( )

n

P n
n



=







. 

(22) 
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Thus, using the expressions (20) and (22) we obtain the 

system of algebraic equations for each n−th group of the 

unknown constants from the boundary (3) and contact (5) 

conditions  

For the unknown constants 
(2)
20A , 

(2)
30A , 

(2)
20B , 

(2)
30B ,

(1)
20B  and 

(1)
30B   (for the 0−th group unknowns) 

( (2) (2)(2)
120 13020 30( ) ( )A d r A d r+ +  

)(2) (2)
120 13020 30( ) ( )

2r R h
B c r B c r P

= −
+ = − 




, 

( (2) (2)(2)
320 33020 30( ) ( )A d r A d r+ +  

)(2) (2)
320 33020 30( ) ( ) 0

r R h
B c r B c r

= −
+ = , 

( (2) (2)(2)
120 13020 30( ) ( )A d r A d r+ +  

)(2) (2)
120 13020 30( ) ( )

r R
B c r B c r

=
+ =  

( )(1) (1)(1)
120 13020 30( ) ( )

r R
B b r B b r

=
+ , 

( (2) (2)(2)
320 33020 30( ) ( )A d r A d r+ +  

(2) (2)
320 33020 30( ) ( )

r R
B c r B c r

=
+ =  

( )(1) (1)(1)
320 33020 30( ) ( )

r R
B b r B b r

=
+ , 

( (2) (2)
420 43020 30( ) ( )A d r A d r+ +  

)(2) (2)
420 43020 30( ) ( )

r R
B c r B c r

=
+ =  

( )(1) (1)
420 43020 30( ) ( )

r R
B b r B b r

=
+ , 

( (2) (2)
620 63020 30( ) ( )A d r A d r+ +  

)(2) (2)
620 63020 30( ) ( )

r R
B c r B c r

=
+ =  

( )(1) (1)
620 63020 30( ) ( )

r R
B b r B b r

=
+  

(23) 

For the unknown constants
(1)
1nB ,

(1)
2nB , 

(1)
3nB  

(2)
1nA , 

(2)
2nA , 

(2)
3nA , 

(2)
1nB , 

(2)
2nB  and 

(2)
3nB  (for the 

( 1)n th − group unknown constants): 

( (2) (2) (2)(2)
11 12 131 2 3( ) ( ) ( )n n nn n nA d r A d r A d r + + +  (24) 

)(2) (2) (2)
11 12 131 2 3( ) ( ) ( )n n nn n n

r R h
B c r B c r B c r

= −
+ + =  

2sin( / 2)
P

n





− , 

( (2) (2) (2)(2)
21 22 231 2 3( ) ( ) ( )n n nn n nA d r A d r A d r + + +  

)(2) (2) (2)
21 22 231 2 3( ) ( ) ( ) 0n n nn n n

r R h
B c r B c r B c r

= −
+ + = , 

( (2) (2) (2)(2)
31 32 331 2 3( ) ( ) ( )n n nn n nA d r A d r A d r + + +  

)(2) (2) (2)
31 32 331 2 3( ) ( ) ( ) 0n n nn n n

r R h
B c r B c r B c r

= −
+ + = , 

( (2) (2) (2)(2)
1 2 31 2 3( ) ( ) ( )k n k n k nn n nA d r A d r A d r + + +  

)(2) (2) (2)
1 2 31 2 3( ) ( ) ( )k n k n k nn n n

r R
B c r B c r B c r

=
+ + =  

( (1)(1)
11 ( )k nnB b r +  

)(1) (1)
2 32 3( ) ( )k n k nn n

r R
B b r B b r

=
+ , 1,2,3k = , 

( (2) (2) (2)
1 2 31 2 3( ) ( ) ( )k n k n k nn n nA d r A d r A d r+ + +  

)(2) (2) (2)
1 2 31 2 3( ) ( ) ( )k n k n k nn n n

r R
B c r B c r B c r

=
+ + =  

( (1)
11 ( )k nnB b r + )(1) (1)

2 32 3( ) ( )k n k nn n
r R

B b r B b r
=

+ ’ 

4,5,6k = . 

Solving for each n−th system of algebraic equations (23) 

and (24) separately we determine the aforementioned 

unknown constants from with the same we determine 

completely the Fourier transformation of the sought values. 

Determination of the originals of the sought values is 

reduced to the calculation of the integrals in the form (11) 

which is made numerically. Note that under this calculation 

the algorithm which is used and developed in many 

investigations of the first author of the present paper and 

detailed in the monograph (Akbarov (2015)) is used.  

In accordance with generally accepted terminology the 

method developed above can be named as analytic-

numerical method which is employed for solution to the 3D 

dynamic problem for the piecewise homogeneous medium. 

It is evident that this method can be also employed under 

investigation in many similar type problems. At the same 

time, it can be many cases where the employing of this 

method is impossible. Namely, in such cases, the 

corresponding problems can be solved purely numerical 

methods described in the monograph (Atluri (2004)) and in 

the paper (Useche and Alvarez (2016)) and in many others 

listed therein.    
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4. Numerical results and discussions  
 

In the present section, first, we attempt to determine the 

algorithm for determination of the critical velocity which 

differs from that developed and used in the paper (Akbarov 

et al. 2018). Note that this difference is caused by the 

“gyroscopic effect” and the corresponding algorithm is 

based on the calculation of values of the sought quantities 

through the numerical calculation of the (11) type integrals. 

Consequently, we consider also the algorithm for 

calculation these integrals which is also employed for 

calculation of the interface stresses which are caused by the 

oscillation moving load. Moreover, we analyze numerical 

results on the response of these stresses to the moving load. 
 

4.1 Algorithm for determination of the critical velocity 
 

As noted above, each n−th group of the unknown 

constants which enter into the expressions (19) and (20) are 

determined separately from the equations in (23) (for the 

case where n=0) and from the equations in (24) (for the case 

where 1n  ).  Under this determination the determinant 

of the matrix the elements of which are the coefficients of 

the aforementioned unknowns we denote through D0(R,h/R, 

μ(1))/ μ(2), s, (ω−sV)) for the case where n=0 and through 

Dn(R,h/R, μ(1))/ μ(2), s, (ω−sV)) for the case where 1n  .   

In the case where 0 =  as in the paper (Akbarov et al. 

(2018)) (or in the case where V = 0 as in the paper (Akbarov 

and Mehdiyev (2018a)) if the Fourier transform parameter 

s  is taken as the wavenumber and the load moving 

velocity V  as the wave propagation velocity (the load 

frequency as the wave frequency), then the equation 

(1) (2)
0

0
( , / , / , ,( )) 0D R h R s sV


  

=
− =  (251) 

or 

(1) (2)
0

0
( , / , / , ,( )) 0

V
D R h R s sV  

=
− =  (252) 

coincides with the dispersion equation of the longitudinal 

axisymmetric wave, and the equation  

(1) (2)

0
( , / , / , ,( )) 0nD R h R s sV


  

=
− =  (261) 

or   

(1) (2)

0
( , / , / , ,( )) 0n

V
D R h R s sV  

=
− =  (262) 

coincides with the dispersion equation of the flexural waves 

for the n−th harmonic in the system under consideration.  

Using the notation 

(1)
(1) (1)0

120 13020 30(1)

( , )
( ) ( )rrF R s

B b R B b R



= +  (27) 

(1)
(1)

111(1)

( , )
( )

nrrF
nn

R s
B b R= +




. 

(1) (1)
12 132 3( ) ( )n nn nB b R B b R+  

(28) 

the Fourier transform 𝜎𝑟𝑟𝐹(𝑅, 𝜃, 𝑠) = 𝜎𝑟𝑟𝐹
(1)

(𝑅, 𝜃, 𝑠) =

𝜎𝑟𝑟𝐹
(2)

(𝑅, 𝜃, 𝑠) of the interface normal stress  𝜎𝑟𝑟(𝑅, 𝜃, 𝑠) =

𝜎𝑟𝑟
(1)

(𝑅, 𝜃, 𝑠) = 𝜎𝑟𝑟
(2)

(𝑅, 𝜃, 𝑠) can be presented as follows. 

( , , )rrF R s  =
(1)

0( , )rrF R s +

(1)

1

( , )cos( )nrrF
n

R s n 


=

  
(29) 

In general case, i.e. in the case where 0V    the 

criterion for determination critical velocity (denote it by Vcr) 

we can formulate as follows  

(1) ( , , )rr R z  →   as crV V→  . (30) 

Note that the criterion (30) can be also written not only 

with respect to the interface normal stress but also for each 

quantities related to the stress-strain state in the system 

under consideration. Moreover note that this criterion 

occurs also for the case where 0. = It is evident that the 

employing of the criterion (30) requires the calculation of 

the (11) type integrals. However, in the case where 0 = , 

as in the paper (Akbarov et al. (2018)), the critical velocity 

determined from the criterion (30) coincides with that 

determined from the criterion ( ) 0ndV s ds = , where the 

function Vn = Vn(s) the graph of which is the corresponding 

dispersion curve, is determined from the solution of the 

dispersion equation (251) for the case where 0n =  and 

from the dispersion equation (261) for the cases where 

1n  .  Consequently, in the case where 0 =  the critical 

velocity can be determined without calculation of the (11) 

type integrals by the solution of the corresponding 

dispersion equations. However, in the cases where 

0V   the critical velocities must be determined from 

the criterion (30) which requires the calculation of the 

corresponding (11) type integrals. This is because in the 

cases where 0V     the equations (251) and (261) do 

not coincide with the corresponding dispersion equation and 

the critical velocity determined from the criterion 

( , ) 0ndV s ds =  for each fixed 0   (where function  

( , )n nV V s =  is the solution of the dispersion equations 

(251) for the case where n=0 and (261) for the case where 

1n  ) does not coincides with the corresponding one 

determined from the criterion (30).     

Thus, taking into consideration the foregoing 

discussions in the present investigation the critical 

velocities are determined from the criterion (30) which is 

based on the calculation of the (11) type integrals. Under 

this determination, if there exists the case where 

(1)
0 ( , ) isz

rrF R s e ds
+ −

−
→  

(1) ( , , )rr R z  →     as 0crV V→ , 

(31) 

then the critical V0cr is coincides with the corresponding one 

determined for corresponding axisymmetric problem of the 

oscillating moving load. However, if there exists the case 

where  
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(1)
( , ) isz

nrrF R s e ds
+ −

−
→    

(1) ( , , )rr R s  →   as ncrV V→ , 

(32) 

then the critical velocity Vncr is caused with the non-

axisymmetricity of the moving load.   

The analysis of numerous numerical results allows us to 

establish that the case (32) occurs only under n =1 and in 

connection with this the criterion (32) can be replaced with 

the following one.  

(1)
1( , ) isz

rrF R s e ds
+ −

−
→    

(1) ( , , )rr R z  →  , as 1crV V→  

(33) 

Note that in the case under consideration the critical 

velocities V0cr and V1cr determined from the criterion (31) 

and (33) respectively depends also on the vibration 

frequency   of the moving load. In this case the critical 

velocity V1cr appears as a result of the non-axisymmetric 

nature of the oscillating moving load, however, the critical 

velocity V0cr relates to the corresponding axisymmetric 

oscillating moving load. Through the comparison of the 

critical velocities V0cr and V1cr it can be concluded that 

“whether the values of the critical speed of the oscillating 

moving load depend on the non-axisymmetricity of this 

load or whether the critical velocity determined for the 

corresponding axisymmetric oscillating moving load case 

also occurs for the non-axisymmetric oscillating moving 

load case”. It is evident that if under this comparison it is 

obtained that V0cr < V1cr, then the minimum critical velocity 

of the non-axisymmetric oscillating moving load is the 

same as that obtained in the corresponding axisymmetric 

oscillating moving load case, however, if V1cr < V0cr then the 

non-axisymmetricity of the oscillating moving load causes 

the minimum critical velocity to decrease. 

 Below the application of the foregoing algorithm will 

be illustrated with the concrete examples.      
 

4.2 Algorithm for calculation of the integrals in (11)  
 

 We attempt to explain this algorithm with respect to the 

calculation the values of the interface normal stress 

𝜎𝑟𝑟(𝑅, 𝜃, 𝑠) with the use the Fourier transform of that 

determined by the expression (29). It follows from the 

equations (11) and (29) that it can be written the following 

approximate expression for this stress. 

1
( , , ) Re ( , , ) d

2

izs
rr rrFR z R s e s

+
−

−

=    


 

(1)
0

1
Re ( , , ) d

2

izs
rrF R s e s

+
−

−

+  


 

 (1)

1

1
Re ( , , ) d cos( )

2

N
izs

rrFn
n

R s e s n  


+
−

= −

 
 
 
 

   

(34) 

 

Fig. 1 The sketch of the Sommerfeld contour 

 

 

In this way, through the relation (34) the infinite Fourier 

series is replaced by the corresponding finite one and the 

number of terms in this finite series, i.e. the number N  in 

(34) is determined from the convergence requirement of the 

numerical results.  

We note that, according to the expressions of the 

integrated functions which are determined in the previous 

section, the integrals in (34) are named the wavenumber 

integrals. It follows from the foregoing discussions that 

these integrated functions have singular points with respect 

to s, and if the order of this singularity is equal to one, then 

the integrals have a meaning in Cauchy’s principal value 

sense. There are also cases where the order of the 

singularity is equal to two and the velocities corresponding 

to such cases is called the critical velocities. It is evident 

that the mentioned singular points are the roots of the 

equation 

(1) (2)( , / , / , ,( )) 0nD R h R s sV   − = , 

0,1,2,.....n =  
(35) 

with respect to s.   

Consequently, in connection with these singularities, 

calculation of the wavenumber integrals requires a special 

algorithm which is detailed in the monographs (Akbarov 

(2015), Jensen et al. (2011)) and others listed therein. It 

follows from the foregoing references that among the 

possible algorithms a more suitable and convenient one is 

the algorithm based on the use of the Sommerfeld contour 

method. Note that for employing this algorithm, according 

to Cauchy’s theorem, the contour  ,− + is “deformed” 

into the contour C (Fig. 2), which is called the Sommerfeld 

contour in the complex plane 1 2is s s= + . In this way the 

real roots of the equations (35) are avoided. Nevertheless, 

the values of the integrals calculated by the Sommerfeld 

contour algorithm have a jump in the near vicinity of the 

second order singular points. Namely this particularity 

allows to determine the critical velocity through the 

calculation of the aforementioned wavenumber integrals.   

Thus, according to the foregoing discussions, the 

integrals in (34) can be presented as follows.  

( , , ) ( , , )cos( )drr rrFC
R z R s sz s= =     

(1)
0( , )cos( )drrFC

R s sz s +                           

( )(1)

1

( , )cos( )d cos( )
N

nrrFC
n

R s sz s n 
=

   

(36) 
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     Using the configuration of the contour C given in Fig. 2 

we can write the following relation for the integrals in (36). 

0

1 1 1( ) d ( i )cos(( i ) )dizs

C
f s e s f s s z s

+
−

−

= − −     

0

1 1 1( i )sin(( i ) )di f s s z s

+

−

− − −   2 2(i )df s s

−

+ +




 

1 1 1

0

( i )cos(( i ) )df s s z s

+

+ + −    

1 1 1

0

( i )sin(( i ) )di f s s z s 
+

+ +  

(37) 

Assuming that 1 , the integral with respect to 2s  

in (37) can be neglected and it can used the following 

expressions for calculation of the stress ( , , )rr R z  . 

0

1
1

( , , ) ( , , i )
2

rr rrFR z R s

−

 −     


 

1 1cos(( i ) )ds z s− −  

0

1 1 1
1

( , , i )sin(( i ) )d
2

rrFi R s s z s

−

− − +    


 

1 1 1

0

1
( , , i )cos(( i ) )d

2
rrF R s s z s

+

+ + −    


 

1 1 1

0

1
( , , i )sin(( i ) )d

2
rrFi R s s z s   



+

+ + =  

0

0 1 1 1
1

( , , i )cos(( i ) )d
2

rrF R s s z s   


−

− − −  

0

0 1 1 1
1

( , , i )sin(( i ) )d
2

rrFi R s s z s

−

− − +    


 

0 1 1 1

0

1
( , , i )cos(( i ) )d

2
rrF R s s z s

+

+ + −    


 

0 1 1 1

0

1
( , , i )sin(( i ) )d

2
rrFi R s s z s   



+

+ + +  

0

1 1 1
1

1
( , , i )cos(( i ) )d

2

N

rrFn
n

R s s z s   


= −


 − − −



   

0

1 1 1( , , i )sin(( i ) )drrFni R s s z s

−

− − +      

(38) 

1 1 1

0

( , , i )cos(( i ) )drrFn R s s z s

+

+ + −      

1 1 1

0

( , , i )sin(( i ) )d cos( )rrFni R s s z s n    

+ 
+ +



  

Note that under calculation procedure, the improper 

integrals ∫ 𝑓(•)𝑑𝑠1
+0

−∞
 and ∫ 𝑓(•)𝑑𝑠1

+∞

0
in (38) are 

replaced with the corresponding definite integrals 

∫ 𝑓(•)𝑑𝑠1
0

−𝑆1
∗ and ∫ 𝑓(•)𝑑𝑠1

+𝑆1
∗

0
the values of 𝑆1

∗ are 

determined from the corresponding convergence 

requirement. Moreover, under calculation of these definite 

integrals, the intervals [−𝑆1
∗, 0] and [0, 𝑆1

∗] are divided into a 

certain number (denote this number through N1) of shorter 

intervals and within each of these shorter intervals, the 

integrals are calculated by the use of the Gauss algorithm 

with ten integration points.  

The values of the integrated functions at these integrated 

points are determined through the solution of the Eqs. (23) 

and (24). All these procedures are performed automatically 

in the PC by use of the corresponding programs constructed 

by the authors of the paper in MATLAB. 

Finally, also we note that the testing of the algorithms 

described above has been made in many investigations by 

the authors (see, for instance, the works ((Akbarov (2015) 

and Akbarov et al. (2018)) and others listed therein) and 

therefore this testing is not illustrated again here. At the 

same time, it must be noted that the all numerical results 

which will be discussed below are obtained in the case 

where N1 = 500, 𝑆1
∗ = 9  and 0.01 = . However, 

examples on the convergence of the numerical results with 

respect to the number N  in (38) (i.e. with respect to the 

terms in the finite Fourier series) will be given below.   

 

4.3 Numerical results related to the critical velocity 

 

Numerical results are obtained for the following selected 

material properties of the constituents of the system under 

consideration.  

Case 1. 
(1) (2) 0.35E E = , 

(1) (2) 0.1  = , 

(1) (2) 0.25 = = . 

(39) 

Case 2. 
(1) (2) 0.01E E = , 

(1) (2) 0.01  = , 

(1) (2) 0.25 = = . 

(40) 

Note that Case 1 (39) and Case 2 (40) correspond Case 1 

and Case 5 respectively considered in the paper (Akbarov et 

al. (2018)).  

Thus, first we consider examples on the determination 

of the critical velocity and for this purpose we select Case 2.  

This is because, in Case 2 both the inequalities 0crV 

1crV  and 1crV  0crV  take place the existence of each of 

them depends on the ratio /R h . For instance, as it follows 

from the results obtained in the paper (Akbarov et al.  
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(a) 

 
(b) 

Fig. 3 Response of the interface normal stress to the load 

moving velocity in the case where Ω = 0.0 under R/h = 2 

(a) and R/h = 2 (b). 
 

 

(2018)) that, for instance in the case where R/h = 2 the 

inequality V1cr < V0cr, however in the case where R/h = 20 

the inequality V0cr < V1cr takes place. We reminder that in 

the paper (Akbarov et al. (2018)) these results are obtained 

through the analysis of the dispersion curves of the 

axisymmetric longitudinal and flexural waves propagated in 

the system under consideration. We attempt establish these 

results with the use of the response of the interface normal 

stress to the load moving velocity and first consider the case 

where Ω = 0, i.e. the case which is also considered in the 

paper (Akbarov et al. (2018)). For this purpose we analyze 

the graphs given in Fig. 3 and obtained under Ω = 0 (Fig. 4 

obtained under Ω = 0.01 and 0.03), which show the 

dependence between 𝜎𝑟𝑟ℎ/𝑃0 (where 𝜎𝑟𝑟 =

𝜎𝑟𝑟(𝑅, 𝜃, 𝑠)|𝜃=0; 𝑧=0) and 𝑉/𝑐2
(2)

 under R/h = 2 (Fig. 3a, 4a) 

and under R/h = 20 (Fig. 3b, 4b).  

Note that in Figs. 3 and 4 the dashed line shows the 

values of the 𝜎𝑟𝑟ℎ/𝑃0 the Fourier transform of which is the 

first coefficient and the line indicated by the number 0 is the 

𝜎𝑟𝑟ℎ/𝑃0  the Fourier transform of which is the zeroth  

 
(a) 

 
(b) 

Fig. 4. Response of the interface normal stress to the load 

moving velocity in the case where Ω = 0.01 and 0.03 

under R/h = 2 (a) and R/h = 2 (b). 
 

 

coefficient in the Fourier series (29). Moreover, note that in 

Figs. 3 and 4 the vertical dashed lines indicate the values of 

the critical velocities of the moving load. At the same time, 

in these figures through the V1crw is indicated the so-called 

weak critical velocity under which the absolute values of 

the stress becomes in a considerable amount greater, than 

those obtained in the other values of the moving load 

velocity.  Such type critical velocities exist not only in the 

case where Ω > 0 but also in the case where Ω = 0. 

Nevertheless, this moment is missed and is not indicated in 

the paper (Akbarov et al. (2018)). In Figs. 3b and 4b critical 

velocity V1cr and in Fig. 4a the critical velocity V0cr are not 

shown because these critical velocities are greater than the 

change range of those in these figures.   
Thus, we analyze the graphs given in Figs. 3 and 4 and 

first we note that in the case where V1cr < V0cr (in Figs. 3a 
and 4a) the character of the investigated responses and the 
values of the critical velocities are determined through the 
graphs related to the 𝜎𝑟𝑟1ℎ/𝑃0. However, in the case where 
V0cr < V1cr (in Figs. 3b and 4b) the character of the 
mentioned responses and the critical velocities are 
determined through the graphs related to the 𝜎𝑟𝑟ℎ/𝑃0.  In 
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these cases the contribution of the additional terms in the 
Fourier series of the expression 𝜎𝑟𝑟ℎ/𝑃0  has only 
quantitative character. Note that this quantitative 
contribution has a great amount and the number N  of the 
selected terms in the Fourier series is determined from the 
convergence requirement |𝜎𝑟𝑟ℎ/𝑃0|𝑛=𝑁 − |𝜎𝑟𝑟ℎ/
𝑃0|𝑛=𝑁−1 ≤ 10−5. According to the results given in Figs, 3 
and 4 as well other ones which are not given here, it is 
established that for the satisfaction of the foregoing 
convergence criterion it is quite enough to take 20N = . 
Consequently, the results given in Figs. 3 and 4 illustrate 
also the convergence of the numerical results with respect 
to the number of terms selected in the Fourier series under 
calculation procedures.     

Thus, we again turn to the discussion of the foregoing 

results from which follows that in the case R/h = 2 and Ω = 

0.0 (i.e. in the case where V1cr < V0cr, Fig. 3a) the critical 

velocity determined through the “dispersion equation 

method” (261) under 1n =  and detailed in the paper 

(Akbarov et al. (2018)) correspond the velocity in in Fig. 3a 

at which the graphs of the 𝜎𝑟𝑟ℎ/𝑃0  have a jump and the 

amount of this jump increase with the number of terms in 

selected in the corresponding Fourier series. Note that in the 

calculation procedure if we decrease the step of the increase 

of the velocity 𝑉/𝑐2
(2)

 in the near vicinity of the critical 

velocity, then, according to the criterion (33), it is obtained 

that the amount of the mentioned jump can increase a very 

great amount. However, in such cases the visuality the 

graphs violates and therefore we prefer to give the graphs as 

they are illustrated in Figs. 3a and 4a and the cases where 

the aforementioned jumps take place it is taken as a critical 

velocity. Almost the same technique is employed under 

determination the critical velocity in the case where V0cr < 

V1cr through the graphs given in Figs. 3b and 4b. However, 

in this case, the jump in the values of the stress becomes 

more considerable than that in the previous case.   

The analysis of the graphs in Figs. 3 and 4 also shows 

that in the case where Ω = 0.0 it appears only one subsonic 

critical velocity of the type V1cr and one subsonic critical 

velocity of the type V0cr. However in the case where Ω > 0.0 

it may be appear critical velocities of the type V1cr or of the 

type V0cr the number of which is more than one. For 

instance, in the case where Ω = 0.01 two critical velocity of 

the type V1cr are illustrated in Fig. 4a and two critical 

velocity of the type V0cr are illustrated in Fig. 4a and 4b, 

respectively. It is obtained that one of the critical velocity is 

less (denote it by V1cr1 and by V0cr1) is less and the other one 

(denote it through V1cr2 and V0cr2) is greater than the 

corresponding critical velocities obtained in the case where 

Ω = 0.0, i.e. it is obtained that V1cr1 < V1cr < V1cr2 and  V1cr1 < 

V0cr < V0c2. Consequently, the oscillation of the moving load 

causes to appear certain number of critical velocities some 

of which may be less than that obtained in the non-

oscillation case. This fact is also indicated in the papers 

(Dieterman and Metrikine (1997), Akbarov and Salmanova 

(2009), Akbarov et al. (2015)) and is also detailed in the 

monograph (Akbarov (2015)). So that the fact on the 

appearing a certain number critical velocities and 

dependence of this number on the frequency of the 

oscillation moving load is not new one, however it is 

proven again with respect to the problem under 

consideration and this proving can be also taken as 

illustration (in the qualitative sense) of the trustiness of the 

solution method and calculation algorithm. Moreover, the 

trustiness of the obtained numerical results is examined 

with the numerical results obtained by other authors in 

particular cases under Ω = 0.0 which are given in the paper 

(Akbarov et al. (2018)).  

This completes the consideration of the algorithm for 

determination of the critical velocity of the oscillating 

moving load.  

Now we consider the influence of the problem 

parameters such as R/h and Ω = 0.0 on the values of the 

critical velocity determined by employing the foregoing 

algorithm. These values are presented in Table 1 the symbol 

“-” in this table means that there is not exists the critical 

velocity in the corresponding case.  It follows from this 

table that in both cases the values of the critical velocities 

decrease with increasing the values of the ratio R/h. 

Moreover, it follows that in Case 1 the values of the 

𝑉0𝑐𝑟1/𝑐2
(2)

 almost all the considered cases are less than the 

values of 𝑉1𝑐𝑟1/𝑐2
(2)

 for all the selected ratio R/h and the 

values of the 𝑉0𝑐𝑟1/𝑐2
(2)

decrease however the values of the 

𝑉0𝑐𝑟2/𝑐2
(2)

 increase with Ω.     

  However, in Case 2 under relatively small values of 

the ratio /R h , for instance under R/h =2 the values of 

𝑉1𝑐𝑟1/𝑐2
(2)

are less than the corresponding ones obtained for 

the 𝑉0𝑐𝑟1/𝑐2
(2)

 and before a certain Ω (denote it by Ω*) the 

values of the 𝑉1𝑐𝑟1/𝑐2
(2)

 decrease but the values of the 

𝑉1𝑐𝑟2/𝑐2
(2)

increase with Ω. However after this “certain 

value” of  , i.e. in the cases where Ω > Ω* the critical 

velocity 𝑉1𝑐𝑟1/𝑐2
(2)

 disappear and remain only the critical 

velocity 𝑉1𝑐𝑟2/𝑐2
(2)

and this velocity continues to increase 

with Ω. As follows from data given for Case 2 and 

illustrated in Table 1 that the values of the Ω* decrease with 

R/h and in the relatively great values of this ratio, for 

instance, in the cases where 𝑅/ℎ ≥ 5 not only the critical 

velocity 𝑉1𝑐𝑟1/𝑐2
(2)

but the critical velocity 𝑉1𝑐𝑟2/

𝑐2
(2)

disappears also. Moreover, in Case 2 the critical 

velocity 𝑉0𝑐𝑟1/𝑐2
(2)

, as the critical velocity 𝑉1𝑐𝑟1/𝑐2
(2)

, 

decreases also before a certain value Ω (denote it by Ω**) 

with the Ω and disappear after this certain value of Ω (i.e. in 

the cases where Ω > Ω**). However, in general, the critical 

velocity 𝑉0𝑐𝑟2/𝑐2
(2)

 increases in Case 2 after and before of 

the mentioned “certain value” of Ω, with Ω. 

Note that the foregoing discussions on the influence of 

the oscillation of the moving load on its critical velocity, in 

general, occurs also for the critical velocities obtained in 

Case 1. However, in Case 1 this influence has 

morecomplicated character and the critical velocities 

𝑉1𝑐𝑟1/𝑐2
(2)

 and 𝑉1𝑐𝑟2/𝑐2
(2)

may appear after a certain value 

of the oscillation frequency as in the case where R/h = 10 

and 20. Moreover, in Case 1 it may disappear the critical 

velocity 𝑉0𝑐𝑟2/𝑐2
(2)

 after a certain value of the Ω. This 

completes the analysis of the numerical results related to the 

critical velocity. 
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Table 1 The critical velocities 𝑉1𝑐𝑟1/𝑐2
(2)

, 𝑉0𝑐𝑟1/𝑐2
(2)

 (upper numbers) and 𝑉1𝑐𝑟2/𝑐2
(2)

, 𝑉0𝑐𝑟2/𝑐2
(2)

 (lower numbers) obtained 

for various values of Ω and R/h 

Case 1 Case 1 

R/h Ω 
(2)

1 2/crV c  
(2)

0 2/crV c  R/h Ω 
(2)

1 2/crV c  
(2)

0 2/crV c  

2.5 

0.00 0.919 0.910 

2.0 

0.00 0.460 0.797 

0.01 0.920
−  0.910

−
 0.01 0.415

0.505
 0.790

0.80
 

0.03 0.920
−  0.900

0.920
 0.03 0.290

0.60
 0.780

0.81
 

0.06 0.920
−  0.890

0.930
 0.05 0.080

0.355
 0.770

0.815
 

0.07 0.92
0.94

 0.880
0.940

 0.07 0.745
−  0.765

0.825
 

0.10 910
−

 0.870
0.940

 0.10 0.825
−  0.750

0.84
 

0.20 0.84
0.91

 0.830
0.950

 0.15 0.875
−  0.725

0.860
 

5.0 

0.00 0.930 0.864 

5.0 

0.00 0.544 0.547 

0.01 0.920
−

 0.850
0.930

 0.01 0.445
0.665

 0.535
0.555

 

0.05 0.910
−

 0.830
0.880

 0.05 - 0.495
0.595

 

0.07 0.890
−

 0.820
0.890

 0.07 - 0.470
0.61

 

0.10 0.860
−

 0.800
0.910

 0.10 - 0.435
0.640

 

0.15 0.81
0.94

 0.770
0.930

 0.15 - 0.375
0.680

 

0.20 0.740
−

 0.740
−

 0.20 - 0.310
0.725

 

10 

0.00 0.845 0.843 

10 

0.00 0.416 0.415 

0.02 0.930
−  0.830

0.920
 0.01 0.405

−
 0.400

0.430
 

0.04 0.890
−  0.810

0.860
 0.03 - 0.365

0.455
 

0.06 0.870
−  0.800

0.987
 0.05 - 0.330

0.485
 

0.09 0.830
−

 0.780
0.890

 0.07 - 0.295
0.510

 

0.10 0.810
−

 0.770
0.890

 0.10 - 0.235
0.550

 

0.15 0.740
−

 0.730
−

 0.15 - 0.110
0.633

 

0.20 0.660
−

 0.670
−

 0.20 - - 

20 

0.00 0.836 0.836 

20 

0.00 0.334 0.334 

0.01 0.890
−  0.820

0.840
 0.01 - 0.310

0.35
 

0.03 0.880
−  0.810

0.850
 0.03 - 0.265

0.390
 

0.05 0.860
−  0.800

0.860
 0.05 - 0.210

0.425
 

0.07 0.830
−

 0.780
0.870

 0.07 - 0.145
0.460

 

0.10 0.780
−

 0.760
0.890

 0.10 - 0.506
−  

0.15 0.700
−

 0.710
0.910

 0.15 - - 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Response of the normal stress to the load moving 

velocity under various frequency of oscillation of this 

load in Case 1 for R/h = 2.5 (a), 5 (b), 10 (c) and 20 (d) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 Response of the normal stress to the load moving 

velocity under various frequency of oscillation of this 

load in Case 1 for R/h = 2.5 (a), 5 (b), 10 (c) and 20 (d) 
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4.4 Numerical results related to stress distribution 
 

 In this subsection we consider the response of the 
interface stresses  

( , , )rr R z  = (1) ( , , )rr R z  = (2) ( , , )rr R z  , 

( , , )rz R z  = (1) ( , , )rz R z  = (2) ( , , )rz R z  ,

( , , )r R z  =
(1)

( , , )r R z  =
(2)

( , , )r R z   

(41) 

to the moving load action and its oscillation frequency.  

Under this consideration we assume that V < V0cr and first 

we consider graphs given in Figs. 5 and 6 which illustrate 

the response of the normal interface stress 𝜎𝑟𝑟(=

𝜎𝑟𝑟(𝑅, 𝜃, 𝑠)|𝜃=0; 𝑧=0 ) to the moving load velocity for 

various values of the oscillation frequency Ω in Case 1 and 

2, respectively. Throughout all the numerical investigation 

we assume that /12 = .  

We analyze the graphs given in Fig. 5 from which 

follows that the absolute values of the interface normal 

stress increase monotonically with the moving velocity and 

this increase takes place for each selected values of the 

oscillation frequency Ω in the relatively small values of the 

ratio /R h  (for instance, in the cases where / 2R h =  

and 5). Moreover, it follows from these graphs that the 

mentioned increase becomes significant as the load moving 

velocity V  approach to the corresponding 0 1crV . As the 

values V0cr1 decrease with the Ω, therefore, the velocities 

after which the sharp increase in the absolute values of the 

stress is observed, decrease with the Ω (Figs. 5a and 5b). 

However, under relatively great values of the ratio /R h  

(for instance, in the cases where / 10R h = and 20) the 

cases take place under which V0cr1 disappears, such as under 

Ω  =0.3 and 0.4 in the case where / 10R h = (Fig. 5c) and 

under Ω = 0.2, 0.3, 0.35 and 0.4 in the case where R/h = 20. 

Namely in such cases after a certain value of Ω the absolute 

maximum values of the stress decrease with the oscillation 

frequency Ω. Moreover, after the mentioned “certain 

frequency” the dependence between the stress and load 

moving velocity can have non-monotonic character as 

illustrated in Fig. 5d. It is evident that this non-monotone 

character of the dependence under consideration is caused 

by the non-axisymmetrycity of the moving load. 

Now we analyze the graphs related to Case 2 and given 

in Fig. 6, according to which, it can be conclude that in the 

relatively small values of the ratio R/h (for instance, under 

R/h =2.5 (Fig. 6a)) the non-axisymmetricity of the problem 

places the dominant role on the character of the 

dependencies under consideration. The mentioned 

particularity appears in clearer for the relatively small 

frequencies of the oscillation load. Note that in Fig. 6a the 

jumping in the graphs indicates the critical velocities 1 1crV  

(the first jumping from the “point” 𝑉 /𝑐2
(2)

=  0) and 

1 2crV (the second jumping from the “point” 𝑉 /𝑐2
(2)

= 0). 

Moreover, note that the mentioned jumps disappear after a 

“certain” values of the frequency Ω (for instance in the 

cases where Ω = 0.07 and 0.1 (Fig. 6a)). However, in the 

latter cases, the considered graphs have a complicated 

“vibrational” character for the small values of the load 

moving velocity. At the same, in the graphs given in Fig. 6a 

in the cases where Ω = 0.3, 0.01 and 0.03 it is observed the 

local minimums at which / 0rrd dV = . Namely these 

cases correspond the weak critical velocities which have 

been noted above.        

Also we consider the graphs obtained in Case 2 under 

R/h =5, 10 and 20 which are illustrated in Figs. 6b, 6c and 

6d, respectively, according to which, the character of the 

response of the stress to the moving load velocity and to the 

oscillation frequency of this load is similar to those 

obtained in Case 1. At the same time in Figs. 6b and 6c 

examples related to the responses of the stress to the load 

moving velocity in the cases where 0 1crV V  are 

presented under Ω = 0.3 and 0.15 for / 5R h =  and 10, 

respectively are presented. Note that similar situations occur 

in all the cases for which the critical velocity 0 1crV exist. 

However in the cases for which the critical velocity 0 1crV

does not exist the behavior of the aforementioned response 

is similar to graphs related to the cases where Ω = 0.35, 0.4 

in Fig. 6b, Ω = 0.2 in Fig. 6c and Ω = 0.1, 0.2 and 0.3 in 

Fig. 6d.  

This completes the analysis of the graphs given in Figs. 

5 and 6. Note that the response of the interface shear 

stresses rz  and r  to the oscillating moving load 

velocity is similar in the qualitative sense to those 

considered above for the normal stress rr . Therefore here 

we do not consider the results related to responses of the 

shear stresses.  

Consider the distribution of the interface stresses with 

respect to the coordinate z and we remind that this 

coordinate indicates the distance from the moving load to 

the considered point and in the case where 0z   (in the 

case where 0z   ) this point is behind of (ahead of) the 

oscillating moving load. Note that in the case where Ω = 0.0  

the distribution of the interface stresses rr  and r  

with respect to the coordinate z is symmetric, but the 

distribution of the stress rz  is asymmetric. However, in 

the cases where 0V    as a result of the so-called 

“gyroscopic effect” the aforementioned symmetry and 

asymmetry of the stress distributions violate and the 

magnitude of this violation increase with the values of the 

V  . Moreover, the magnitude of the noted violation 

depends also on the values of the ratio R/h.  

Thus, we analyze the results related to the influence of 

the “gyroscopic effect” on the distribution of the stresses 

with respect to the coordinate z  and for this purpose we 

consider only Case 2.  

Consider graphs given in Figs. 7 and 8 which illustrate 

the distribution of the normal stress 𝜎𝑟𝑟  with respect to the 

coordinate z  in the cases where R/h = 2.5 (Figs. 7a and 

8a), 5 (Figs. 7b and 8b), 10 (Figs. 7c and 8c) and 20 (Fig. 

7d and 8d). Under construction of the graphs given in Figs. 

7a, 7b, 7c and 7d (in Figs. 8a, 8b, 8c and 8d) the values of 

the dimensionless load moving velocity are selected as 

𝑉 /𝑐2
(2)

=  0.45, 0.45, 0.40 and 0.25 ( 𝑉 /𝑐2
(2)

=  0.35 , 

0.35, 0.20 and 0.15), respectively.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7 Distribution of the interface normal stress 𝜎𝑟𝑟  with 

respect to the coordinate z  in the cases where R/h = 2.5 

(a, 𝑉 /𝑐2
(2)

=  0.45), 5 (b,  𝑉 /𝑐2
(2)

=  0.45), 10 (c, 

𝑉 /𝑐2
(2)

= 0.40) and 20 (d, 𝑉 /𝑐2
(2)

= 0.25) 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 8 Distribution of the interface normal stress 𝜎𝑟𝑟  

with respect to the coordinate z  in the cases where 

/ 2.5R h = (a, 𝑉 /𝑐2
(2)

= 0.35), 5 (b, 𝑉 /𝑐2
(2)

= 0.35), 

10 (c, 𝑉 /𝑐2
(2)

= 0.20) and 20 (d, 𝑉 /𝑐2
(2)

= 0.15) 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Fig. 9 Distribution of the interface shear stress 𝜎𝑟𝑧  with 

respect to the coordinate z  in the cases where 

/ 2.5R h = (a, , 𝑉 /𝑐2
(2)

=  0.35), 5 (b, , 𝑉 /𝑐2
(2)

= 

0.35), 10 (c,\ , 𝑉 /𝑐2
(2)

= 0.20) and 20 (d, , 𝑉 /𝑐2
(2)

= 

0.20) 
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(a) 

 
(b) 

 
(c) 

 
 

 

Note that the distribution of the interface shear stress r  

with respect to the coordinate z and the influence of the 

mentioned “gyroscopic effect” on this distribution 

 
(d) 

Fig. 10 Distribution of the interface normal stress rr  

with respect to the coordinate   in the cases where 

/ 2.5R h =  (a, 𝑉 /𝑐2
(2)

= 0.35), 5 (b, 𝑉 /𝑐2
(2)

= 0.35), 

10 (c, 𝑉 /𝑐2
(2)

= 0.20) and 20 (d, 𝑉 /𝑐2
(2)

= 0.20) 
 

 

in the qualitative sense is similar to the corresponding 

distribution illustrated in Figs. 7 and 8 for the interface 

normal stress rr and therefore here we do not present the 

results related to this distribution. However, the distribution 

of the shear stress rz with respect to the coordinate z  is 

differing in the qualitative sense from the corresponding 

distributions given in Figs. 7 and 8 and therefore here we 

present also examples for this distribution through the 

graphs given in Fig. 9, which are constructed in the cases 

where in the cases where / 2.5R h =   (Fig. 9a, 𝑉 /𝑐2
(2)

= 

0.35), 5 (Fig. 9b, 𝑉 /𝑐2
(2)

= 0.35), 10 (Fig. 9c, , 𝑉 /𝑐2
(2)

= 

0.20) and 20 (Fig. 9d, , 𝑉 /𝑐2
(2)

= 0.20).    

Thus, it follows from Figs. 7, 8 and 9 that the magnitude 

of the influence “gyroscopic effect” on the distribution of 

the interface stresses increase with the frequency of the 

oscillation moving load. Moreover, the comparison of the 

results given in Fig. 7 with corresponding ones given in Fig. 

8 shows that this magnitude depends also on the values of 

the velocity of the moving load and on the closeness of this 

velocity to the corresponding critical velocity. This 

conclusion follows from the comparison of the results 

obtained under  =   with corresponding ones obtained 

under    . Moreover, it follows from this comparison 

that in the relatively great (small) values of the ratio /R h , 

for instance, under / 5R h  , (under / 2.5R h = ) the 

magnitude of the “gyroscopic effect” becomes more 

considerable in behind (in ahead) of the moving load. 

The analysis of the graphs given in Fig. 9 shows that the 

absolute maximum values of the shear stress rz  appear 

approximately in the near vicinity of the point / 0.5z h = . 

However, the analysis of the results given in Figs. 7 and 8 

shows that, excepting some particular cases, the absolute 

maximum values of the normal stress rr  appear 

approximately in the near vicinity of the point / 0.0z h = .  

731



 

Surkay D. Akbarov and Mahir A. Mehdiyev 

 

 
(a) 

 
(b) 

 
(c) 

 

 

Taking this statement into account we consider the 

distr ibution of  the stress rr  calculated at  point 

/ 0.0z h =  with respect to the circumferential coordinate 

 . The graphs of this distribution are given in Fig. 10 

which are constructed in the cases where / 2.5R h =   

(Fig. 10a, 𝑉 /𝑐2
(2)

= 0.35), 5 (Fig.10b, 𝑉 /𝑐2
(2)

= 0.35),  

 
(d) 

Fig. 11 Distribution of the interface shear stress r
 

with respect to the coordinate θ in the cases where R/h = 

2.5 (a, 𝑉 /𝑐2
(2)

= 0.35), 5 (b, 𝑉 /𝑐2
(2)

= 0.35), 10 (c, 

𝑉 /𝑐2
(2)

= 0.20) and 20 (d, 𝑉 /𝑐2
(2)

= 0.20) 

 

 

10 (Fig. 10c, 𝑉 /𝑐2
(2)

= 0.20) and 20 (Fig. 10d, 𝑉 /𝑐2
(2)

= 

0.20). 

It follows from the analysis of these graphs that the 

vibration of the moving load influence significantly on the 

distribution of the interface normal stress with respect to the 

circumferential coordinate. As follows from Fig. 10a that in 

the case where  =  under / 2.5R h =  the absolute 

values of the stress rr  decrease and becomes zero at a 

certain * =  after which this values again increase with 

the  .   However, in the cases where  / 5R h = , 10 and 

20 under  =  the absolute values of the stress decrease 

with the angle  . In these cases the vibration of the 

moving load causes to make such that after a certain angle 

' =  the values of the stress remain almost constant. At 

the same time, the values of this constant and the values of 

the difference 
0rr rr  

 
= =

−  depend significantly 

on the oscillation frequency of the moving load.  

Note that the distribution of the shear stress rz with 

respect to the coordinate  in the qualitative sense almost is 

same as that for the stress rr . Therefore here we do not 

present and discuss the results related to the distribution of 

the shear stress rz  with respect to coordinate  . 

However, numerical results related to the other interface 

shear stress r  show that the distribution of this stress 

with respect to the coordinate differs significantly than that 

obtained and discussed above for the normal stress rr . 

Therefore we consider also the numerical results related to 

this distribution which are given in Fig. 11 and constructed 

in the cases where / 2.5R h =   (Fig. 11a, 𝑉 /𝑐2
(2)

= 

0.35), 5 (Fig.11b,  𝑉 /𝑐2
(2)

=  0.35), 10 (Fig. 11c, 𝑉 /

𝑐2
(2)

= 0.20) and 20 (Fig. 11d, 𝑉 /𝑐2
(2)

= 0.20).  
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Thus, it follows from Fig. 11 that the values of the stress 

r are equal to zero at 0 =  and  =  which follows 

also from the expression of this stress given in (19) and 

(20). However, the values of the angle   at which the 

stress r  has its local maximums in the absolute value 

sense, depends not only on the ration /R h  but also on the 

frequency   of the oscillating moving load. It follows 

from Fig. 11a that in the case where / 2.5R h =  local 

maximum in the absolute value sense of the stress r

appear at 0.2rad   for all the considered values of the 

oscillation frequency   and at 1.5rad  for the cases 

where    and in these cases the absolute maximum 

of the stress appear namely at 1.5rad  . The similar 

situation appears also in the case where / 5R h = and the 

values of the stress r at 0.2rad   are also the 

absolute maximum values of that. However, in the cases 

where / 10R h = and 20 the mentioned absolute maximum 

appear at 0.14rad  for all the considered values of the 

 .  

 

 

5. Conclusions 
 

Thus, in the present paper, the dynamics of the 

oscillating moving load acting in the interior of the hollow 

cylinder surrounded with elastic medium is studied within 

the scope of the exact field equations of 3D elastodynamics. 

It is assumed that the oscillating load act on the certain arc 

of the internal circle of the cylinder's cross section and this 

load moves with constant velocity along the cylinder's axis. 

The corresponding boundary value problem is solved by 

employing of the moving coordinate system, the 

exponential Fourier transform and the Fourier series 

expansions of these transforms. It is got the analytical 

solution for the Fourier transforms and the originals of these 

transforms are determined numerically by the use of the 

corresponding PC programs and algorithms which are 

composed by authors. 

Numerical results on the influence of the so called 

“gyroscopic effect” on the critical velocity and on the 

distribution of the interface normal and shear stresses are 

presented and discussed.  According to this discussion, it 

can be drawn the following concrete conclusions:  

- The criterion which is based on the calculation of the 

values related to the stress-strain state related to the system 

under consideration is employed and the velocity of the 

oscillating moving load under which the absolute values, 

for instance, of the interface normal stress starts to increase 

indefinitely, is taken as a critical velocity; 

-The mentioned criterion applicable not only for the 

oscillating moving load but also for the not oscillating 

moving load, as well as for the cases where the materials of 

the constituents are the time dependent ones; 

- It is established that for determination the critical 

velocities the use of the zeroth and first terms in the Fourier 

series expansions of the sought values is enough and the 

critical velocity determined through the zeroth term 

coincides with that related to the corresponding 

axisymmetric oscillating moving load, however, the first 

term determines critical velocity caused by the non-

axisymmetricity of the oscillating moving load; 

  -Under calculation of the interface stresses the number 

of terms selected in Fourier series is determined from the 

numerical convergence criterion of the originals of this 

series and this number for the investigations under 

consideration is determined as 20N = ;  

-As a result of the “gyroscopic effect” it can be appear 

several, in general, two critical velocity instead of the one 

critical velocity which takes place under not oscillating 

moving load and the first (the second ) of these critical 

velocities is less (greater) than that obtained for the not 

oscillating moving load;    

- The first (the second) critical velocity decreases 

(increases) with the frequency of the oscillation of the 

moving load and this conclusion in the quantitative sense 

agrees with the corresponding ones obtained in the related 

conclusions made in the works by the other researchers;   

-The influence of the non-axisymmetricity of the 

problem under consideration appear in the cases where the 

following two conditions satisfy simultaneously: the 

thickness of the cylinder is relatively greater (for instance, 

under / 2R h =  and 2.5, where R  is a radius of the 

external radius of the cross section of the cylinder and h  is 

the cylinder’s thickness) and the modulus of elasticity of the 

cylinder material is greater significantly than that of the 

surrounding elastic material as in Case 2 indicated in (40); 

-The response of the interface normal stress to the 

oscillating moving load velocity depends not only in the 

quantitative sense but also in the qualitative sense on the 

oscillation frequency of this load: 

- The influence of the “gyroscopic effect” on the 

interface stresses appear clearer under consideration the 

distribution of those with respect to the coordinate which 

shows the distance from the moving load to the considered 

point in the cylinder’s axis direction and as a result of this 

effect the mentioned distribution in behind of the moving 

load differ significantly from that which appears in ahead of 

this load; 

- The “gyroscopic effect” influences also significantly 

on the distribution of the stresses with respect to the 

circumferential direction and in the relatively small values 

of the ratio /R h  this influence has not only quantitative 

but also qualitative character.   
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Appendix A 

 

In this appendix, explicit expressions of the functions 

1 ( )k nb r
, 2 ( )k nb r

, 3 ( )k nb r
, 1 ( )k nd r

, 2 ( ),k nd r

3 ( )k nd r
, 1 ( )k nc r

, 2 ( )k nc r
 and 3 ( )k nc r

 , which 

enter into equations (19) and (20) are given. These 

expressions are 
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