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1. Introduction 
 

Over the past two decades, with the vigorous 

development of modern industry, the effective properties of 

traditional materials were confronted by the emerging 

challenges and new demands. Therefore, to satisfy the 

product design with special requirements, various 

composite materials have been designed, manufactured and 

improved, such as functionally graded materials (Gao et al. 

2019a, Gao et al. 2019b, Gao et al. 2019c, Hosseini et al. 

2017, Hosseini et al. 2016, Hosseini et al. 2018), carbon 

nanotubes reinforced composites(CNTRCs) (Yuping et al. 

2018, Yengejeh et al. 2017) and fiber reinforced composites 

(Ahmed and Mamun 2017, Artioli 2018), to possess those 

desirable properties. Among those composites, functionally 

graded materials as a new kind of inhomogeneous 

composites whose properties can be varied continuously 

along a certain direction, exhibiting several mechanical and 

thermal remarkable advantages, such as eliminating stress 

concentrations and alleviate thermal stress, have long been 

widely applied in space projects, miscellaneous, 

communication field, aerospace and other fields (Barati 

2017a, Ebrahimi et al. 2016, Yahia et al. 2015, Zemri et al. 

2015, Khetir et al. 2017, Zidi et al. 2017, Bousahla et al. 

2016). For instance, the team led by Karami respectively 

studied wave propagation in functionally graded nanoplates 

(Karami et al. 2017, Karami et al. 2018b), functionally 

graded porous nanoshells (Karami et al. 2019a) and 

functionally graded nanobeams ( Karami et al. 2018a). Taati  

 

Corresponding author, Professor 

E-mail: xwshndc@126.com 

 

 

(2018) derived an exact solution for buckling and post-

buckling of functionally graded nanobeams subjected to 

mechanical-thermal loading. Srividhya (2018) developed a 

first-order shear deformation theory to undertake 

comparative studies for showing the effect of the material 

homogenization on a functionally graded plate. 

Beams, plates and shells which are used as structural 

elements in complex structures can be exposed to various 

types of loads. In order to effectively design such type 

structures on the nanometer scale, it is necessary to 

understand mechanical behaviors of the structural elements 

using respective methods. For one-dimensional 

components, Karami et al. (2019e) studied thermal buckling 

of smart porous functionally graded nanobeam; She et al. 

(2017b) analyzed buckling and postbuckling of functionally 

graded nanotubes; Karami et al. (2018e) provided a 

comprehensive analytical study on FG reinforced-

nanotubes. Besides, for two-dimensional plate structure, the 

analyses of shear buckling of porous nanoplates and shear 

buckling of single layer graphene sheets under 

hygrothermal environment were respectively undertaken by 

Shahsavari et al. (2018b) and Shahsavari et al. (2017). 

More works can be found in references (Karami et al. 

2018f, Karami and Shahsavari 2019, Karami et al. 2019e, 

Riccardo et al. 2018, Yazid et al. 2018, Bellifa et al. 2017b, 

Bakhadda et al. 2018, Mokhtar et al. 2018, Bouadi et al. 

2018, Besseghier et al. 2017a, Bouafia et al. 2017, Youcef 

et al. 2018, Bounouara et al. 2016, Mouffoki et al. 2017, 

Larbi et al. 2015, Ahouel et al. 2016, Cherif et al. 2018, 

Besseghier et al. 2017b, Belkorissat et al. 2015, Kadari et 

al. 2018,Younsi et al. 2018, Bousahla et al. 2014, Bennoun 

et al. 2016, Bourada et al. 2015, Belabed et al. 2014, 

Draiche et al. 2016, Bouafia et al. 2017) 

Owing to functionally graded materials related to 
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Abstract.  We in this article study nonlinear thermal buckling of bi-directional functionally graded beams in the theoretical 

frameworks of nonlocal strain graded theory. To begin with, it is assumed that the effective material properties of beams vary 

continuously in both the thickness and width directions. Then, we utilize a higher-order shear deformation theory that includes a 

physical neutral surface to derive the size-dependent governing equations combining with the Hamilton’s principle and the von 

Kármán geometric nonlinearity. It should be pointed out that the established model, containing a nonlocal parameter and a strain 

gradient length scale parameter, can availably account for both the influence of nonlocal elastic stress field and the influence of 

strain gradient stress field. Subsequently, via using a easier group of initial asymptotic solutions, the corresponding analytical 

solution of thermal buckling of beams is obtained with the help of perturbation method. Finally, a parametric study is carried out in 

detail after validating the present analysis, especially for the effects of a nonlocal parameter, a strain gradient length scale parameter 

and the ratio of the two on the critical thermal buckling temperature of beams. 
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temperature variation, thermal effect on structural 

components made of functionally graded materials should 

be discussed in detail. Bouderba et al. (2016) and Bouderba 

et al. (2013) separately studied thermal buckling response 

of FG plates and thermal bending of FG plates using a 

simple first order shear deformation theory. El-Haina et al. 

(2017) attempted to present a simple analytical approach to 

analyze the thermal buckling behaviors of FG plates. 

Besides, for functionally graded plates subjected to 

uniform, linear and nonlinear thermal loads, Menasria et al. 

(2017) used a new displacement field that contains 

undetermined integral terms to study thermal buckling and 

Chikh et al. (2017) used a simplified HSDT to account for 

Thermal buckling of cross-ply laminated plates. Meanwhile, 

a series of researches relevant to linear and nonlinear 

bending of functionally graded plates were carried out, 

including Hamidi et al. (2015), Tounsi et al. (2013), Zidi et 

al. (2014), Mouffoki et al. (2017), Attia et al. (2018). 

However, owing to the temperature field and the stress 

field in distributing in two or three directions, the 

conventional materials with one-directional functionally 

graded distribution are not well suitable for the complexity 

of changing circumstances. Furthermore, modern structures 

may require advanced materials whose properties vary 

continuously not only in one specified direction, but also 

different other directions. Thus, the study of bi-directional 

functionally graded materials in the frameworks of 

respective theories has been elevated from a fringe topic to 

a central analytic concern in recent years. Şimşek (2015) 

studied nonlinear free and forced vibration responses of bi-

directional FG beams subjected to various boundary 

conditions, where the material properties vary exponentially 

along thickness and axial directions. Based on the 

expression of material properties proposed via Hao and Wei 

(2016) and Nguyen et al. (2017) respectively utilized the 

wittrick-william algorithm with a non-iterative algorithm 

and a finite element formulation in conjunction with the 

Newmark method to analyze the dynamic response and 

mid-span axial stress. Meanwhile, static analysis of bi-

directional functionally graded beams has also been carried 

out, extensively. For instance, Pydah and Sabale (2016) 

with the help of the kinematical assumption of the Euler-

Bernoulli theory conducted a parametric study for the 

variation of critical stresses as well as displacements with 

both gradation parameters, the results of which indicated 

that such design has the capacity to satisfy a range of 

structural constraints as widely and accurately as possible. 

Moreover, the team led by Nejad ulteriorly extended the 

nonlinear model of Euler-Bernoulli theory, making it 

possible to characterize the size-dependent effect on 

vibration of bi-directional FG beams (Nejad and Hadi 

2016a), bending of bi-directional FG beams (Nejad and 

Hadi 2016b) and buckling of bi-directional FG beams 

(Nejad et al. 2016). Therefore, it is of salient theoretical and 

practical significance to further explore, and then to solve 

those essential mechanical problems concerning bi-

directional functionally graded beams. 

On the other hand, since the special structure of FGMs 

is absolutely different from that of homogeneous materials, 

the classic theories, like the Reddy beam model, the 

Timoshenko beam model and the Euler-Bernoulli beam 

model, all ought to be modified ulteriorly. To date, we have 

seen that more and more researchers put forward some 

modified displacement fields and novel theoretical 

analytical methods, the purpose of which is a step forward 

in acquiring the numerical solutions closely to the 

corresponding experiment results. Eltaher et al. (2013) 

proposed a formulas to determine the position of the neutral 

axis in FG beams, for which the finite element method was 

used to discretize the obtained approximate model. Huang 

and Li (2010) in analysis of transverse bending and 

vibration of circular shells made of FGMs presented a new 

high-order displacement field without acquiring a shear 

correction factor. More importantly, Zhang (2013a) was the 

first to put forward a high order shear deformation theory 

containing the physical neutral surface in studying 

nonlinear bending of FG beams. It should be noted that no 

stretching-bending couplings appears in the proposed 

constitutive equations due to the displacement components 

having the special forms. Subsequently, the researcher used 

the theory to analyze nonlinear bending of FG infinite 

cylindrical shallows (Zhang 2015) and vibration of FG 

rectangular plates (Zhang 2013b), and showed that the 

physical neutral surface theory has plenty of advantages in 

understanding mechanical properties of FGMs compared 

with the previous classic theories. Afterwards, Combined 

with the concept of physical neutral axis, Bousahla et al. 

(2014) proposed a new trigonometric higher-order theory to 

analyze the size-dependent bending of functionally graded 

plates and Al-Basyouni et al. (2015) developed a novel 

unified beam formulation to predict the size-dependent 

vibration of functionally graded beam. Recently, She et al. 

(2017) based on the above-mentioned theory derived a 

general higher-order shear deformation theory to study the 

difference among sixteen types of shear deformation model 

in predicting the critical thermal buckling temperature and 

the post-buckling thermal behaviors FG beams. 

For small-scale beams, the size-dependent effect on 

mechanical behaviors is growing in significance, which in 

different ways has been manifested via the experiments. It 

is not uncommon to utilize experimental methods, 

molecular dynamic simulations as well as continuum 

mechanical theories to perform the study of the size-

dependent effect on nanostructures. Even if the 

experimental method is likely to reach a more exact result, 

it is almost impossible to provide accurate instruments and 

set specific requirements for each test  (Hod et al. 2018). 

As for molecular dynamic simulations, it is no doubt to 

consume much time, specially, partly because the amount of 

atoms of nano-structures is huge and the current 

computational performance is poor (Zhen and Zhou 2017). 

At the present time, to overcome the difficulty, researchers 

attempt to explore the size-dependent effect on the 

mechanical behaviors of nanostructures using some 

promising continuum mechanical theories, such as gradient 

elasticity theories (Mindlin 1965, Lam et al. 2003, Yang et 

al. 2002), nonlocal elasticity theory (Eringen 1972, 

Ebrahimi and Barati 2016) and nonlocal strain gradient 

theory (Lim et al. 2015). 

Through summarizing the published literature, we have 
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learned that the effect of size-dependent on the stiffness of 

nanostructures can be classified into the stiffness-softening 

aligned with the stiffness-hardening effect. Nonlocal 

elasticity theory proposed via Eringen (1972) assumed that 

the stress is not only associated with a point but also a 

function of strains at all points in the body. Since then, 

researchers with the aid of the theory have studied the 

vibration (Ebrahimi and Salari 2015a, Ebrahimi and Salari 

2015b), buckling (Ansarim et al. 2011, Şimşek and Yurtcu 

2013) and static (Reddy 2007, John et al. 2003) of 

nanostructures in last decade, indicating that Eringen’s 

theory merely describes the stiffness-softening effect. For 

the stiffness-enhancement effect, there are a variety of the 

strain gradient or couple stress theories to account for this 

size effect (Mindlin 1965, Lam et al. 2003, Yang et al. 

2002) in which the stress at any point is closely related to 

high-order strain gradient terms. Based on these theories, 

numerous works with respect to the size-dependent 

mechanical behaviors of nanostructures have been carried 

out (Akgöz 2011, Bekir and Ömer 2013, Ansari et al. 2013, 

Zhang et al. 2015, Miandoab et al. 2015, Shojaeian et al. 

2016, Thai et al. 2017). Differing from the above-

mentioned theories, the nonlocal strain gradient theories 

proposed via Lim et al. (2015) build a bridge between the 

nonlocal elasticity theory and the strain gradient theory, 

which can synchronously characterize the stiffness-

softening effect and the stiffness-hardening effect owing to 

taking into account for the influences of nonlocal stress 

field and strain gradient stress field. Malikan and Nguyen 

(2018) combining with the nonlocal strain gradient theory 

developed a new first-order shear deformation theory in 

terms of the in-plane stability of composite nanoplates so 

that the precision of results could be improved, greatly. She 

et al. used it to study nonlinear bending of FG curved 

beams subjected to uniform transverse shear ( She et al. 

2019a), linear vibrations of nanotubes with evenly 

distributed porosity (She et al. 2018a), wave propagation of 

porous nanotubes (She et al. 2018b) and snap-buckling of 

porous FG curved nanobeams (She et al. 2019b). 

Particularly in the last few years, researchers have 

witnessed frequent usage of such theory and significant 

achievements in further studying the size-dependent effect 

on nanostructures, such as dynamics of FG viscoelastic 

nanobeams (Ghayesh 2018), free vibration of even and 

uneven porous nanoshells (Barati et al. 2017b), exact 

solutions of vibration of nanorods (Xu et al. 2017), free 

vibration of bi-directional FG nanotubes (Shafiei and She  

 

 

2018) as well as forced vibration of porous FG nanoshells 

(Faleh et al. 2018). For more information see the following 

papers (Karami and Janghorban 2016; Karami and 

Janghorban 2019; Karami and Maziar 2019; Karami et al. 

2019b; Karami et al. 2019c; Karami et al. 2019d; 

Shahsavari et al. 2018a; Karami et al. 2018c; Karami et al. 

2018d) Except for these, Lu et al. (2017) used a unified 

nonlocal strain gradient model to assess the effect of higher 

order terms on mechanical behaviors of nanobeams and 

Barati and Zenkour (2017) utilized a general bi-Helmholtz 

nonlocal strain-gradient model to explore the characteristics 

of wave propagation in FG double-nanobeams. Different 

from what were discussed above, Apuzzo et al. (2018) 

presented a modified nonlocal strain gradient model to seek 

new benchmarks for vibrations of beams, which can 

provide advantageous approaches for designing nanobeams. 

Nevertheless, to authors’ knowledge, there is no study 

related to nonlinear thermal buckling of bi-directional FG 

beams in the framework of nonlocal strain gradient theory, 

especially for two types of size dependent effect on the 

critical thermal buckling temperature. 

It should be pointed out that our study is motivated by 

the recent analysis of the effects of the nonlocal parameters, 

the strain gradient length scale and the ratio of the two on 

mechanical behaviors of nanostructures. Firstly, we put 

forward a bi-directional functionally graded beam model 

where the effective material properties are changed in the 

thickness and the width, and then give its expression. 

Secondly, we with the aid of perturbation method utilize a 

easier group of asymptotic solutions to obtain nonlinear 

thermal buckling approximate analytical solutions. Thirdly, 

a parametric study has been carried out in detail, especially 

for the effects of different parameters on the critical thermal 

buckling temperature of FG beams. 

 

 

2. Analysis 
 

2.1 Constitutive relation of bi-dimensional FG beam 
 

As shown in Fig. 1, the functionally graded beam with 

thickness h, width b and length L is composed of four 

different materials, where the effective material properties, 

such as Young’s modulus and thermal expansion, 

continuously vary along both thickness as well as width 

directions. The origin of Cartesian coordinates (X,Y, Z) is 

set at the middle of such nanoscale beam, while the axis of  

 

Fig. 1 Geometry and coordinate of functionally graded beam 
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Table 1 Temperature-independent coefficients of Young’s 

modulus, thermal expansion efficient for Al, Si3N4, SUS304 

and Al2O3 (Huang and Li 2010, She et al. 2017, Eltaher et 

al. 2012) 

 Si3N4 SUS304 Al2O3 Al 

E(pa) 322.27×109 207.79×109 390×109 70×109 

α(1/K) 7.4746×10-6 15.32×10-6 7.7×10-6 23.2×10-6 

 

 

X is along the mid-plane of the beam, and then the axis of Z 

is perpendicular to O-XY plane and directed upward. 

From the above figure we can know that, the effective 

material properties of bi-directional functionally beams can 

be defined as 

Pf = [𝑃1 + 𝑉1(𝑃2 − 𝑃1)](1 − 𝑉2) + [𝑃3 + 𝑉1(𝑃4 −

𝑃3)]𝑉2; 𝑉1 = (
1

2
+

𝑧

ℎ
)𝑁1 𝑎𝑛𝑑 𝑉2 = (

1

2
+

𝑦

𝑏
)𝑁2 

(1) 

in which P1, P2, P3 and P4 respectively refer to Al, 

Si3N4, SUS304 and Al2O3. Moreover, N1 and N2 are both 

non-negative gradient indexes which can change material 

compositions in gradient directions. Table 1 presents 

temperature-independent coefficients of respective material 

components. It ought to be pointed out that a constant 

Poisson for functionally graded materials has no 

pronounced effect on the results, which in different ways 

demonstrates the assumption is true (Yang et al. 2014, Cao 

and Evans 1989). Thus, the Poisson’s ratio v of four 

different materials are all set to be 0.3 based on the result 

from She et al. (2017). Besides, unless noted otherwise, 

both the thickness h and the width b are respectively equal 

to 1nm and the length of L is variable. 

 

2.2 Nonlocal strain gradient theory 
 

Owing to the small scale effect exhibiting a stiffness-

softening effect and a stiffness-hardening effect, Lim et al. 

(2015) put forward the nonlocal strain gradient elasticity 

theory interpreting both effects. Therefore, the total stress 

can be expressed as 

(1)= −t    (2) 

in which
(1)

and  respectively represent the classical stress 

and the higher order stress tensor, and are given as 

( )0 0, ,
V

e a dV   = σ x x C : ε
 

(3) 

( )(1) 2

1 1, ,
V

l e a dV   = σ x x C : ε
 

(4) 

where ( ) ( )
0 0 1 1

, ,  and , ,e a e a  x x x x are two nonlocal kernel 

functions which satisfy those conditions defined by Eringen 

(1972). Owing to attenuation functions for classical stress 

and higher order stress being the same, we consider both 

nonlocal parameters e0a and e1a have the numerical 

relationship: e0a=e1a=ea, the purpose of which is to account 

for the effect of nonlocal elastic stress field as compactly 

and reasonably as possible. Besides, ε,▽ε and C represent 

the strain tensor, the strain gradient tensor as well as the 

fourth-order elasticity tensor respectively, while l is the 

strain gradient length-scale parameter utilized to character 

the effect of higher-order strain gradient stress field. 

However, obtaining analytical solutions from nonlinear 

equations is difficult when using the above-derived formula. 

Thus, for the sake of simplification, the generalized 

nonlocal strain gradient constitutive relation can be defined 

in the differential form, again. 

( )
2 21 : :ea l − = −  

 
t C ε C ε

 
(5) 

 

2.3 Nonlocal strain gradient FG beam model 
 

In the remainder of this chapter, the nonlinear governing 

equations for nanobeams are derived in the framework of 

nonlocal strain gradient theory. For structures with 

rectangular cross section, some efficient and simplified 

models (Fourn et al. 2018, Bellifa et al. 2017a, Zine et al. 

2018, Bourada et al. 2018, Meziane et al. 2014, Meksi et al. 

2019, Boukhari et al. 2016) satisfying the stress boundary 

conditions on the surfaces have been developed. In these 

theories the transverse shear strains are assumed to be 

parabolically distributed across thickness. Aside from those 

theory, other theories, like trigonometric shear deformation 

theory (Bourada et al. 2019), hyperbolic shear deformation 

theory (Abdelaziz et al. 2017, Belabed et al. 2018), 

exponential shear deformation theory (Karama et al. 2003) 

are also widely used. In view of functionally graded beams 

with the special structure, the third-order shear deformation 

theory, including the physical neutral surface, further 

developed via Zhang (2013a) is used to establish the 

mathematical model. That is because that the physical 

neutral surface doesn’t coincide with the mid-plane of a FG 

beam. The displacement fields can be expressed as 

( ) ( )3

1 0 0 1 0

2

3

( , , ) ( )

( , , ) 0

( , , ) ( )

w
u x y z u x z z c z c

x

u x y z

u x y z w x

 


= + − − − +


=

=

 
 
 

 

(6) 

in which u0 and w(x) stand for displacements of any 

point along X and Y directions, and θ represents rotation 

angle on the physical neutral surface. Besides, z0 and c0 in 

Eq. (6) can be calculated by the following formula.  

( )

( )

( )

( )

3

0 0

, d , d
;

, d , d

A A

A A

zE z T z E z T
z c

E z T E z T

 

 
= =
 

 
 

(7) 

It is obvious that Eq. (6) can automatically degenerate 

into the third-order shear deformation theory proposed via 

Reddy when both z0 and c0 are equivalent to zero, which 

indicates the nanoscale beam made of a homogeneous 

material. 

By submitting the displacements into the von Kármán 

nonlinear strain-displacement relations, the strains can be 

written as 

( )
2

(0) (1) 3 (3)31

0 1 0

1
( )

2
xx x x x

uu
z z c z c

x x
   

  
= + = + − − − 
  

 (8) 
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(0) 2 (2)3 1

2xz xz xz

u u
c z

x z
  

 
= + = −
 

 

where 

2 2
(0) (1) (3)0

2

1
; ;

2
x x x

u w w

x x x x x

 
  

     
= + = = + 
     

 

(0) (2)

1 22 2

4 4
; ; ;

3
xz xz

w
c c

x h h
  


= = + = =


 

When a beam is subjected to a uniform temperature 

environment, based on Hooke’s law, the stresses associated 

with strain components can be arrived at. 

( ) ( ), ,x xz f xx f f f xzE E T G    = − 
 

(9) 

in which 

( )2 1

f

f

f

E
G

v
=

+
 

The variation of the virtual strain energy of the beam 

can be expressed as 

( )ds x xx xy xy    


 = +   
(10) 

where Ω is the volume of the beam. The submission of 

Eq. (8) into Eq. (10) yields the result. 

( ) ( ) ( )
2 2

3 20

0 1 0 22

1
= 1 d

2
s x xy

u w w w
z z c z c c z

x x x x xx

 
     



     
 + + − − − + + − + 

    

        
                


 

(11) 

Meanwhile, the variation of virtual work done by the 

external force is given by 

( )
/2

- /2
d

L

W
L

q w x  = −  
(12) 

Then, the Hamilton principle denotes that 

( )
2 2

1 1

d d 0
t t

s w
t t

t t  =  + = 
 

(13) 

When substituting Eq. (12) and Eq. (13) into Eq. (13), 

the governing equations can be obtained as 

1 2

22

1 22 2

d
: 0

d

d d
: 0

d d

d d dd
: 0

d dd d

x

x x

x x

x x x

x

N
u

x

M p
c Q c R

x x

p Q Rw
w N c c q

x xx x







=

− − + =

+ + − + =
 

(14) 

where 

( ) ( ), , d d ;x x xx xz x
A

N Q y z M =   

( ) ( )3

0 0d d ; d dxx x xx
A A

z z y z P z c y z = − = −   

By using the generalized nonlocal strain gradient 

differential constitutive equation, the stress result appearing 

in Eq. (14) can be reappraised as 

( )

( )

( )

22 2
2 2 2

11 11 1 112 2

22 2
2 2 2

11 11 1 112 2

22

2 2 2

11 11 12

1
1

2

1
1

2

1
1

2

x

x T

x

x T

x

x

N w w
N l A B c E N

x x xx x

M w w
M l B D c F M

x x xx x

P w
P l E F c

x xx

 


 





       
− = −  + − + −   

       

       
− = −  + − + −   

       

   
− = −  + − 

   

( )( )

( )( )

2

11 2

2

2 2 2

55 2 552

2

2 2 2

55 2 552

1

1

T

x

x

x

x

w
H P

xx

Q w
Q l A c D

xx

R w
R l D c F

xx



 

 

   
+ −  
   

  
− = −  − + 

  

  
− = −  − + 

    

(15) 

in which 

( )11 11 11 11 11 11, , , , ,A B E D F H =  

( ) ( ) ( ) ( )( ) ( )
223 3 3

0 0 0 0 0 01, , , , , d df
A
E z z z c z z z z z c z c z y − − − − − −

  

 

( )55 55 55, ,A D F =  

( ) ( ) ( )2 4 3

0 01, , d d ; , , 1, , d df T T T f f
A A
G z z z y N M P E T z z z c z y=  − −   

Substituting Eq. (15) into Eq. (14), we have 

3 2 2

1 2 3 83 2 2

2 3 5 4 2 3 4
2

1 2 3 82 3 5 4 2 3 4

( )

( ) 3 0

w w w w
r r r r

x xx x x

w w w w w w
l r r r r

xx x x x x x x




 

    
+ + + +
   

         
− + + + + + =  

          

(16) 

2
2 3 4 3 2 2 4

2 2

6 7 1 11 1 112 3 4 3 2 2 4

3 4 5 6 3 3 2 4 5
2 2

6 7 1 11 1 113 4 5 6 3 3 2 4 5
3 4

x

w w w w w w w
r r c H q c E N

x xx x x x x x x

w w w w w w w w
l r r c H c E

xx x x x x x x x x

 


 

              
 + + − + +  + + −     

              

           
− + + − +  +  +  

         

2 4
2

2 4
0T

w w
N

x x


 
  

  

  
− − = 

    

(17) 

where Nx in Eq. (17) is a constant and calculated by 

2 2 3 2 2 3 3 4
/ 2

2

11 11 1 11 11 11 1 112 3 2 2 3 3 4/ 2

1 1
d

2

L

x
L

w w w w w w w
N A B c E l A B c E x

L x x x xx x x x x x x

   

−

          
= + − + − + + − +

         

         
         

         


 

The coefficients appearing Eq. (16) and Eq. (17) are 

given by 

2

1 2 55 2 55 552r c D c F A= − −  

2

2 1 11 1 11r c H c F= −  

2

3 11 1 11 1 112r D c F c H= − + ; 

( )2

7 1 11 1 11 8 11 1 11; ;r c F c H r B c E= − = −  

( )2

7 1 11 1 11 8 11 1 11; ;r c F c H r B c E= − = −  

For a beam subjected to immovable clamped ends, it is 

essential to satisfy some boundary conditions. 

/ 2, / 2; 0, 0, 0.X L L u w = − = = =  (18) 

For the sake of simplicity and generality, we introduce 

the following dimensionless parameters. 

11 11 11 11 11 11, , , , ( , , , , , )
x w

w A B E D F H
L L L

 
    


= = = =  
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= 
3 2 4 6

11 11 11 11 11 11

3 2 4 6
, , , ,

o o o o o o

A B E D F H

S S L S L S L S L S L

     
 
 

 

2 4

55 55 55

55 55 55 2 4
( , , ) , ,

o o o

A D F
A D F

S S L S L

  
=  
 

 

2 2

1 2 1 2 2 2
( , ) ( , ) , , , , ,T

T q n

oo

rL qL l
c c c c T S l

S LS


 

 
= =  = = =  

0d d , d d ;T f f f
A A

r E z y S E z y= =   

After some mathematical operations, the governing 

equations of FG beams can be reappraised in the following 

form. 

3 2 2

1 2 3 83 2 2

2 3 5 4 2 3 4
2

1 2 3 82 3 5 4 2 3 4

( )

( ) 3 0

w w w w
r r r r

w w w w w w
l r r r r


 

   

 


      

    
+ + + +
   

         
− + + + + + =  

          

(19) 

2
2 3 4 3 2 2 4

2 2

6 7 1 11 1 112 3 4 3 2 2 4

3 4 5 6 3 3 2 4 5
2 2

6 7 1 11 1 113 4 5 6 3 3 2 4
3 4

q x

w w w w w w w
r r c H c E N

w w w w w w w w
l r r c H c E

 
  

       

 


       

              
 + + − + +  + + −     

              

          
− + + − +  +  +  

         
5

2 4
2

2 4
0n T

w w
S



 
 

  
  

  

  
− − = 

    

(20) 

where 

2 2 3 2 2 3 3 4

211

11 1 11 11 11 1 112 3 2 2 3 3 40 2
x

A w w w w w w w
N B c E l A B c E d

     


         


          
= + − + − + + − +

         

         
        

          


2 2

1 2 55 2 55 55 2 1 11 1 112 ;r c D c F A r c H c F= − − = −  

2 2

3 11 1 11 1 11 6 55 2 55 2 552 ; 2 ;r D c F c H r A c D c F= − + = − +  

( )2

7 1 11 1 11 8 11 1 11; ;r c F c H r B c E= − = −  

Moreover, the dimensionless boundary conditions can 

be rewritten as 

0, 0, 0;   / 2, / 2u w at   = = = = −
 

(21) 

 

 

3. Solution methodology 
 

In this section, a two-step perturbation method is used to 

solve the governing equations, and then to obtain the 

analytical solutions. At the beginning, it should be noted 

that λq is equal to zero in the case of nonlinear thermal 

buckling. Subsequently, we assume that the dimensionless 

displacement, dimensionless rotation angle and 

dimensionless temperature can be expanded as 

1

1

1

( , ) ( );

( , ) ( );

( , ) ( );

n

n

n

n

n

n

n

T n

n

w w   

     

     

=

=

=

=

=

=






 

(22) 

in which ε is only a perturbation parameter, but has no 

physical meaning. Via substituting Eq. (22) into Eqs, (19-

20), then collecting the same order ε, we acquire a set of 

perturbation equations 

1( )O   
3 2

1 1 1

1 1 2 33 2
( )

w w
r r r




  

  
+ + +
  

2 3 5 4

2 1 1 1 1

1 2 32 3 5 4
( ) 0

w w
l r r r

 

   

    
− + + + = 

    
 

(23) 

2 3 4

21 1 1 1

6 7 1 112 3 4

w w
r r c H

 

   

    
+ + − 

      
3 4 5 6

2 21 1 1 1

6 7 1 113 4 5 6

w w
l r r c H

 

   

     
− + + −  

        
2 4

0 21 1

2 4
0n T

w w
S  

 

  
− − = 

    

(24) 

2

3 2 2

2 2 2 1 1

1 2 2 3 83 2 2

2 3 5 4 2 3 4

2 2 2 2 2 1 1 1 1

1 2 3 82 3 5 4 2 3 4

( )

( )

( ) 3 0

O

w w w w
r r r r

w w w w w w
l r r r r




 

   

 


      

    
+ + + +
   

         
− + + + − + =  

           

(25) 

2
2 3 4 3 2

22 2 2 2 1 1 1

6 7 1 11 1 112 3 4 3 2

3 4 5 6 3 3 2 4 5

2 22 2 2 2 1 1 1 1 1 1

6 7 1 11 1 113 4 5 6 3 3 2 4 5
3 4

w w w w w
r r c H c E

w w w w w w w w
l r r c H c E

 


     

 


        

          
 + + − +  +   

          

             
− + + − +  +  +    

           

2 3 3 4 2 4

2 21 1 1 1 1 1 1 1

11 1 11 11 1 112 3 3 4 2 40

2 4

1 21 1

2 4

d

0n T

w w w w
B c E l B c E

w w
S

    
 

       

 
 


 
 

               
+ − + − − + −       

                

  
− − = 

  



 

(26) 

3

3 2

3 3 3

1 3 2 33 2

( )

( )

O

w w
r r r






  

  
+ + +
    

2 3 5 4 2

2 3 3 3 3 1 2

1 2 3 82 3 5 4 2
( )

w w w w
l r r r r

 


    

      
− + + + + 

     

2

2 1

8 2
0

w w
r

 

 
+ =

 
 

(27) 

2 3 4 3 3 2 2

23 3 3 3 2 1 1 2 1 2

6 7 1 11 1 112 3 4 3 3 2 2

3 3 2 4 2 4 5 5

2 1 2 1 1 2 1 2 2 1

1 11 3 3 2 4 2 4 5 5

2

3

6

2

6 4 4

w w w w w w w w
r r c H c E

w w w w w w w w w w
c E

l

r

 


        


        

            
+ + − +  +  +    

          

          
 +  +  +  +  

         
−


+

4 5 6

23 3 3 3

7 1 113 4 5 6

2 3 3 4 2 4

2 21 1 1 1 1 1 2 2

11 1 11 11 1 112 3 3 4 2 40

2

11 1 2

11

d

2

w w
r c H

w w w w
B c E l B c E

A w
B



 

   

   
 

       

 



 
 
 
 

    + + − 
      

               
− + − − + −       

                

  
+ 

 



2

2 2

1 11 2 2 4

21 1

2 40 3 2 2 3 3 4

2 1 1 1 1 2 2 2

11 11 1 113 2 2 3 3 4

2 4

2 21 1

2 4

d

0n T

w
c E

w w

w w w w w
l A B c E

w w
S





  
 

  


      

 
 

   
− +  

        
−   

              
− + + − +                 

  
− − = 

  



 

(28) 

To resolve these perturbation equations as easily and 

reasonably as possible, we in this study propose a group of 

easier asymptotic solutions of dimensionless displacement 
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and dimensionless rotation angle that can satisfy necessary 

boundary conditions. 

( ) ( ) ( )

( ) ( ) ( )

1 4

10

1 4

10

cos 2 +1 ;

sin 2 ;

w A m O

B m O

   

    

= +  

= − +
 

(29) 

We submit Eq. (29) into Eq. (23) obtaining 

( )2

1 21 1

10 102

1 3

2 4

4

m r m r
B A

r m r

−
= −

−
 

(30) 

Then, the submission of Eq. (30) and Eq. (29) into Eq. 

(24) yields: 

( )( )2 22 2
6 7 1 20 2 2

6 1 112 2 2

1 3

4 4(1 4 )
4

(1 4 ) 4
T

r m r r m rm l
r m c H

m r m r




 − −+
 = + −

+ −    

(31) 

By submitting Eq. (29) into Eq. (26), 
1

T  is obtained as 

1 0T =
 (32) 

After substituting Eq. (29) and Eq. (30) into Eq. (28), 

one has 

2 2

2 1 211

10( )T

n

m A
A

S


 =

 

(33) 

Finally, the asymptotic solution of dimensionless 

temperature can be arrived at 

( )0 1 2 4

T T T T O    = + + +
 

(34) 

1

10A is another perturbation parameter that can be 

determined, submitting =0
 into the first expression of 

Eq. (29). 

1

10
2

m

m

W
A W

L
= =

 
(35) 

Obviously, the perturbation parameter is closely 

connected with the dimensional maximum deflection Wm. 

Thus, the asymptotic solution of dimensionless temperature 

can be rewritten as 

( )( )2 2 02 2
6 7 1 22 2

6 1 112 2 2

1 3

4 4(1 4 )
4

2(1 4 ) 4

m

T

r m r r m r Wm l
r m c H

Lm r m r




 − −+  
 = + −  

+ −     

 

1

0
2

mW

L

 
+  

 

22 2

11 ...
2

m

n

Wm A
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Here, it should be pointed out that the result of 
0

T  is 
equal to the critical buckling temperature of beams, partly 
because the buckling of beams always occurs in Wm = 0. 
Moreover, m is always equivalent to 1 in analysis of static 
mechanical behaviors (Shen et al. 2013). 
 
 

4. Numerical results and discussions 
 

The main objective in this section is to study the effect 
of respective physical parameters on the static thermal 
buckling of bi-directional FG beams, especially for the 
relation between both size-dependent effects. 

Table 2 Comparisons of the critical thermal buckling 

temperature λT of Si3N4 /SUS304 beams with two clamped 

ends (L/h = 25) 

L/h Sources N=1 N=2 N=3 N=4 N=5 

20 
She et al. 
(2017a) 

710.491 655.616 633.376 619.886 610.086 

 Present 710.519 655.648 633.409 619.92 610.12 

 Differences 0.0039% 0.0049% 0.0052% 0.0055% 0.0056% 

30 
She et al. 
(2017a) 

320.154 295.608 285.698 279.673 275.276 

 Present 320.167 295.623 285.713 279.688 275.292 

 Differences 0.0041% 0.0051% 0.0053% 0.0054% 0.0058% 

40 
She et al. 

(2017a) 
180.966 167.128 161.548 158.153 155.672 

 Present 180.973 167.136 161.557 158.162 155.681 

 Differences 0.0039% 0.0048% 0.0056% 0.0057% 0.0058% 

 

Table 3 Effect of both volume index N1 and N2 on critical 

thermal buckling temperature of bi-directional FG 

nanobeams. (μ = 1nm, l = 0.5nm, h = b = 1nm) 

N2 N1 L=15h L=20h L=25h L=30h L=35h L=40h L=45h L=50h 

0 1 1083.37 652.052 431.287 305.053 226.652 174.812 138.826 112.86 

 2 1013.54 610.721 404.169 285.958 212.504 163.919 130.186 105.842 

 3 989.216 596.584 394.978 279.519 207.748 160.265 127.292 103.494 

 4 974.428 587.959 389.359 275.579 204.836 158.027 125.519 102.055 

 5 962.8 581.083 384.851 272.406 202.485 156.217 124.084 100.889 

1 1 935.328 562.571 371.981 263.059 195.43 150.721 119.688 97.2984 

 2 861.258 518.76 343.246 242.829 180.442 139.182 110.537 89.8653 

 3 843.671 508.877 336.932 238.45 177.227 136.723 108.594 88.2924 

 4 835.753 504.577 334.235 236.6 175.879 135.696 107.786 87.6396 

 5 829.448 501.047 331.984 235.041 174.736 134.821 107.096 87.0809 

2 1 889.002 534.517 353.372 249.876 185.626 143.154 113.677 92.4096 

 2 813.455 489.812 324.044 229.225 170.325 131.374 104.333 84.8205 

 3 799.332 482.091 319.183 225.883 167.885 129.514 102.868 83.6365 

 4 795.3 480.225 318.127 225.206 167.413 129.166 102.601 83.4241 

 5 792.261 478.744 317.258 224.635 167.009 128.864 102.366 83.2365 

3 1 865.192 520.093 343.803 243.096 180.583 139.262 110.585 89.8951 

 2 788.302 474.569 313.929 222.058 164.994 127.26 101.064 82.162 

 3 775.852 467.893 309.771 219.218 162.929 125.69 99.8301 81.1661 

 4 773.937 467.357 309.612 219.182 162.937 125.713 99.8584 81.1947 

 5 772.764 467.051 309.537 219.179 162.957 125.74 99.886 81.2207 

 

 

4.1 Validation and comparison 
 

Before conducting the parametric studies, we should 

perform a validation research to check the accuracy and 

reliability of the present solutions for thermal buckling 

problems. Table 2 shows a comparison of the critical 

thermal buckling temperature of beams with two clamped 

ends, where the beam without the size-dependent effect is 

made of Si3N4/SUS304 functionally graded materials and 

L=25h. As shown in Table 2, the results obtained from the 

present solution are much more consistent with ones form 

She et al. (2017), indicating that the present analysis is 

reliable and reasonable. 
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Fig. 2 Effect of the nonlocal parameter μ on critical 

thermal buckling temperature of beams with bi-

directional functionally graded distribution 

 

 
Fig. 3 Effect of the strain gradient parameter l on critical 

thermal temperature buckling with bi-directional 

functionally graded distribution 

 
 

4.2 Parametric studies 
 

Table 3 presents the effect of both volume indexes N1 

and N2 on critical thermal buckling temperature of bi-

directional FG nanobeams, where μ=1nm, l=0.5nm, 

h=b=1nm. It is indicated from the figure that the critical 

buckling temperature of beams are decreased greatly and 

continuously with the increment of N1 and N2. That is due to 

the fact that the increase of two volume indexes can 

improve portion of metal, SUS304 and Al, but reduce 

portion of ceramic, Al2O3 and Si3N4, and thus leading to a 

pronounced reduction in the overall stiffness of functionally 

graded beams. Furthermore, it also can be seen from the 

table that the critical buckling temperature of beams can be 

significantly reduced via the increase of aspect ratio, partly 

because the aspect ratio has a prominent influence on the 

overall stiffness of beam. To be specific, the effective 

stiffness of beams is weakened by the growing ratio of L/h. 

Fig. 2 and Fig. 3 respectively exhibit the effects of the 

nonlocal parameter μ and the strain gradient parameter l on 

the critical thermal buckling temperature of beams. As 

shown in Fig. 2, the temperature is reduced continuously 

with the rise of nonlocal parameter μ, indicating that the 

effective stiffness of beams becomes smaller and smaller. 

The reason is that the nonlocal stress field plays a great 

influence on reducing the overall stiffness of beams. Thus, 

the size-dependent effect of nano-structures is interpreted as  

 

Fig. 4 Variation of the critical thermal buckling 

temperature relevant to l/μ for the nanobeam 

 

 
Fig. 5 Effect of the aspect ratio on critical thermal 

buckling temperature of beams using the nonlocal strain 

gradient theory 
 

 

the effect of stiffness-softening via previous scholars. 

Unlike for the effect of the nonlocal parameter μ, the curve 

of Fig. 3 shows that the critical thermal buckling 

temperature is prominently improved with an increase in the 

value of the strain gradient parameter l, which indicates that 

the strain gradient parameter l is endowed with the larger 

value, the bigger the effective stiffness of beams will be. 

Thus, the strain gradient theory exerts a stiffness-hardening 

role in analyzing mechanical behaviors of nano-structures. 

Fig. 4 describes the variation of the critical thermal 

buckling temperature with respect to the small-scale ratio of 

l/μ for bi-directional functionally graded beams. It can be 

seen from the figure that when l/μ<1, the critical thermal 

buckling temperature computed by the nonlocal strain 

gradient theory are all smaller than those computed by the 

classical elasticity theory, and the temperature becomes 

lower and lower with the rise of the nonlocal parameter μ at 

the same ratio of l/μ; when l/μ>1, the critical thermal 

buckling temperature computed by the nonlocal strain 

gradient theory are all bigger than those computed by the 

classical elasticity theory, and the temperature becomes 

higher and higher with the rise of the strain gradient 

parameter l at the same ratio of l/μ; when l/μ=1, the critical 

thermal buckling temperature obtained by the nonlocal 

strain gradient theory are eventually identical with ones 

obtained by the classical elasticity theory. The main reason 

is that the nonlocal effect is much more dominant than the 

microstructure effect at l/μ <1, and thus making that the  
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Fig. 6 The effect of aspect ratio on the thermal post-

buckling load-deflection curves of beams 

                        

 

Fig. 7 The influence of two volume indexes relevant to 

the thermal post-buckling load-deflection of beams 

 

 

nanostructures exert the effect of the stiffness-softening, but 

the microstructure effect is much more dominant than the 

nonlocal effect at l/μ>1, and thus making that the 

nanostructures exert the effect of the stiffness-hardening. As 

for l/μ=1, two kinds of size-dependent effect cancel each 

other out, as shown in the analytical solution Eq. (31), just 

like neither the stiffness-softening effect nor the stiffness-

hardening effect can be captured via the classical elasticity 

theory. 

Fig. 5 displays the effect of the aspect ratio on critical 

thermal buckling temperature of beams in the framework of 

the nonlocal strain gradient theory. As can be seen in the 

figure, both the nonlocal effect and the microstructure effect 

are gradually decreased with the aspect ratio of L/h 

becoming large. Furthermore, it should be mentioned out 

that the difference between two kinds of the size-dependent 

effect is insignificant after a specific aspect ratio. In other 

words, when L>35h, the primary influence on the effective 

stiffness of beams at the very small nano-scale is the 

slenderness ratio L/h rather than the size-dependent effect. 

From a physical standpoint, the reason is that the 

wavelength becomes large with an augment in the side 

length, thus weakening the size-dependent effects.  

Fig. 6 shows the effect of aspect ratio L/h with respect to 

the thermal post-buckling load-deflection curves of beams. 

These curves from this figure indicates that an increment in 

the ratio L/h results in an overall reduction in the results of 

the critical thermal buckling temperature as well as thermal 

post-bucking strength. That is due to the fact that the 

effective stiffness of beams is reduced by the rise of the 

ratio of L/h. For every curve, the nonlinear thermal post-

bucking temperature continuously varies along the 

maximum dimensionless buckling amplitude, quite 

differing from the linear thermal buckling temperature, the 

attribute of which is similar to enhancing spring behaviors. 

Fig.7 presents the effect of two volume indexes N1 and 

N2 on the thermal post-buckling of bi-directional 

functionally graded beams. From the figure, we can know 

that the thermal post-buckling strength of bi-directional FG 

beams is declined gradually by the increase of N1 and N2 , 

partly because the elastic modulus of bi-directional FG 

beams can be changed via the volume indexes, the result of 

which has a pronounced influence on the thermal post-

buckling strength. Besides, it is clear that the effect of index 

N1 on the thermal post-buckling response is more 

significant than the effect of index N2. So, it is advised to 

choose both volume indexes to design those engineering 

structures subjected to the thermal environment so that the 

thermal post-buckling response with such design is much 

more flexible and controlled more accurately compared 

with that with one volume index. 

 

 

5. Conclusions 
 

Authors in this work study nonlinear thermal bucking of 

nanobeams subjected to two-directional functionally graded 

distributions in the framework of the nonlocal strain 

gradient theory. Based on the assumption and approximate 

mathematical model established by us, the effective 

material properties of the bi-directional functionally graded 

beams are defined, and then using it and the perturbation 

method, together, to investigate the critical thermal buckling 

and post-buckling mechanical behaviors of bi-directional 

functionally graded beams. Finally, several important 

conclusions are listed as follows. 

• The nonlocal elasticity theory and the strain gradient 

theory have the opposite effect on the critical thermal 

buckling temperature of bi-directional FG nanobeams. 

• Both the nonlocal effect and the microstructure effect 

on the critical thermal buckling temperature will be 

insignificant when the slenderness ratio L/h>35. 

• The critical thermal buckling temperature of 

nanobeams predicted by the nonlocal strain gradient theory 

may be equal to that predicted by the classical elasticity 

theory, but also may be higher and lower, depending on the 

strain gradient parameter, the nonlocal parameter and the 

ratio of two small-scale parameters. 

• Both the critical thermal buckling temperature and the 

post-buckling thermal strength are prominently influenced 

via the change of double volume indexes. 

• The thermal buckling response of functionally graded 

beams with two volume indexes is much more flexible and 

controlled more accurately than that with one volume index. 

The present results may be helpful to the design of 2D 

FGM in engineering applications. Furthermore, the method 

appearing in this article is also used to investigate other 

kinds of materials on the nano-meter length. 
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