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1. Introduction 
 

Functionally graded (FG) plates have been wildly 

exploited in many areas of engineering applications such as 

space plane bodies, solar panels, armor plates, an inner wall 

of nuclear reactors and fire-retardant doors due to their high 

thermal resistant and great strength. The FG plates are 

composite structures that have a continuous variation of 

material properties from one surface to another surface 

through the plate thickness, and thus eliminate the stress 

concentration which can be found in the laminate and 

sandwich plates. The variation of material properties may 

be modelled by the power law, sigmoid or exponential 

distributions. From the past researches, the high order shear 

deformation plate theories (HSDT) were used to evaluate 

the mechanical responses of FG plates. These models can 

capture the transverse shear deformation effect which is 

significant on mechanical responses of thick plates. For 

examples, Reddy (2000) formulated the governing equation 

of FG plates based on the third order shear deformation 

plate theory, and the solution was obtained by using 

Navier’s solution and the finite element method. Qian et al. 

(2004) investigated the static and dynamic responses of FG  
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plates by using the higher order shear and normal 

deformable plate theory (HOSNDPT), and the solutions 

were attained by the meshless local Petrov-Galerkin 

(MLPG) method. Najafizadeh and Heydari (2004) used the 

third order plate theory to investigate the thermal buckling 

of FG circular plates under thermal loads. Ferreira et al. 

(2006) employed the meshless method to compute the 

natural frequencies of FG plates of which material 

properties were homogenized by the Mori-Tanaka 

technique. Roque et al. (2007) analyzed the free vibration 

of FG plates by using a higher order shear deformation 

theory. The natural frequencies were solved by the multi-

quadric radial basis function method. Shen (2007) studied 

thermal postbuckling of FG plates with temperature-

dependent properties. The governing equations were 

developed by using a higher-order shear deformation plate 

theory. Talha and Singh (2010) studied the free vibration 

and static responses of FG plates, and the problems were 

solved by the finite element method. Wu and Li (2010) 

developed the Reissner mixed variational theorem based on 

a third-order shear deformation theory to study the static 

behavior of multilayered FG plates. The solution of simply 

supported FG plates was solved by double Fourier series. 

Reddy and Kim (2012) established the governing equation 

of FG plates based on a modified couple stress theory, the 

power law variation of the material through the plate 

thickness and the von Kármán nonlinear strains. Neves et 
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al. (2012) used the hyperbolic sine shear deformation 

theory to study the bending and free vibration of FG plates, 

and the radial basis function method was employed to 

obtain the solution. Recently, Daouadji and Adim (2017) 

presented a hyperbolic and parabolic shear and normal 

deformation theory for the bending analysis to account for 

the effect of thickness stretching in functionally graded 

sandwich plates. Aghazadeh et al. (2018) developed strain 

gradient elasticity-based procedures for static bending, free 

vibration and buckling analyses of functionally graded 

rectangular micro-plates. The effect of the length scale 

parameter on mechanical responses was studied. Bouhadra 

et al. (2018) proposed an improved higher shear 

deformation theory (HSDT) to consider the influence of 

thickness stretching in functionally graded (FG) plates. 

Analytical solutions of simply supported FG plates were 

presented.   

Although the HSDT can accurately predict the behavior 

of FG plates, it may encounter many unknown variables in 

the problem, for examples, nine unknowns (Neves et al. 

2012), eleven unknowns (Reddy and Kim 2012) and 

thirteen unknowns (Talha and Singh 2010). Thus, the 

advanced knowledge of mathematics is required to obtain 

the solution. Alternatively, the first order shear deformation 

plate theory (FSDT) is simple and has only three unknown 

variables (the in-plane displacements of the middle plane 

are neglected because it has a negligible effect for the small 

deflection problem). According to the FSDT, the transverse 

shear deformation is assumed to be constant with respect to 

the plate thickness. Therefore, the shear correction factor is 

required to match the actual parabolic distribution of the 

shear stresses through the plate thickness. The accurate 

results can be obtained by setting the appropriate shear 

correction factor. The FSDT was successfully applied to 

study the variety of the FG plate problems. For examples, 

Efraim and Eisenberger (2007) analyzed the free vibration 

of annular FG plates with variable plate thickness. The 

governing equation was developed by the FSDT, and the 

solution was obtained by using the exact element method 

and the dynamic stiffness method. Nguyen et al. (2008) 

examined the bending behavior of the sandwich panel with 

the functionally graded faces based on the FSDT. Hashemi 

et al. (2010) studied the free vibration of FG plates resting 

on the elastic foundations, and the analytical solution was 

developed to obtain the natural frequencies. Alshorbagy et 

al. (2013) developed the finite element method to 

investigate the thermo-mechanical response of FG plates. 

Ardestani et al. (2014) analyzed functionally graded 

stiffened plates by using the reproducing kernel particle 

method. The rectangular and circular FG plates were 

studied. Zhang and Liew (2016) analyzed the large 

deflection of quadrilateral FG plates with internal column 

supports. The element free IMLS-Ritz method was 

employed to derive the formulation of a discrete governing 

equation. Recently, Abad and Rouzegar (2017) investigated 

the free vibration of smart FG plates with integrated with 

piezoelectric layers. Amir et al. (2018) examined the post-

buckling and geometrically nonlinear behaviors of 

moderately thick perfect and imperfect rectangular plates 

made-up of functionally graded materials. Spectral 

collocation approach based on Legendre basis functions 

was developed to analyze the functionally graded plates 

subjected to end-shortening strain. 

In general, the FG plates are often confronted with the 

complexity of both geometries and boundary conditions. 

Unfortunately, the analytical solutions can be only 

determined from the simple cases. Thus, numerical 

solutions are required to solve the above issues. The finite 

element method (FEM) is an effective numerical technique 

for solving engineering problems. Nevertheless, it is 

ineffective and troublesome when the geometric bodies are 

comprised of holes or corners. The fine meshing and high-

density elements are required at these critical domains and 

also take more time for computation. The boundary element 

method (BEM) is an alternative numerical method in which 

discretization is only performed over the boundary of the 

body, hence, reducing the number of the problem dimension 

by one order. However, the BEM can be only applied to the 

problems of which the fundamental solution can be 

established. For the plate problems having the coupled 

differential equations, the fundamental solutions are not 

obtainable; thus this method cannot be applied. To alleviate 

this restriction as mentioned above, Katsikadelis (2002) 

presented the analog equation method (AEM) that the 

original problem is converted to a substitute problem which 

so-called “the analog equation” under the fictitious sources 

with the same boundary and initial conditions. A simple 

equation with a known fundamental solution can be chosen 

as the analog equation. Then, the BEM is readily applied to 

solve the analog equation, and the solution of the original 

problem can be obtained from the integral representations 

of the substitute problem. At present, the AEM has been 

already successfully employed to solve the variety of 

engineering problems (Chinnaboon et al. 2007a, 2007b, 

2011, Katsikadelis and Babouskos 2010, 2012, Yiotis and 

Katsikadelis 2013, Fam, et al. 2015, Babouskos and 

Katsikadelis 2015, Panyatong et al. 2018). 

In this paper, a so-called coupled BE-RBF (Boundary 

Element-Radial Basis Function) method is developed to solve 

the FG plates with arbitrary shapes and boundary 

conditions. The governing equation of FG plates is 

formulated based on the first order shear deformation plate 

theory. The material properties in this study are varied 

through the plate thickness according to the power law 

distribution. The principle of virtual work is applied to 

establish the three differential governing equations as well 

as boundary conditions. The principle of the analog 

equation method is employed to develop the coupled BE-

RBF method to solve the coupled differential equations. All 

advantages of the BEM are retained in this method that the 

discretization and integration are operated only on the 

boundary. The analog equations are composed of three 

Poisson equations which are linear equations having simple 

known fundamental solutions. The fictitious sources are 

approximated by the radial basis functions and established 

by using a BEM-based procedure. Hence, the solution of 

the original problem is conveniently established and easily 

evaluated. With the merits of the proposed methodology, 

this research fills a gap in the literature that the FG plates 

having arbitrary shapes (curve boundaries, corners, 
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openings, etc.) and boundary conditions can be investigated. 

The obtained results are compared with those from 

analytical solutions to verify the reliability of the present 

method. Then, the influences of the power index, the length 

to thickness ratio and the modulus ratio on the bending 

behavior are studied. Finally, the FG plate with arbitrary 

shapes and boundary conditions is analyzed to demonstrate 

the efficiency of the proposed method.     

 

 

2. Theoretical problem 
 

2.1 Material properties of FG plates 
 

The functionally graded plates are highly heterogeneous 

material structures in which their properties vary through 

the plate thickness smoothly. In this study, the power law 

distribution is employed to describe the modulus of 

elasticity of the plate. While, the Poisson’s ratio is defined 

to be constant because its effect is minimal on mechanical 

responses (Yang et al. 2005, Kitipornchai et al. 2006). 

According to the power law model, the modulus of 

elasticity of the FG plate through the plate thickness can be 

expressed as: 

2
( ) ( )

2

p

m c m

h z
E z E E E

h

− 
= + −  

 
 (1) 

where 
c

E  and 
m

E  are the moduli of elasticity at the top 

surface (ceramic-rich) and the bottom surfaces (metal-rich) 

of the FG plate, respectively. Meanwhile, p is the power 

index of the material and h is the plate thickness. Moreover, 

the constitutive relationships of the FG plate can be 

represented by the following equation: 
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where   is Poisson’s ratio.  

 
2.2 The governing equations of FG plates  

 

Consider a FG plate of a uniform thickness h, occupying 

the two-dimensional multiply connected domain  of the 

plane with the boundary Γ⋃ Γ𝑖
𝑖=𝑘
𝑖=0  as shown in Fig. 1. The 

curves (i = 0,1,2,…,K) may be piecewise smooth; that is the 

boundary may have a finite number of corners.  

For the formulation in the present study, the first-order 

shear deformation plate theory is employed to derive the 

governing equations of FG plates. According to the FSDT, 

the displacement fields at any point depend only on the 

displacements of the middle plane of the FG plates which 

can be expressed as 
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Fig. 1 A FG plate and notations 

 

 

  
( , )xu z x y=  (3a) 

  ( , )yv z x y=
 

(3b) 

 ( , )w w x y=
 

(3c) 

where ,u v  and w  are the displacement components of 

any point in the directions x, y and z, respectively. 

Meanwhile, x and −y denote the rotations about the y and 

x-axes, respectively. For the sake of simplicity, the in-plane 

displacements of the middle surface are not taken into 

account in Eqs. (3a)-(3c). The work of Zhang and Zhou 

(2008) suggested that the in-plane displacements can be 

neglected in the small deflection problems. Also, the neutral 

surface in this study is assumed to coincide with the mid-

surface of the plate, although the neutral surface of 

functionally graded plates may not coincide with its 

geometric mid-surface due to the material property 

variation through the plate thickness. The effect of 

considering and neglecting neutral plane positions has been 

investigated by Shaat et al. (2013) which reported a slight 

difference in central deflections and stress distributions. 

By using the relations (3a)-(3c), the strains can be 

described by 
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(4) 

The governing equations of FG plates can be formulated by 

the application of the principle of virtual work as follows: 
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0U V + =  (5) 

where U and V are the virtual strain energy and the 

virtual work done by applied loads, respectively. The virtual 

strain energy is given by 

/2

/2

2

2 2

h
xx xx yy yy xy xy

xz xz yz yzh

U dz d
     


   

 −

+ + 
=   + + 
   (6) 

and the virtual work done by the distributed load is 

provided by 

V q wd 


= −   
(7) 

Substituting Eq. (4) into Eq. (6) and using the constitutive 

relations (2), then, conducting the integration throughout 

the plate thickness and also using the Gauss-Green theorem, 

we obtain the governing equations as: 

       , ,: 0xz x yz yw Q Q q + + =  (8a) 

, ,: 0x xx x xy y xzM M Q − − + =
 

(8b) 

, ,: 0y yy y xy x yzM M Q − − + =
 

(8c) 

with associated boundary conditions:  

        
0 or 0xz x yz yw Q n Q n= + =  (9a) 

0 or 0x xx x xy yM n M n = + =
 

(9b) 

0 or 0y yy y xy xM n M n = + =
 

(9c) 

where 
x

n  and y
n  are the components of the unit vector   

n which is normal to the boundary   (see Fig. 1). The 

bending moments and shear forces appearing in Eqs. (8a)-

(8c) and the boundary conditions (9a)-(9c) can be provided 

by 

( ), ,xx x x y yM A  = +  (10a) 

( ), ,yy y y x xM A   = +
 

(10b) 

  
( ), ,(1 )

2
xy x y y x

A
M   = − +

 
(10c) 

          
( ),xz s x xQ k B w= +

 
(10d) 

( ),yz s y yQ k B w= +
 

(10e) 

where 

/2
2

2 /2

1
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h

h
A z E z dz

 −
=

−
  is the effective bending 

stiffness of the FG plate. 

/2

/2

1
( )

2(1 )

h

h
B E z dz

 −
=

+
 is the effective transverse 

shear stiffness of the FG plate and 
sk is the shear 

correction factor. Finally, the governing equations of FG 

plates in terms of the deflection w and the rotations 

,x y  can be obtained by substituting Eqs. (10a)-(10e) 

into Eqs. (8a)-(8c).  

Therefore, we obtain the governing differential equations 

as: 
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 − −  + + +
 

+ + =
 (11c) 

For convenience of programming, the boundary conditions, 

Eqs. (9a)-(9c), are rewritten in the following forms: 

  1 2 3nw Q  + =  (12a) 

  1 2 3n nM   + =
 

(12b) 

 1 2 3t ntM   + =
 

(12c) 

where ,
n n

Q M  and 
nt

M  are the shear force resultant, 

bending moment and twisting moment along the boundary 

corresponding to the n t−  coordinates; 
n
  and

t
−  are 

the rotations at the middle plane about the t  and n axes, 

respectively (see Fig. 1). Meanwhile, 
, ,

i i i
     

( 1, 2,3)i = are given functions specified on the boundary 

 . Evidently, all type of conventional boundary conditions 

can be obtained from Eqs. (12a)-(12c) by defining the 

functions ,
i i

   and 
i

  appropriately as: 

(a) clamped support if 

1 2 3

1 2 3

1 2 3

1, 0, 0,

1, 0, 0,

1, 0, 0.

  

  

  

= = =

= = =

= = =

 (13a) 

(b) hard type simple support if 

1 2 3

1 2 3

1 2 3

1, 0, 0,

0, 1, 0,

1, 0, 0.

  

  

  

= = =

= = =

= = =

 (13b) 

(c) soft type simple support if 
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Fig. 2 Discretization of the FG plate 

 

 

1 2 3

1 2 3

1 2 3

1, 0, 0,

0, 1, 0,
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= = =

= = =

= = =

 (13c) 

(d) free edge if 

1 2 3

1 2 3

1 2 3

0, 1, 0,

0, 1, 0,

0, 1, 0.

  

  

  

= = =

= = =

= = =

 (13d) 

The shear force resultant, bending moment and twisting 

moment resultants on the boundary appearing Eqs. (12a)-

(12c) can be written in term of the deflection w  and the 

rotations ,
n t
   as follows: 

  ( ),n s n nQ k B w= +  (14a) 

  ( ), ,n n n t tM A   = +
 

(14b) 

 ( ), ,(1 )
2

nt n t t n

A
M   = − +

 (14c) 

Moreover, the relationships of the rotations between the 

n t− coordinates and x y− coordinates can be written as 

  n x x y yn n  = +  (15a) 

    
t y x x yn n  = − +

 (15b) 

 

 

3. The coupled BE-RBF method for the FG plate 
 

In this section, the coupled BE-RBF method is 

developed to solve the boundary value problem described 

by Eqs. (11a)-(11c) and (12a)-(12c). The present method 

will be developed based on the concept of the analog 

equation method (AEM) proposed by Katsikadelis (2002) 

that any differential equations can be replaced by other 

differential equations which have the same order under an 

unknown fictitious source. The substitute equations are 

called “the analog equation”. 

According to the AEM, the original governing equations 

of the FG plate are substituted by three Poisson equations 

with fictitious sources under the same boundary conditions. 

The solution of the actual problem can be attained from the 

known integral representations of Poisson equations. 

Therefore, the kernels of the boundary integral equations 

are conveniently determined and readily calculated. The 

procedure of the proposed method will be applied to the 

problem at hand as the following. 

Let ( , ), ( , )
x x

w w x y x y = = and ( , )
y y

x y = be 

the sought solutions of Eqs. (11a)-(11c). These functions are 

twice differentiable in the domain  and one time on its 

boundary Γ. By the application of the AEM, the differential 

operator that produces the substitute equations should be of 

the second order. The simplest operator of this order with 

known fundamental solutions is the Laplace operator. Thus, 

the substitute equations can be expressed as: 

  
2 (1)

( , )w b x y =  (16a) 

  
2 (2)

( , )
x

b x y =
 

(16b) 

 
2 (3)

( , )y b x y =
 

(16c) 

Eqs. (16a)-(16c) are the analog equations of the FG plate 

problem and 
( )

1, 2,3( , ),
l

lb x y =  are the three fictitious 

sources, unknown in the first instance. The solution of the 

analog equations can be achieved by using the BEM 

procedure. Thus, the solutions in integral forms can be 

expressed as: 

  
( )* * * (1)

, ,
( )

n n
w p u w u w ds u b d

 

= − − +    (17a) 

  ( )* * * (2)

, ,
( )

x x n n x
p u u ds u b d  

 

= − − +    (17b) 

 ( )* * * (3)

, ,
( )

y y n n y
p u u ds u b d  

 

= − − +    (17c) 

where 
*

(ln ) / 2u r =  is the fundamental solution of the 

Laplace equation and 
*

, , / 2
n nu r r=  is its normal 

derivative to the boundary at the field point q with 

r p q= −  (see Fig.1). Meanwhile,   is the free term 

coefficient which is defined by 

  

1     for inside ,

/ 2            for on the boundary ,

0 for outside .

p P

p

p

  

= 

= 









 (18) 
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Eqs. (17a)-(17c) are the coupled domain and boundary 

integral equations, and it could be solved by using domain 

discretization to approximate the domain integrals. 

However, to maintain its pure boundary characteristic of the 

BEM, the domain integrals can be converted to the 

boundary integrals by approximating the fictitious sources 

with the radial basis functions (RBF). Thus, they can be 

written as:  

  
( ) ( )

1

, ( 1,2,3)
M

l l

j j

j

b a f l
=

= =  (19) 

where ( )
j j

f f r=  is a set of radial basis approximating 

functions; 
( )l

j
a  are M coefficients (in a total of 3M) to be 

determined and i j
r p p= −  is the distance between the 

collocation point ( , )
j j j

p x y and any point ( , )
i i i

p x y  

   (see Fig. 2). Then, using Green’s second identity, 

the domain integrals in Eqs. (17a)-(17c) can be written as: 

  
( )* ( ) ( ) * *

, ,

1

ˆ ˆ ˆ   

( 1,2,3)

M
l l

j j j n j n

j

u b d a u u u u u ds

l


= 

 
 = + − 

 

=

   (20) 

where ˆ ˆ ( ) j ju u r= is the particular solution of 

2 ˆ , 1, 2,..., . 
j j

u f j M = =  (21) 

The solution ˆ ˆ ( ) j ju u r= of Eq. (21) can be always 

determined if 
jf  is specified. By substituting Eq. (20) 

into Eqs. (17a)-(17c), the solutions at a point p  for 

smooth boundary can be expressed as:  

( )

( )

* *

, ,

* *

, ,

1

(1)

1
( )

2

1
ˆ ˆ ˆ

2

 
n n

M

j j n n j

j

j

w p u w u w ds

a u u u u u ds



= 

= − −

+ + −
 
 
 



 

 (22a) 
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(2) * *
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1

1
( )

2

1
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2

 
x x n n x

M

j j j n n j

j

p u u ds

a u u u u u ds

  


= 
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+ + −
 
 
 



 
 
(22b) 
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, ,

1

(3)

1
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2

1
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2

 
y y n n y

M

j j n n j

j

j

p u u ds

a u u u u u ds

  


= 

= − −

+ + −
 
 
 



 
 
(22c) 

The additional two integral equations are obtained from 

Eqs. (22b) and (22c) by first differentiating with respect to 

the tangential direction  at the source point p (see Fig. 1). 

For the point p where the boundary is smooth, we obtain  

 ( )

( )

* *

, , , ,

* *

, , , ,

1

(2)

1
( )

2

1
ˆ ˆ

2

( )  

ˆ ˆ ( )

x x n n

M

j j n n

j

x x

j j j

p u u ds

a u u u u ds

p

u u p

  

  

   


= 

= − −

+ + −

−

 
 −  

 



 

 
(23a) 

( )
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* *

, , , ,

* *

, , , ,

1

(3)

1
( )  

2

1
ˆ ˆ

2

( )

ˆ ˆ ( )

y y n n

M

j j n n

j

y y

j j j

p u u ds

a u u u u ds

p

u u p

  

  

   


= 

= − −

+ + −

 − 

 
 −  

 



 

 
(23b) 

Moreover, the derivatives of the deflection w and 

rotations x, y inside the domain  are obtained by direct 

differentiation of Eqs. (17a)-(17c). Thus, for the sake of 

conciseness, we can write the integral representations of the 

derivatives of the deflection w, rotations x, y 
and their 

derivatives up to second order as: 

( )

( )

* *

, , , ,

* *

, , , ,

1

(1)

( )

ˆ ˆ ˆ

 
ab ab n nab

M

j ab ab j n nab j

j

j

w P u w u w ds

a u u u u u ds



= 

= − −

+ + −
 
 
 



 
 (24a) 
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M
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j

j

P u u ds

a u u u u u ds

  


= 

= − −

+ + −
 
 
 



 
 
(24b) 
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( )
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, , , ,

* *

, , , ,

1

(3)

( )

ˆ ˆ ˆ

 
y ab ab y n nab y

M

j ab ab j n nab j

j

j

P u u ds

a u u u u u ds

  


= 

= − −

+ + −
 
 
 



 
 
(24c) 

where a,b = 0,x,y and 𝑃 ∈ Ω. Note that w,0 = w,00
 = w, x,0 = 

x,00 and y,0 = y,00 = y. 

Consider the governing equations described by Eqs. 

(11a)-(11c) and the boundary conditions (12a)-(12c), there 

are the total 8N variables on the boundary, i.e., w, w,n, x, 

x,n, x,t, y, y,n and y,t. We have 8N available equations 

comprised of: 5N boundary integral equations (22a)-(22c), 

(23a), (23b) and 3N equations from the prescribed boundary 

conditions (12a)-(12c). Therefore, we can solve this 

problem and obtain the 8N boundary quantities. In the next 

section, the implementation of the coupled BE-RBF method 

will be presented in details. 
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4. Numerical implementation 
 

The boundary integrals in Eqs. (22a)-(22c) and (23a) 

and (23b) will be solved by the application of the BEM 

technique. The boundary elements may be constant, linear, 

or curves of higher order (e.g., quadratic, cubic). 

Nevertheless, employing the higher order must encounter 

the complicate numerical solution and the troublesome 

evaluation of singular integrals. On the other hand, using 

the constant elements can be conveniently evaluated for the 

singular integrals, and its numerical implementation is 

straightforward. Meanwhile, the accuracy can be improved 

by increasing the number of boundary elements. Therefore, 

in this study, the constant boundary element is employed to 

obtain the numerical solution of the boundary integral 

equations. 

Let N and M be the numbers of the boundary nodal 

points and domain collocation points, respectively (see Fig. 

2). Firstly, collocating at the N boundary nodes by using the 

boundary integrals (22a)-(22c), (23a) and (23b) and the 

boundary conditions (12a)-(12c) which give the total 8N 

equations. Therefore, we have the following system of the   

linear equations: 

  =Ax Ca  (25) 

where A is the 8 8N N  known matrix origination from 

the integrations of the kernels on the boundary elements and 

the known coefficients from the boundary conditions; C  

is the 8 3N M  known coefficient matrix; (1)[a ,j=a  

(2) (3)a , a ]T

j j
is the 3 1M   vector of the unknown 

variables. Meanwhile, 
, , ,[ , , , , ,n x x n x t yw w    =x ,   

, ,, ]T

y n y t   is the 8 1N   vector of the boundary 

quantities. Then, Eq. (25) is employed to express the vector 

x in terms of the unknown variable a as follows: 

1  −
x = A Ca  (26) 

Subsequently, collocating at the M collocation points 

inside domain  by employing the integrals equations 

(24a)-(24c) which are the values involving the deflection w 

and the rotations ,
x y
   and their derivatives. We have  

(1) (1) (1)

, , 1 ,ab ab ab j
W = D x + C a  (27a) 

(2) (2) (2)

, 2x ab ab ab j
= +

, ,
D x C a

 
(27b) 

(3) (3) (3)

, , 3y ab ab ab j
= +

,
D x C a

 
(27c) 

where
2, ,, , ,

T T

n x x nw w  = =      1
x x and 

3
[ ,y=x  

, ]T

y n are the 2 1N   vectors of the boundary quantities 

which are the complements of the vector x. By substituting 

the components of the vector x from Eq. (26) into Eqs. 

(27a)-(27c) appropriately, they can be expressed regarding 

unknown variable of the vector a as: 

(1)

, ,ab ab
W = H a  (28a) 

(2)

,x ab ab
=

,
H a

 
(28b) 

(3)

,y ab ab
=

,
H a

 
(28c) 

Finally, by substituting Eqs. (28a)-(28c) into the 

governing equations (12a)-(12c), we obtain the following 

system of the 3M linear equations as: 

=Sa d  (29) 

Then, solving Eq. (29) yields the 3M unknown variables 

of the vector a. Thereafter, the values of the deflection w 
and the rotations ,

x y
  and their derivatives inside the 

domain   can be obtained from Eqs. (24a)-(24c). 

Meanwhile, the resultant forces can be determined by using 

Eqs. (10a)-(10e). For the point P not coinciding with the 

collocation domain points, the respective quantities can be 

established from the discretized counterparts of Eqs. (24a)-

(24c). 
 
 

5. Numerical results and discussion  
 

5.1 Reliability of the proposed method 
 

In order to manifest the reliability of the proposed 

method, a computer program has been developed and used 

to analyze the simply supported square plate (aa) with 

isotropic and FG materials (Al/Al2O3). The material 

properties of Al and Al2O3 are given in Table 1, and the 

shear correction factor (ks) is 5/6. The accuracy of the 

proposed technique is evaluated by comparing the obtained 

results with the analytical ones. The analytical results can 

be determined by Navier’s approach which is given in detail 

in the Appendix.  

In this study, the Thin Plate Splines (TPSs) is used as the 

radial basis approximation functions fj, which was 

previously employed for analyzing plate problems 

(Chinnaboon et al. 2007a, Panyatong et al. 2018). The 

advantages of this function are that no shape parameters are 

required for obtaining the solution, and the derivatives of 

the particular solution ˆ
ju  can be easily treated when the 

value of r approaching zero. The TPSs can be expressed as:  

2  ln  jf r r=  (30) 

The involved derivatives of ˆ
ju are also provided in the 

Appendix. The numerical results have been evaluated by 

using N = 200 constant boundary elements and M = 324 

internal collocation points. The deflections and bending 

moments of the isotropic plate are contained in Table 2. 

Moreover, for the FG plate, the deflections with various 

power indexes are listed in Table 3. It is apparent that the 

present solutions are in very good accordance with the 

analytical results obtained by Navier’s approach (see 
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Table 1 Mechanical properties of the FG plate 

Materials 
Modulus of 

Elasticity, (GPa) 
Poisson’s ratio 

Metal Aluminum (Al) 70 0.30 

Ceramic Alumina (Al2O3) 380 0.30 

 

Table 2 The deflections and bending moments at the center 

of the simply supported (hard type) isotropic plate 

/h a  

Deflection, 

4

1000Dw
w

qa
=  

Bending moment, 

2

100
xx

xx

M
M

qa
=   

Analytical present Analytical present 

0.05 4.1150 4.0626 4.7886 4.7406 

0.10 4.2728 4.2514 4.7886 4.7666 

0.15 4.5360 4.5239 4.7886 4.7719 

0.20 4.9043 4.8992 4.7886 4.7738 

0.25 5.3779 5.3801 4.7886 4.7746 

0.30 5.9568 5.9671 4.7886 4.7751 

 

 

Appendix A.1). Thus this comparison confirms the 

reliability of the proposed technique.   

 
5.2 Parametric studies 

 

In this section, the numerical results are presented to 

investigate the bending response of the square Al/Al2O3 

plates ( )a a  
with various boundary conditions as shown 

in Fig. 3. All of the obtained results are computed by using 

N = 200 constant boundary elements and M = 324 internal 

collocation points. The effect of the power index on the 

central deflection of the FG plates with different /h a  is 

illustrated in Figs. 4(a)-4(c). It is obviously seen that all 

figures show a similar trend, i.e., the increasing value of the 

power index produces a significant increase in the 

deflection for all boundary conditions. This is due to the 

fact that modulus of elasticity of the Al/Al2O3 plates 

approaches the modulus of elasticity of fully metal 

(Aluminum) when the power index is increasing. This 

phenomenon can be observed in Fig. 5 which displays the 

distribution of modulus of elasticity of the Al/Al2O3 plate 

through the plate thickness with various power indexes. It 

can be seen that the high value of the power index tends to 

converge the modulus of elasticity of the FG plate to the 

modulus of the fully metal. 

The distributions of the normal stress xx at the center of 

the Al/Al2O3 plate ( 0.2h a = ) corresponding to each case of 

boundary conditions are depicted in Figs. 6(a)-6(d). It can 

be seen that the maximum compressive stresses occur at the 

top surface for all power indexes and the high power 

indexes give more stress magnitudes than the low ones. 

Meanwhile, the position and magnitude of the maximum 

tensile stresses are varied that are controlled by the value of 

the power index. The magnitude of the tensile stresses is 

reduced when the power index increases. The tensile 

stresses at the bottom surface have close values for the  

Table 3 The deflections at the center of the simply 

supported (hard type) Al/Al2O3 plate  

/h a
 

Power index, p  

3

4

100
c

E h w
w

qa
=  

Analytical present 

0.15 

0.5 7.0749 7.0553 

1 8.3655 8.3433 

2 9.8230 9.8000 

5 12.2459 12.2223 

10 14.8993 14.8714 

0.20 

0.5 7.6274 7.6185 

1 9.0449 9.0355 

2 10.7049 10.6975 

5 13.5022 13.4995 

10 16.4561 16.4539 

0.25 

0.5 8.3378 8.3399 

1 9.9183 9.9223 

2 11.8387 11.8482 

5 15.1175 15.1381 

10 18.4578 18.4844 

 

x

y

C

C

C

C

(b)

x

y

S

S

S

S

(a)

x

y

C

S

(c)

S

C

x

y

F

C

(d)

C

F

 

Fig. 3 Al/Al2O3 square plates with various boundary      

conditions, (S = Simple support, C = Clamped         

support, F = Free edge) 

 

 

power indexes 0.5,1, 2p =  , and they are smaller than 

the tensile stress of 0p =  because the magnitudes of the 

moduli of elasticity ( )E z  around the bottom region of 

0.5,1, 2p =  are smaller than the 0p = . It is worth 

noticing that the distribution of the normal stress is a linear 

relationship when the power index is zero, i.e., the fully 

ceramic homogeneous plate. 
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Fig. 4 The relationships between the central deflection and 

power index with different /h a     
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Fig. 5 The distribution of modulus of elasticity of the 

Al/Al2O3 plate through the plate thickness   

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.50

0.25

0.00

-0.25

-0.50

xx
xx

qa


 =

/z h

0p =

2p =

1p =

0.5p =

a) SSSS / 0.20h a =

 

-1.0 -0.5 0.0 0.5 1.0
0.50

0.25

0.00

-0.25

-0.50
0p =

2p =

1p =

0.5p =

xx
xx

qa


 =

/z h

b) CCCC / 0.20h a =

 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.50

0.25

0.00

-0.25

-0.50
0p =

2p =

1p =

0.5p =

xx
xx

qa


 =

/z h

c) SCSC / 0.20h a =

 

-0.50 -0.25 0.00 0.25 0.50
0.50

0.25

0.00

-0.25

-0.50
0p =

2p =

1p =

0.5p =

xx
xx

qa


 =

/z h

d) CFCF / 0.20h a =

 

Fig. 6 The distributions of the normal stress xx at the        

center of the Al/Al2O3 plate with various power       

indexes 
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Fig. 7 The distributions of the shear stress 
xz  of the       

Al/Al2O3 plate with various power indexes at         

/ 0.2x a =  and / 0.5y a =   

Furthermore, the distributions of the shear stresses xz  

through the plate thickness at / 0.2x a =  and / 0.5y a =  

are displayed in Figs. 7(a)-7(d).  According to the FSDT 

that the transverse shear deformation is assumed to be 

constant through the plate thickness, the obtained shear 

stresses appear at the top and bottom surfaces of the FG 

plate. Moreover, the distributions of the shear stresses 

depend on the value of the power index. The maximum 

shear stresses arise at the top surface and the high values of 

the power indexes provide more stress magnitudes than the 

low ones. However, the minimum shear stresses have the 

close magnitudes and occur at the bottom surface for the 

power indexes 0.5,1, 2p = . For the homogeneous plate, 

the shear stresses are found to be constant through the plate 

thickness when p = 0. 

The influences of the length to thickness ratio (a / h) on 

the central deflection w  are displayed in Figs. 8(a)-8(d). 

It is apparent that an increase in the length to thickness ratio 

leads to a decrease in the central deflection w  for all 

boundary conditions. Especially, for / 10a h  , there has 

been a rapid decrease in the central deflection w  because 

the effect of shear deformation is diminished when the plate 

has a high length to thickness ratio. Moreover, the influence 

of the length to thickness ratio has very little domination 

over the central deflection w  for / 10a h  . Also, it can 

be observed that the FG plates with the low power index 

possess more bending stiffness than those with the high 

power index. 

Figs. 9(a)-9(d) shows the effect of the modulus ratio 

/
c m

E E  on the central deflection w  with various power 

indexes. They reveal that an increase in the modulus ratio 

leads to a gradual drop in the central deflection w  for p = 

0.5, 1 and 2. Meanwhile, the central deflection w  rapidly 

decreases when p = 5 and remains steady when p = 0. This 

behavior can be explained that an increase in the modulus 

ratio enhances the bending stiffness of the FG plate. For the 

FG plate with p = 0, the modulus of elasticity of the FG 

plate through the plate thickness is homogeneous and equal 

to the modulus of elasticity of the fully ceramic 
cE . Thus, 

the modulus ratio has no effect on the deflection for p = 0. 

The highlight of this work is to develop the method 

which can solve the FG plates with the complexity of both 

geometries and boundary conditions. To demonstrate the 

abovementioned issue, the FG plate as shown in Fig. 10 has 

been analyzed. The FG plate has thickness h = 0.25 m, and 

it is subjected to a uniform load 1 MPaq = . The 

numerical results have been obtained by using N = 1050 

constant boundary elements and M = 204 internal 

collocation points. The material properties of Al and Al2O3 

in Table 1 and 5 / 6sk =  are used for this analysis. The 

variations of the computed deflections w and the bending 

moments Mxx along the x-axis at 7.5 my = with the 

different power indexes are illustrated in Fig. 11. Hence, the 

proposed method can be regarded as an efficient numerical 

tool for analyzing FG plates with arbitrary shapes and 

boundary conditions. 
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Fig. 8 The relationships between the length to thickness 

ratio and central deflection of the Al/Al2O3 plate with 

various power indexes 
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Fig. 9 The relationships between the modulus ratio and      

central deflection of the FG plate ( 0.2h a = ) with various 

power indexes  

 

637



 

Monchai Panyatong, Boonme Chinnaboon and Somchai Chucheepsakul 

x

y

Hole

Hole

5.0 5.0 5.0

5.0

5.0

5.0

R=2.5
R=7.5

SCC C

S

S

F

F

Dimension, m

O

F

F C

 
Fig. 10 The Al/Al2O3 plate with the complex shape and 

boundary condition 
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Fig. 11 The deflection and bending moment along the x- 

axis at 7.5 my =  

 

 
6. Conclusions 

 

The governing equations of the FG plate are formulated 

based on the first-order shear deformation plate theory and 

the power law model for the material property distribution. 

The coupled BE-RBF method is established to solve the 

three differential governing equations of the FG plate. The 

present method is developed by applying the principle of 

the analog equation. The original governing differential 

equations are substituted by the three uncoupled Poisson 

equations with fictitious sources under the same boundary 

conditions. The fictitious sources are established by using a 

technique based on the BEM and approximated by using 

Thin Plate Splines (TPSs) as the radial basis functions. 

Consequently, the solution of the actual problem is attained 

from the known integral representations of the potential 

problem which are derived from the fundamental solution 

of the Laplace operator.  

From the numerical results in this study, they are in 

excellent agreement with those from the analytical 

solutions, thus confirming the validity of the proposed 

method. Furthermore, the effects of the power index, the 

length to thickness ratio and the modulus ratio on the bending 

responses are investigated. Finally, the application of this 

methodology is demonstrated by solving the FG plate having 

the complex geometry and boundary condition. In this respect, 

the proposed methodology can be regarded as an efficient 

numerical tool for bending analysis of the FG plates with 

arbitrary shapes and boundary conditions. 
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Appendix 
 

A.1 Analytical solution of simply supported FG 

plate 

  

The governing differential equations (11a)-(11c) for the 

simply supported FG nanoplates can be solved by Navier’s 

approach. According to Navier’s approach, the solution can 

be expressed as: 

1 1

  cos sin  x mn

m n

X x y  
 

= =

=  (A1) 

1 1

sin cosy mn

m n

Y x y  
 

= =

=  
(A2) 

1 1

sin sinmn

m n

w W x y 
 

= =

=  
(A3) 

where ,mn mnX Y and 
mnW are displacement coefficients to 

be determined, and /m a =  and /n b = . While 

a  and b  are the length and width of the rectangular FG 

plates. Moreover, the external load can be written by the 

Fourier series as: 

1 1

  sin sin  mn

m n

q Q x y 
 

= =

=  (A4) 

Substituting Eqs. (A1)-(A3) and (A4) into Eqs. (11a)-(11c) 

generates a linear system 

11 12 13

21 22 23

31 32 33

0

0

mn mn
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a a a W Q

a a a X

a a a Y
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 (A5) 

where 

( )2 2
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31 sa k B=
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(A13) 

2 2
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−
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(A14) 

Then, by solving Eq. (A5), the displacement coefficients 

can be written as: 

21 33 23 31

11 22 33 23 32

12 23 31 21 33

13 21 32 22 31
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(A15) 
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 (A17) 

Therefore, the solution can be obtained by substituting the 

displacement coefficients into Eqs. (A1)-(A3). 

 

A.2 The particular solution of 2 ˆ
j ju f =  and the 

involved derivatives of ˆ
ju      

The particular solution of 2 ˆ
j ju f = can be expressed 

as:  

41
 ̂ (2ln 1) 

32
ju r r= −  (A18) 

and by differentiation, it results in 

3

, ,

1
ˆ (4 ln 1)

16
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3
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ˆ (4ln 1)
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3
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16
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2 2 2 2
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16 16
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(A22) 
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2 2 2 2

, , ,

1 1
ˆ (4 ln 1) (12ln 1)

16 16
j yy x y

u r r r r r r= − + +

 

(A23) 

2

, , ,

1
ˆ (8ln 2)

16
j xy x y

u r r r r= +

 

(A24) 

 

Moreover, it can be readily proved that: 
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