Analytical methods for determining the cable configuration and construction parameters of a suspension bridge

Wen-ming Zhang*, Gen-min Tian ${ }^{\text {a }}$, Chao-yu Yang ${ }^{\text {b }}$ and Zhao Liu ${ }^{\text {c }}$
The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China

(Received October 3, 2018, Revised August 10, 2019, Accepted August 26, 2019)

Abstract

Main cable configurations under final dead load and in the unloaded state and critical construction parameters (e.g. unstrained cable length, unstrained hanger lengths, and pre-offsets for tower saddles and splay saddles) are the core considerations in the design and construction control of a suspension bridge. For the purpose of accurate calculations, it is necessary to take into account the effects of cable strands over the anchor spans, arc-shaped saddle top, and tower top pre-uplift. In this paper, a method for calculating the cable configuration under final dead load over a main span, two side spans, and two anchor spans, coordinates of tangent points, and unstrained cable length are firstly developed using conditions for mechanical equilibrium and geometric relationships. Hanger tensile forces and unstrained hanger lengths are calculated by iteratively solving the equations governing hanger tensile forces and the cable configuration, which gives careful consideration to the effect of hanger weight. Next, equations for calculating the cable configuration in the unloaded state and pre-offsets of saddles are derived from the cable configuration under final dead load and the conditions for unstrained cable length to be conserved. The equations for the main span, two side spans and two anchor spans are then solved simultaneously. In the proposed methods, coupled nonlinear equations are solved by turning them into an unconstrained optimization problem, making the procedure simplified. The feasibility and validity of the proposed methods are demonstrated through a numerical example.

Keywords: suspension bridge; cable shape; unstrained length; hanger tension; saddle; pre-offset

1. Introduction

A suspension bridge consists of main cables, hangers, a deck, towers, anchorages, tower saddles, splay saddles, cable clamps and other components. The ultimate aim of structural design and construction calculations is to achieve the desired bridge configuration with high accuracy. The first step in this process is to determine a target cable configuration under final dead load, which then serves as a data source for subsequent construction calculations. As post-installation adjustment of cable configuration is very difficult, accurately determining cable configuration in the unloaded state and construction parameters is a key to achieving target configurations of the completed bridge. Critical construction parameters include the unstrained cable length, unstrained hanger lengths, and pre-offsets for tower saddles and splay saddles. Accurate calculations of these parameters require full consideration of effects of cable strands over the anchor spans and the arc-shaped tops of saddles. Moreover, it is also necessary to take into account the effect of tower top pre-uplift when calculating the pre-offsets of saddles.

*Corresponding author, Ph.D.
E-mail: zwm@seu.edu.cn
${ }^{\text {a }}$ M.Sc. Candidate
${ }^{\mathrm{b}}$ M.Sc. Candidate
${ }^{\text {c }}$ Professor

Copyright © 2019 Techno-Press, Ltd.

Cable saddles are used to turn main cables and thus they can directly constrain the deformation of main cables. Main cables are tangent to the arc-shaped tops of saddles in all conditions. A tower saddle normally has only one circular arc, while a splay saddle features multiple circular arcs of different radii. This increases the difficulties of calculating cable configurations over side spans and anchor spans.

Offsets are preset for both tower saddles and splay saddles during installation. Under final dead load, the horizontal components of tension in the cable segments at the two sides of each tower saddle are equal, and the sum of torques by cable tensions about the each splay saddle's center of rotation is zero. However, the external loads applied by different spans to a main cable differ. For example, a long main span can exert a relatively great load on the main cable, while a side span can exert only a low or even zero load on the main cable. In the unloaded state, these external loads do not arise and the internal force in a cable segment is equal to the internal force under final dead load minus the internal force arising from external load on it. Compared to external load from the side span, the external load from the main span can produce a greater internal force. If the saddles are installed at the positions for the completed bridge, there will inevitably be great unbalanced forces acting on the saddles in the unloaded state. These unbalanced forces may cause displacements of towers and sliding of cable strands in the saddles. To eliminate such unbalanced forces, tower saddles and splay saddles need to be offset by proper distances and angles, respectively, during installation. The resulting changes in span lengths between saddles will lead to significant
changes in the sags of the main cable over different spans, thereby changing the tension in the main cable. Then the main cable segments at the two sides of a saddle will be in equilibrium with each other. The proper offset distance or angle for a saddle is the pre-offset. During the installation of deck, the saddles move towards their target positions. Therefore, the pre-offsets of saddles vanish in the bridge's completed state.

The elevation of a bare tower top is higher than the tower top's elevation under final dead load. The elevation difference is referred to as pre-uplift. Under final dead load, a main cable can exert a huge downward force on each tower, generating compression in the tower. If the bare tower is pre-uplifted to offset the amount of compression, the tower top's elevation under final dead load will reach the target level.

Configuration calculations for suspension bridges mostly use finite element methods based on the finite displacement theory (Irvine 1981, Jayaraman and Knudson 1981, Kim and Lee 2002, Thai and Kim 2011, Wang and Yang, Karoumi 2012, Sun et al. 2014) or analytical methods based on suspended-cable mechanics (O'Brien 1964, O'Brien and Francis 1964, Chen et al. 2013, 2015, Wang et al 2015, Jung et al. 2015). Given the structural characteristics of a suspension bridge, finite element methods usually involve simulating a construction process based on construction characteristics and requirements regarding cables' mechanical behavior and configuration under final dead load and then calculating cable configuration in the unloaded state via multiple loop iterations. However, finite element methods are inefficient in local detail processing and require an immense and complex computing system and a complicated computational process. In analytical methods, the first step is to calculate unstrained cable length on the basis of main cables' designed state under final dead load. Then cable configuration in the unloaded state is calculated based on the principle that the unstrained length of any cable segment remains constant during structural construction and after completion. In comparison, analytical methods have more explicit computational process and better capability of detail processing such as cable length correction, and are thus more widely applied to cable configuration calculation for suspension bridges. However, analytical shape-finding methods considering the effects of cable strands over the anchor spans, arc-shaped saddle top, and tower top preuplift are seldom reported. In addition, approaches for determining the pre-offsets of tower saddles and splay saddles are rare.

This paper proposes analytical methods for calculating cable configurations under final dead load and in the unloaded state and relevant construction parameters, which takes the effects of cable strands over the anchor spans, arcshaped saddle top and tower top pre-uplift into account. They are later applied to the calculations involved in construction control for a suspension bridge with a 730 m main span. The results demonstrate the feasibility and validity of the proposed methods.

Cable configuration calculation requires solving a number of coupled non-linear transcendental equations. For example, in the calculation of cable configuration in the unloaded state, the number of coupled nonlinear transcendental equations reaches up to 17 . To avoid complicated iterations for equations, the problem of solving a system of equations can be transformed to an unconstrained optimization problem. Then the system of equations can be solved by the generalized reduced gradient (GRG) method (Wilde and Beightler 1967, Lasdon et al. 1974, 1978) for nonlinear programming.

2. Calculation of cable configuration under final dead load

The suspension bridge under study has one main span, two side spans and two anchor spans, as shown in Fig. 1. Calculation of cable configuration can only start from the configuration under final dead load. Unstrained cable length is an important parameter that relates the cable configuration under final dead load to that in the unloaded state, because the unstrained length of any cable segment remains constant in different stages of construction. In calculation of cable configuration under final dead load, the main span is first considered, followed by the side spans and then anchor spans. Specifically, the first step is to calculate the horizontal component of the tension in main cable over the main span. Next, cable configuration over a side span is calculated based on the principle that the horizontal components of the tension in the two cable segments at the two sides of each tower top are equal. Then cable configuration calculation is performed for an anchor span based on the conditions for the equilibrium at each splay saddle. Given the three-dimensional geometry of the cable strands over the anchor spans, the cable strands are usually treated as a whole when calculating their configuration and the anchor point is located at the center of the front anchor plane.

Fig. 1 Schematic of the whole bridge

Fig. 3 Left tower saddle

2.1 Main span

2.1.1 Cable configuration

Under the action of concentrated forces from hangers, the cable in the bridge's completed state consists of many catenary segments hanging between adjacent hangers. As shown in Fig. 2, a number of coordinate systems are established, with the origin being at the left tangent point, F_{1}, and the suspension points, $\mathrm{O}_{1} \sim \mathrm{O}_{n}$, along the cable, the positive x-axis pointing right, and the positive y-axis pointing downward. Then the shape of an arbitrary cable segment is governed by the following catenary equation:

$$
\begin{equation*}
y=c \cosh \left(\frac{x}{c}+a_{i}\right)+b_{i} \tag{1}
\end{equation*}
$$

where $c=-H / q$, in which H is the horizontal component of the cable tension in the bridge's completed state (kN) and q is the cable weight per unit length (kN / m); a_{i} and b_{i} are parameters of the catenary equation.

From the boundary condition $y(0)=c \cosh a_{i}+b_{i}=0$, we obtain $b_{i}=-c \cosh a_{i}$. Plugging this into the equation above, the catenary equation can then be rewritten as:

$$
\begin{equation*}
y=c\left[\cosh \left(\frac{x}{c}+a_{i}\right)-\cosh a_{i}\right] \tag{2}
\end{equation*}
$$

Three constraint conditions are introduced: (1) the elevation difference between the left tangent point and the mid-span point is closed; (2) the elevation difference

Fig. 4 Right tower saddle
between the two tangent points on the left and right saddles is closed; and (3) the length of the orthogonal projection of the rightmost catenary segment on the horizontal plane, l_{n+1}, meets the relevant design requirement. The corresponding equations are as follows:

$$
\begin{align*}
& \sum_{i=1}^{m} \Delta h_{i}=\Delta h_{\mathrm{F}_{1} \mathrm{O}_{m}} \tag{3-1}\\
& \sum_{i=1}^{n} \Delta h_{i}=\Delta h_{\mathrm{FF}_{2}} \tag{3-2}\\
& l_{n+1}=l_{\mathrm{O}_{n} \mathrm{D}_{2}}-l_{\mathrm{F}_{2} \mathrm{D}_{2}} \tag{3-3}
\end{align*}
$$

where m is the number of the cable segments between the left tangent point, F_{1}, and the mid-span point, $\mathrm{O}_{m} ; n$ is the number of suspension points along the cable; Δh_{i} denotes the elevation difference between the two endpoints of an arbitrary catenary segment of the cable; $\Delta h_{\mathrm{FO}_{m}}$ is the elevation difference between the left tangent point, F_{1}, and the mid-span point, $\mathrm{O}_{m} ; \Delta h_{\mathrm{F}_{1} \mathrm{~F}_{2}}$ is the elevation difference between the left tangent point, F_{1}, and the right tangent point, $\mathrm{F}_{2} ; l_{\mathrm{O}_{n} \mathrm{D}}$ is the designed horizontal distance between the rightmost hanger and the right tower's centerline; $l_{\mathrm{F}_{2} \mathrm{D}_{2}}$ is the horizontal distance between the right tangent point, F_{2}, and the right tower's centerline.

There are three unknown quantities hidden in the three equations: H - the horizontal cable tension in the bridge's completed state; a_{1} - the parameter in the catenary equation
for the first catenary segment; and l_{n+1} - the length of the orthogonal projection of the rightmost catenary segment on the horizontal plane. The next step is expressing the other parameters in the equations as functions of the three quantities.

The Δh_{i} can be expressed as follows:

$$
\begin{equation*}
\Delta h_{i}=y\left(l_{i}\right)-y(0)=c\left[\cosh \left(\frac{l_{i}}{c}+a_{i}\right)-\cosh a_{i}\right] \tag{4}
\end{equation*}
$$

where l_{i} is the length of the orthogonal projection of an arbitrary catenary segment on the horizontal plane, as shown in Fig. 2.

In the left tower saddle (Fig. 3), for a given elevation of the circle center, C_{1}, in the geodetic system, denoted as $h_{\mathrm{C}_{1}}$, the elevation of the left tangent point, F_{1}, in the geodetic system, $h_{\mathrm{F}_{1}}$, can be written as

$$
\begin{equation*}
h_{\mathrm{F}_{1}}=h_{\mathrm{C}_{1}}+R_{1} \cos \beta_{4}=h_{\mathrm{C}_{1}}+R_{1} \operatorname{sech} a_{1} \tag{5}
\end{equation*}
$$

where R_{1} is the radius of the left tower saddle's arc-shaped top, as shown in Fig. 3; β_{4} is the angle between the vertical segment $\mathrm{B}_{1} \mathrm{C}_{1}$ and the segment connecting point F_{1} and the circle center, C_{1}. Since $\tan \beta_{4}=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}=\sinh a_{1}$, then $\cos \beta_{4}=$ $\operatorname{sech} a_{1}, \sin \beta_{4}=\tanh a_{1}$.

For a given elevation of point O_{m} in the geodetic system, denoted as $h_{\mathrm{O}_{m}}$, the elevation difference between points F_{1} and O_{m}, denoted as $\Delta h_{\mathrm{F}_{\mathrm{F}}}$, can be expressed by

$$
\begin{equation*}
\Delta h_{\mathrm{FO}_{m}}=h_{\mathrm{F}_{1}}-h_{\mathrm{O}_{m}}=h_{\mathrm{C}_{1}}+R_{1} \operatorname{sech} a_{1}-h_{\mathrm{O}_{m}} \tag{6}
\end{equation*}
$$

In the right tower saddle (Fig. 4), for a given elevation of the circle center, C_{2}, in the geodetic system, denoted as $h_{\mathrm{C}_{2}}$, the elevation of the right tangent point, F_{2}, in the geodetic system, $h_{\mathrm{F}_{2}}$, can be expressed as

$$
\begin{equation*}
h_{\mathrm{F}_{2}}=h_{\mathrm{C}_{2}}+R_{2} \cos \beta_{5}=h_{\mathrm{C}_{2}}+R_{2} \operatorname{sech}\left(\frac{l_{n+1}}{c}+a_{n+1}\right) \tag{7}
\end{equation*}
$$

where R_{2} is the radius of the right tower saddle's arc-shaped top, as shown in Fig. $4 ; \beta_{5}$ is the angle between the vertical segment $\mathrm{B}_{2} \mathrm{C}_{2}$ and the segment connecting point F_{2} and the circle center, C_{2}. Since $\tan \beta_{5}=-\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=l_{n+1}}=-\sinh \left(\frac{l_{n+1}}{c}+a_{n+1}\right)$ then $\cos \beta_{5}=\operatorname{sech}\left(\frac{l_{n+1}}{c}+a_{n+1}\right), \sin \beta_{5}=-\tanh \left(\frac{l_{n+1}}{c}+a_{n+1}\right)$.

Then the elevation difference between tangent points F_{1} and F_{2}, denoted as $\Delta h_{\mathrm{F}_{1} \mathrm{~F}_{2}}$, can be expressed by

$$
\begin{align*}
& \Delta h_{\mathrm{F}_{1} \mathrm{~F}_{2}}=h_{\mathrm{F}_{1}}-h_{\mathrm{F}_{2}}=h_{\mathrm{C}_{1}}-h_{\mathrm{C}_{2}}+ \\
& R_{1} \operatorname{sech} a_{1}-R_{2} \operatorname{sech}\left(\frac{l_{n+1}}{c}+a_{n+1}\right) \tag{8}
\end{align*}
$$

The horizontal distance between the right tangent point, F_{2}, and the right tower's centerline, denoted as $l_{\mathrm{F}_{2} \mathrm{D}_{2}}$, can be

Fig. 5 Equilibrium between forces at a suspension point
expressed by

$$
\begin{align*}
l_{\mathrm{F}_{2} \mathrm{D}_{2}} & =l_{\mathrm{F}_{2} \mathrm{~B}_{2}}-l_{\mathrm{D}_{2} \mathrm{~B}_{2}}=R_{2} \sin \beta_{5}-R_{2} \sin \gamma_{2} \\
& =-R_{2}\left[\tanh \left(\frac{l_{n+1}}{c}+a_{n+1}\right)+\sin \gamma_{2}\right] \tag{9}
\end{align*}
$$

where $l_{\mathrm{F}_{2} \mathrm{~B}_{2}}$ represents the horizontal distance between points F_{2} and $\mathrm{B}_{2} ; l_{\mathrm{D}_{2} \mathrm{~B}_{2}}$ is the horizontal distance between points D_{2} and $B_{2} ; \gamma_{2}$ is the angle between the vertical segment $B_{2} C_{2}$ and the segment connecting point D_{2} and the circle center, C_{2}, as shown in Fig. 4.

At an arbitrary suspension point on the main cable, the axial tensile force can be decomposed into a horizontal component and a vertical one, as shown in Fig. 5. Through the force equilibrium in the vertical direction, we can obtain (Zhang et al. 2018).

$$
\begin{equation*}
H \tan \delta=H \tan \phi+P_{i} \tag{10}
\end{equation*}
$$

where P_{i} is the hanger tensile force; δ and ϕ are the inclination angles for the cable segments at the left and right of the suspension point, O_{i}, respectively.

Substituting $\tan \delta=\sinh \left(l_{i} / c+a_{i}\right)$ and $\tan \phi=\sinh a_{i+1}$ into the equation above leads to

$$
\begin{equation*}
H \sinh \left(l_{i} / c+a_{i}\right)=H \sinh a_{i+1}+P_{i} \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{i+1}=\operatorname{asinh}\left[\sinh \left(\frac{l_{i}}{c}+a_{i}\right)-\frac{P_{i}}{H}\right] \tag{12}
\end{equation*}
$$

In the equation above, the expression of l_{1} is needed. As shown in Fig. 3, the horizontal distance between the tangent point on the left tower saddle and the first hanger, l_{1}, can be expressed as

$$
\begin{align*}
l_{1} & =l_{\mathrm{D}_{1} \mathrm{O}_{1}}-R_{1}\left(\sin \beta_{4}-\sin \gamma_{1}\right) \\
& =l_{\mathrm{D}_{1} \mathrm{O}_{1}}-R_{1}\left(\tanh a_{1}-\sin \gamma_{1}\right) \tag{13}
\end{align*}
$$

where $l_{\mathrm{D}_{1} \mathrm{O}_{1}}$ is the horizontal distance between the left tower's centerline and the first hanger; γ_{1} is the angle between the vertical segment $\mathrm{B}_{1} \mathrm{C}_{1}$ and the segment from the left tower saddle's circle center, C_{1}, to its actual apex, D_{1}, as shown in Fig.3.

Plugging Eqs. (4), (6), (8), (9), and (12) into Eq. (3) yields three nonlinear governing equations that are coupled to each other. The equations can be rewritten as three functions.

Fig. 6 Rigidly supported continuous beam

$$
\begin{align*}
& f_{1}\left(H, a_{1}, l_{n+1}\right)=0 \tag{14-1}\\
& f_{2}\left(H, a_{1}, l_{n+1}\right)=0 \tag{14-2}\\
& f_{3}\left(H, a_{1}, l_{n+1}\right)=0 \tag{14-3}
\end{align*}
$$

In order to solve the resultant system of these equations more conveniently, it can be transformed into an unconstrained optimization problem.

$$
\begin{equation*}
\min \left[\sum_{i=1}^{3} f_{i}^{2}\left(H, a_{1}, l_{n+1}\right)\right] \tag{15}
\end{equation*}
$$

This equation can be solved by using the generalized reduced gradient (GRG) algorithm, which is now available in the Microsoft Excel. Solving this equation gives the expressions for the aforementioned unknown quantities: H, a_{1} and l_{n+1}. Then the cable shape over the main span, which includes the position of each tangent point, the elevation of each suspending point, and so on, can be determined.

2.1.2 Hanger tensile force and unstrained hanger length

In the calculation above, the hanger tensile force, P_{i}, is the axial tensile force at a hanger's upper end. It can be resolved into two components: axial tensile force at the hanger's lower end, denoted as $P_{0, i}$, and hanger weight. $P_{0, i}$ can be calculated using the rigidly supported continuous beam method (Kim and Lee 2001, Jung et al. 2013, Thai and Choi 2013, Cao et al. 2017), namely by replacing the hangers for the stiffening girder with rigid supports (Fig. 6) so that $P_{0, i}$ equals the reaction force applied by each rigid support. However, hanger weight needs to be iteratively calculated. This is because calculating hanger lengths requires determining the elevations of suspension points along each main cable, which in term requires the exact values of hanger tensile forces. The iterative process involves the following steps:
(1) Assume the axial tensile force at a hanger's upper end, P_{i}, equals the value of $P_{0, i}$.
(2) Calculate the elevations of suspension points along the cable from P_{i} using the method described in the previous subsection.
(3) Calculate the unstrained length of each hanger using the equation below:

$$
\begin{equation*}
S_{i, \mathrm{~h}}=\frac{L_{i, \mathrm{~h}}}{1+\frac{P_{i}-0.5 w_{i} L_{i, \mathrm{~h}}}{E_{\mathrm{h}} A_{i}}} \tag{16}
\end{equation*}
$$

where $L_{i, \mathrm{~h}}$ is the strained length of the i th hanger, $L_{i, \mathrm{~h}}=h_{i, \mathrm{c}^{-}}$ $h_{i, \mathrm{~d}} ; h_{i, \mathrm{c}}$ is the elevation of the i th suspension point on the main cable in the geodetic system; $h_{i, \mathrm{~d}}$ is the elevation of the corresponding anchor point on the deck in the geodetic system; w_{i} is the hanger weight per unit length $(\mathrm{kN} / \mathrm{m}) ; E_{\mathrm{h}}$ is
the elastic modulus of the steel wires used to produce the hangers; and A_{i} is the cross-sectional area of the i th hanger.
(4) Calculate the axial tensile force at the upper end using the equation below:

$$
\begin{equation*}
P_{i}^{\prime}=P_{0, i}+S_{i, \text { hanger }} w_{i} \tag{17}
\end{equation*}
$$

(5) Decide whether the iterative process converges according to the criterion shown in the following equation:

$$
\begin{equation*}
\max _{1 \leq i \leq n}\left(\frac{\left|P_{i}^{\prime}-P_{i}\right|}{P_{i}}\right) \leq \varepsilon \tag{18}
\end{equation*}
$$

where ε is the threshold and can be set at 0.035%. The iterative processes to solve for P_{i} and cable configuration terminate when this formula holds. Otherwise, assign the value of P_{i}^{\prime} to P_{i} and go back to step (2) and repeat.

2.1.3 Unstrained cable length

The unstrained cable length over the main span can be divided into three components: multiple catenary segments, the arc segment $\mathrm{D}_{1} \mathrm{~F}_{1}$ on the left tower saddle, and the arc segment $\mathrm{F}_{2} \mathrm{D}_{2}$ on the right tower saddle.

The total unstrained length of catenary segments in the main span, denoted as $S_{c, m}$, can be expressed as

$$
\begin{equation*}
S_{c, m}=\sum_{i=1}^{n+1} S_{c, i} \tag{19}
\end{equation*}
$$

where $S_{c, i}$ is the unstrained length of the i th catenary segment. It can be formulated as follows:

$$
\begin{align*}
S_{c, i}= & c\left[\sinh \left(\frac{l_{i}}{c}+a_{i}\right)-\sinh a_{i}\right] \\
& -\frac{H}{2 E A}\left\{l_{i}+\frac{c}{2}\left[\sinh 2\left(\frac{l_{i}}{c}+a_{i}\right)-\sinh 2 a_{i}\right]\right\} \tag{20}
\end{align*}
$$

The unstrained length of the arc segment $D_{1} F_{1}$ on the left tower saddle can be written as

$$
\begin{equation*}
S_{\mathrm{D}_{1} \mathrm{~F},}=\frac{R_{1}\left(\beta_{4}-\gamma_{1}\right)}{1+\frac{H \cosh a_{1}}{E A}} \tag{21}
\end{equation*}
$$

The unstrained length of the arc segment on the right tower saddle, $\mathrm{F}_{2} \mathrm{D}_{2}$, can be expressed as

$$
\begin{equation*}
S_{\mathrm{F}_{2} \mathrm{D}_{2}}=\frac{R_{2}\left(\beta_{5}-\gamma_{2}\right)}{1+\frac{H \cosh \left(l_{n+1} / c+a_{n+1}\right)}{E A}} \tag{22}
\end{equation*}
$$

Then the unstrained cable length over the main span can be calculated using the equation below:

$$
\begin{equation*}
S_{m}=S_{c, m}+S_{\mathrm{D}_{1} \mathrm{~F}_{1}}+S_{\mathrm{F}_{\mathrm{D}_{2}}} \tag{23}
\end{equation*}
$$

2.2 Side spans

2.2.1 Cable configuration

After the calculation for the main span is completed, the

Fig. 7 Cable configuration under final dead load over the left side span
cable configurations over the side spans are calculated. The calculation method is basically the same as that used for the main span, except that the known quantities are slightly different. The sag to span ratio and elevation of the midspan point are known in the calculation for the main span, but are unknown in the calculation for the side spans. However, the horizontal component of the tension in main cable over a side span can be inferred from the equilibrium conditions for the saddle mounted on each tower top. It is generally assumed that towers are not subject to any horizontal force from main cables. Therefore, the horizontal component of the tension in main cable over a side span is considered equal to that over the main span. This means that H is a known quantity in the cable configuration calculation for the side spans and it takes the value calculated for the main span.

Due to the absence of hanger tensile force, the main cable over a side span can be viewed as a complete catenary when calculating its configuration. Take for example the left side span. As shown in Fig. 7, a coordinate system is established, with the origin being at the left tangent point, E_{1}, the positive x-axis pointing left, and the positive y-axis pointing downward. Then the catenary equation for main cable over the left side span can be written as

$$
\begin{equation*}
y=c \cosh \left(\frac{x}{c}+a_{s}\right)+b_{s} \tag{24}
\end{equation*}
$$

where a_{s} and b_{s} are parameters of the catenary equation, and the subscript s denotes a side span.

From the boundary condition $y(0)=c \cosh a_{s}+b_{s}=0$, we obtain $b_{s}=-c \cosh a_{s}$. Substituting this into the equation above, the catenary equation can then be rewritten as

$$
\begin{equation*}
y=c\left[\cosh \left(\frac{x}{c}+a_{s}\right)-\cosh a_{s}\right] \tag{25}
\end{equation*}
$$

Since both the elevation difference and horizontal distance between the tangent points on the tower and splay saddles are closed, we have

$$
\begin{equation*}
\Delta h_{s}=\Delta h_{\mathrm{E}_{\mathrm{I}} \mathrm{Q}} \tag{26-1}
\end{equation*}
$$

$$
\begin{equation*}
l_{s}=\Delta l_{\mathrm{E}_{\mathrm{I}} \mathrm{Q}} \tag{26-2}
\end{equation*}
$$

where Δh_{s} is the elevation difference between the two endpoints of the catenary segment over the left side span; $\Delta h_{\mathrm{E}_{1} \mathrm{Q}}$ and $\Delta l_{\mathrm{E}_{1} \mathrm{Q}}$ represent the elevation difference and horizontal distance, respectively, between tangent points E_{1} and Q ; and l_{s} is the length of the orthogonal projection of the catenary segment over the left side span on the horizontal plane.

There are two unknown quantities hidden in this equation system: a_{s} and l_{s}. Next, other parameters in the equations are to be expressed as functions of the two unknown quantities.

The elevation difference between the two endpoints of the catenary segment is given by

$$
\begin{equation*}
\Delta h_{\mathrm{s}}=y\left(l_{\mathrm{s}}\right)-y(0)=c\left[\cosh \left(\frac{l_{\mathrm{s}}}{c}+a_{\mathrm{s}}\right)-\cosh a_{\mathrm{s}}\right] \tag{27}
\end{equation*}
$$

In the geodetic system, the elevation of tangent point E_{1} on the left tower saddle, denoted as $h_{\mathrm{E}_{1}}$, can be calculated from the elevation of circle center C_{1}, denoted as $h_{\mathrm{C}_{1}}$, using the equation below:

$$
\begin{equation*}
h_{\mathrm{E}_{1}}=h_{\mathrm{C}_{1}}+R_{1} \cos \beta_{3}=h_{\mathrm{C}_{1}}+R_{1} \operatorname{sech} a_{\mathrm{s}} \tag{28}
\end{equation*}
$$

where β_{3} is the angle between the vertical segment $\mathrm{B}_{1} \mathrm{C}_{1}$ and the segment connecting tangent point E_{1} to the circle center C_{1}. Since $\tan \beta_{3}=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}=\sinh a_{\mathrm{s}}$, then $\cos \beta_{3}=\operatorname{sech} a_{\mathrm{s}}$ and $\sin \beta_{3}=\tanh a_{\mathrm{s}}$.

In the geodetic system, the elevation of tangent point Q on the splay saddle, h_{Q}, can be calculated from the elevation of the splay saddle's circle center, h_{K}, using

$$
\begin{equation*}
h_{\mathrm{Q}}=h_{\mathrm{K}}+r_{4} \cos \beta_{2}=h_{\mathrm{K}}+r_{4} \operatorname{sech}\left(\frac{l_{s}}{c}+a_{s}\right) \tag{29}
\end{equation*}
$$

where r_{4} is the radius of the arc at tangent point Q ; and β_{2} is the angle between the vertical line and the segment connecting points Q and K. Since
$\tan \beta_{2}=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=l_{s}}=\sinh \left(\frac{l_{s}}{c}+a_{s}\right), \quad$ then $\quad \cos \beta_{2}=\operatorname{sech}\left(\frac{l_{s}}{c}+a_{s}\right)$
$\sin \beta_{2}=\tanh \left(\frac{l_{s}}{c}+a_{s}\right)$.
So the elevation difference between tangent points Q and E_{1} can be expressed as

$$
\begin{align*}
\Delta h_{\mathrm{E}_{1} \mathrm{Q}} & =h_{\mathrm{E}_{1}}-h_{\mathrm{Q}} \\
& =h_{\mathrm{C}_{1}}-h_{\mathrm{K}}+R_{1} \operatorname{sech} a_{s}-r_{4} \operatorname{sech}\left(\frac{l_{s}}{c}+a_{s}\right) \tag{30}
\end{align*}
$$

Their horizontal distance, denoted as $\Delta l_{\mathrm{E}_{1} \mathrm{Q}}$, can be expressed as

$$
\begin{equation*}
\Delta l_{\mathrm{E}_{1} \mathrm{Q}}=L_{s, L}-\Delta_{1}-\Delta_{2}+\Delta_{3}-\Delta_{4} \tag{31}
\end{equation*}
$$

where $L_{s, L}$ is the length of a side span, which is equivalent to the horizontal distance between the IP points of the left tower saddle and left splay saddle; Δ_{1} is the horizontal distance between the tangent point E_{1}, and point B_{1}, $\Delta_{1}=R_{1} \sin \beta_{3} ; \Delta_{2}$ is the horizontal distance between points B_{1} and $\mathrm{D}_{1}, \Delta_{2}=R_{1} \sin \gamma_{1} ; \Delta_{3}$ is the horizontal distance between the tangent point on the left splay saddle, Q , and circle center $\mathrm{K}, \Delta_{3}=r_{4} \sin \beta_{2} ; \Delta_{4}$ is the horizontal distance between the IP point and circle center of the left splay saddle, $\Delta_{4}=l_{\mathrm{K}} \sin \omega_{1}$, in which l_{K} is the distance between the splay saddle's IP point and circle center K , and ω_{1} is the angle between the vertical line and the segment connecting the IP point and K.

Plugging Eqs. (27), (30) and (31) into Eq. (26) gives two coupled equations, which have the following functional forms:

$$
\begin{align*}
& f_{1}\left(a_{s}, l_{s}\right)=0 \tag{32-1}\\
& f_{2}\left(a_{s}, l_{s}\right)=0 \tag{32-2}
\end{align*}
$$

An objective function is constructed by using a_{s} and l_{s} as the variables

$$
\begin{equation*}
\min \left[\sum_{i=1}^{2} f_{i}^{2}\left(a_{s}, l_{s}\right)\right] \tag{33}
\end{equation*}
$$

By solving the equations, we can get the values of a_{s} and l_{s}, and then the main cable's configuration and internal forces under final dead load. The method described above can also be utilized to calculate the configuration and internal forces for the main cable over the right side span.

2.2.2 Unstrained cable length

The unstrained cable length over the left side span consists of three parts: the catenary segment QE_{1}, the arc segment $D_{3} \mathrm{Q}$ on the left splay saddle, and the arc segment $\mathrm{E}_{1} \mathrm{D}_{1}$ on the left tower saddle.

The unstrained length of the catenary segment QE_{1} can be expressed as

$$
\begin{align*}
S_{c, s}= & c\left[\sinh \left(\frac{l_{s}}{c}+a_{s}\right)-\sinh a_{s}\right] \\
& -\frac{H}{2 E A}\left\{l_{s}+\frac{c}{2}\left[\sinh 2\left(\frac{l_{s}}{c}+a_{s}\right)-\sinh 2 a_{s}\right]\right\} \tag{34}
\end{align*}
$$

The unstrained length of the arc segment $\mathrm{D}_{3} \mathrm{Q}$ can be expressed as

$$
\begin{equation*}
S_{\mathrm{D}_{3} \mathrm{Q}}=\frac{r_{3}\left(\omega_{1}-\varphi_{1}-\theta_{4}\right)+r_{4}\left[\left(\varphi_{1}+\theta_{4}\right)-\beta_{2}\right]}{1+\frac{H \cosh \left(l_{s} / c+a_{s}\right)}{E A}} \tag{35}
\end{equation*}
$$

where θ_{4} is the central angle of the rightmost circular arc on the left splay saddle (Fig. 8).

The unstrained length of the arc segment $\mathrm{E}_{1} \mathrm{D}_{1}$ has the following form

$$
\begin{equation*}
S_{\mathrm{E}_{1} \mathrm{D}_{1}}=\frac{R_{1}\left(\beta_{3}+\gamma_{1}\right)}{1+\frac{H \cosh a_{s}}{E A}} \tag{36}
\end{equation*}
$$

The total unstrained cable length over the left side span can be calculated using

$$
\begin{equation*}
S_{s, L}=S_{c, s}+S_{\mathrm{D}_{3} \mathrm{Q}}+S_{\mathrm{E}_{1} \mathrm{D}_{1}} \tag{37}
\end{equation*}
$$

The unstrained cable length over the right side span can be obtained through the same method.

2.3 Anchor spans

2.3.1 Cable configuration

The cable configuration under final dead load over the anchor spans is calculated usually after the calculation for the side spans is completed. The calculation method is roughly the same as that used for the side spans except for some differences. Over the anchor spans, the splay saddles are tilted, making it necessary to consider the balance of torques about the splay saddle's center of rotation. Therefore, the horizontal component of cable tension over an anchor span is unknown.

This subsection only presents the calculation for the left anchor span. As shown in Fig. 8, the splay saddle consists of 4 circular arcs. The radii of these arcs, from the anchor span to the side span, are r_{1}, r_{2}, r_{3}, and r_{4}, respectively, and the corresponding central angles are $\theta_{1}, \theta_{2}, \theta_{3}$, and θ_{4}, respectively.

A coordinate system is established, with the origin being at the tangent point on the left splay saddle, J, the positive x-axis pointing left, and the positive y-axis pointing downward. Then the catenary equation for main cable over the left anchor span can be written as

$$
\begin{equation*}
y=c_{a} \cosh \left(\frac{x}{c_{a}}+a_{a}\right)+b_{a} \tag{38}
\end{equation*}
$$

where $c_{a}=-H_{a} / q$, in which H_{a} represents the horizontal component of cable tension over the anchor span and is unknown; a_{a} and b_{a} are parameters of the catenary equation for main cable over the anchor span; and the subscript a denotes an anchor span.

From the boundary condition $y(0)=c_{a} \cosh a_{a}+b_{a}=0$, we obtain $b_{a}=-c_{a} \cosh a_{a}$. Putting this into the equation above, the catenary equation can then be rewritten as follows:

$$
\begin{equation*}
y=c_{a}\left[\cosh \left(\frac{x}{c_{a}}+a_{a}\right)-\cosh a_{a}\right] \tag{39}
\end{equation*}
$$

Fig. 8 Cable configuration under final dead load over the left anchor span

Since both the elevation difference and horizontal distance between the left anchor point A_{1} and tangent point J are closed, and the sum of torques about the left splay saddle's center of rotation, I_{1}, is zero, the following equation system can be constructed:

$$
\begin{gather*}
\Delta h_{a}=\Delta h_{\mathrm{JA}_{1}} \tag{40-1}\\
l_{a}=\Delta l_{\mathrm{JA}_{1}} \tag{40-2}\\
\sum M_{\mathrm{I}_{\mathrm{l}}}=0 \tag{40-3}
\end{gather*}
$$

where Δh_{a} is the elevation difference between the two endpoints of the catenary segment over the left anchor span; $\Delta h_{\mathrm{JA}_{1}}$ and $\Delta l_{\mathrm{JA}_{1}}$ are the elevation difference and horizontal distance, respectively, between tangent point J and the left anchor point, $\mathrm{A}_{1} ; l_{a}$ is the length of the orthogonal projection of the catenary segment over the left anchor span on the horizontal plane; and $\sum M_{\mathrm{I}_{1}}$ represents the sum of torques about point I_{1} due to cable tension and the splay saddle's weight.

There are three unknown quantities hidden in the equation system: a_{a}, l_{a} and H_{a}. Next, other parameters in the equations are to be expressed as functions of the three quantities.

The elevation difference between the two endpoints of the catenary segment, denoted as Δh_{a}, can be described by

$$
\begin{align*}
\Delta h_{a} & =y\left(l_{a}\right)-y(0) \\
& =c_{a}\left[\cosh \left(\frac{l_{a}}{c_{a}}+a_{a}\right)-\cosh a_{a}\right] \tag{41}
\end{align*}
$$

In the geodetic system, the elevation of tangent point J on the left splay saddle, denoted as h_{J}, can be inferred from the elevation of the splay saddle's circle center K, denoted as h_{K}, using

$$
\begin{equation*}
h_{\mathrm{J}}=h_{\mathrm{K}}+\Delta h_{1, L}+\Delta h_{2, L}+\Delta h_{3, L}+\Delta h_{4, L} \tag{42}
\end{equation*}
$$

where $\Delta h_{1, L}$ represents the elevation difference between

Fig. 9 Balance of torques acting on the left splay saddle under final dead load
tangent point J and the center of the first circular arc of the splay saddle, $\Delta h_{1, L}=r_{1} \cos \beta_{1}$, in which β_{1} is the angle between the vertical line and the segment connecting tangent point J and the center of the first circular arc. Since $\tan \beta_{1}=\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0}=\sinh a_{a}$, then $\cos \beta_{1}=\operatorname{sech} a_{a}, \sin \beta_{1}=\tanh a_{a} ;$ $\Delta h_{2, L}$ is the elevation difference between the centers of the first and second circular arcs of the splay saddle, $\Delta h_{2, L}=\left(r_{2}-r_{1}\right) \cos \left(\theta_{2}+\theta_{3}+\theta_{4}+\varphi_{1}\right)$, in which φ_{1} is the angle between the vertical line and the segment connecting the outmost endpoint of the fourth circular arc and its circle center $\mathrm{K} ; \Delta h_{3, L}$ is the elevation difference between the centers of the second and third arcs of the splay saddle, $\Delta h_{3, L}=\left(r_{3}-r_{2}\right) \cos \left(\theta_{3}+\theta_{4}+\varphi_{1}\right) ;$ and $\Delta h_{4, L}$ is the elevation difference between the centers of the third and fourth arcs of the splay saddle, $\Delta h_{4, L}=\left(r_{4}-r_{3}\right) \cos \left(\theta_{4}+\varphi_{1}\right)$.

So the elevation difference between points J and A_{1}, denoted as $\Delta h_{\mathrm{JA}_{1}}$, can be written as

$$
\begin{align*}
\Delta h_{\mathrm{IA}_{1}} & =h_{\mathrm{J}}-h_{\mathrm{A}_{\mathrm{I}}} \\
& =\left(h_{\mathrm{K}}+\Delta h_{1, L}+\Delta h_{2, L}+\Delta h_{3, L}+\Delta h_{4, L}\right)-h_{\mathrm{A}_{\mathrm{l}}} \tag{43}
\end{align*}
$$

where $h_{A_{1}}$ is the elevation of point A_{1} in the geodetic system.

The horizontal distance between points J and A_{1}, denoted $\Delta l_{\mathrm{JA}_{1}}$, can be written as

$$
\begin{equation*}
\Delta l_{\mathrm{JA}}{ }^{1}=L_{a, L}-\left(\Delta l_{1, L}+\Delta l_{2, L}+\Delta l_{3, L}+\Delta l_{4, L}-\Delta_{4}\right) \tag{44}
\end{equation*}
$$

where $L_{a, L}$ is the length of the left anchor span, i.e. the horizontal distance between the left splay saddle's IP point and left anchor point $\mathrm{A}_{1} ; \Delta l_{1, L}$ is the horizontal distance between the tangent point on the left splay saddle, J , and the center of the first circular arc of the splay saddle, $\Delta l_{1, L}=r_{1} \sin \beta_{1} ; \Delta l_{2, L}$ is the horizontal distance between the centers of the first and second circular arcs of the splay saddle, $\Delta l_{2, L}=\left(r_{2}-r_{1}\right) \sin \left(\theta_{2}+\theta_{3}+\theta_{4}+\varphi_{1}\right) ; \Delta l_{3, L}$ is the horizontal distance between the centers of the second and third circular arcs of the splay saddle,
$\Delta l_{3, L}=\left(r_{3}-r_{2}\right) \sin \left(\theta_{3}+\theta_{4}+\varphi_{1}\right)$; and $\Delta l_{4, L}$ is the horizontal distance between the third circular arc's center and the fourth circular arc's center, $K, \Delta l_{4, L}=\left(r_{4}-r_{3}\right) \sin \left(\theta_{4}+\varphi_{1}\right)$.

As demonstrated in Fig. 9, the sum of torques about point I_{1} due to the tension in the cable segments at the two sides of the left splay saddle and the splay saddle's selfweight can be written as

$$
\begin{equation*}
\sum M_{\mathrm{I}_{1}}=H \cdot e_{s 1}+V_{s} \cdot e_{s 2}-\left(H_{a} \cdot e_{a 1}+V_{a} \cdot e_{a 2}+G \cdot e_{g}\right) \tag{45}
\end{equation*}
$$

where $e_{s 1}$ denotes the eccentricity of the horizontal component, H, of cable tension over the side span, and is defined by $e_{s 1}=r_{4} \cos \beta_{2}-\left(l_{\mathrm{K}}-l_{\mathrm{I}}\right) \cos \omega_{1}$, in which l_{I} is the distance between the splay saddle's IP point and center of rotation, $\mathrm{I}_{1} ; V_{s}$ denotes the vertical component of cable tension over the side span at tangent point $\mathrm{Q}, V_{s}=H \tan \beta_{2}$; $e_{s 2}$ is the eccentricity of $V_{s}, e_{s 2}=r_{4} \sin \beta_{2}-\left(l_{\mathrm{K}}-l_{\mathrm{I}}\right) \sin \omega_{1}$; $e_{a 1}$ is the eccentricity of the horizontal component, H_{a}, of cable tension over the anchor span, $e_{a 1}=\Delta h_{1, L}+\Delta h_{2, L}+\Delta h_{3, L}+\Delta h_{4, L}-\left(l_{\mathrm{K}}-l_{\mathrm{I}}\right) \cos \omega_{1} ; V_{a}$ is the vertical component of cable tension over the left anchor span at tangent point $\mathrm{J}, V_{a}=H_{a} \tan \beta_{1} ; e_{a 2}$ is the eccentricity of V_{a}, $e_{a 2}=\Delta l_{1, L}+\Delta l_{2, L}+\Delta l_{3, L}+\Delta l_{4, L}-\left(l_{\mathrm{K}}-l_{\mathrm{I}}\right) \sin \omega_{1} ; G$ is the force of gravity acting on the splay saddle; and e_{g} is the eccentricity of $G, e_{g}=l_{g} \sin \omega_{1}$, in which l_{g} denotes the distance between the splay saddle's center of gravity and center of rotation I_{1}.

Substituting Eqs. (41), (43), (44), and (45) into Eq. (40) yields three coupled equations, which take the following functional forms:

$$
f_{1}\left(H_{a}, a_{a}, l_{a}\right)=0
$$

$$
\begin{equation*}
f_{2}\left(H_{a}, a_{a}, l_{a}\right)=0 \tag{46-2}
\end{equation*}
$$

$$
\begin{equation*}
f_{3}\left(H_{a}, a_{a}, l_{a}\right)=0 \tag{46-3}
\end{equation*}
$$

An objective function is constructed by using a_{a}, l_{a}, and H_{a} as the variables:

$$
\begin{equation*}
\min \left[\sum_{i=1}^{3} f_{i}^{2}\left(H_{a}, a_{a}, l_{a}\right)\right] \tag{47}
\end{equation*}
$$

By solving these equations, we can get the values of a_{a}, l_{a}, H_{a}, and then the cable configuration under final dead load over the left anchor span. This method described above can also be used to calculate the cable configuration over the right anchor span.

2.3.2 Unstrained cable length

The unstrained cable length over the left anchor span is split into two parts: the catenary segment $\mathrm{A}_{1} \mathrm{~J}$ and the arc segment JD_{3} on the left splay saddle.

The unstrained length of the catenary segment $\mathrm{A}_{1} \mathrm{~J}$ can be expressed as

$$
\begin{align*}
S_{c, a}= & c_{a}\left[\sinh \left(\frac{l_{a}}{c_{a}}+a_{a}\right)-\sinh a_{a}\right] \\
& -\frac{H_{a}}{2 E A}\left\{l_{a}+\frac{c_{a}}{2}\left[\sinh 2\left(\frac{l_{a}}{c_{a}}+a_{a}\right)-\sinh 2 a_{a}\right]\right\} \tag{48}
\end{align*}
$$

The unstrained length of the arc segment JD_{3} is given by

$$
\begin{equation*}
S_{\mathrm{JD}_{3}}=\frac{r_{1}\left[\beta_{1}-\left(\theta_{2}+\theta_{3}+\theta_{4}+\varphi_{1}\right)\right]+r_{2} \theta_{2}+r_{3}\left[\theta_{3}-\left(\omega_{1}-\varphi_{1}-\theta_{4}\right)\right]}{1+\frac{H_{a} \cosh a_{a}}{E A}} \tag{49}
\end{equation*}
$$

Then the total unstrained cable length over the left anchor span can be calculated using the equation below:

$$
\begin{equation*}
S_{a, L}=S_{c, a}+S_{\mathrm{JD}_{3}} \tag{50}
\end{equation*}
$$

This calculation method is also applicable to the right anchor span.

2.4 Tower top pre-uplift

Under final dead load, a tower tends to undergo axial compression due to the downward compressive forces from the main cables. The amount of compression can be calculated as follows:

$$
\begin{equation*}
\Delta h_{\mathrm{t}}=\frac{h_{\mathrm{t}}}{1-\frac{H\left(\tan \beta_{3}+\tan \beta_{4}\right)}{E_{\mathrm{t}} A_{\mathrm{t}}}}-h_{\mathrm{t}} \tag{51}
\end{equation*}
$$

where h_{t} is the tower's target height of the completed bridge; E_{t} is the tower's elastic modulus; and A_{t} is the crosssectional area of a tower column.

During construction, the tower top pre-uplift, Δh_{t}, is normally set as the calculated amount of compression.

3. Calculation of cable configuration in the unloaded state

Unlike in calculation of cable configuration under final dead load, we need to consider different spans simultaneously when calculating cable configuration in the unloaded state and pre-offsets for cable saddles. This is because cable configuration over any span and relevant parameters are affected by adjacent span(s). Coupled equations are established using the conditions for geometrical compatibility at the nodes between adjacent spans, mechanical equilibrium conditions, and geometric boundary conditions. Then parameters in the system of equations are expressed as functions of unknown quantities. The last step is to solve for the unknown quantities by nonlinear programming.

3.1 Unknown quantities

The horizontal component of cable tension over each span, parameters of corresponding catenary equation, and positions of saddles and tangent points in the unloaded state differ from those under final dead load. For this reason, unknown quantities in the unloaded state fall into the following five groups:
(1) The horizontal components of cable tension over different spans: $H_{a, L}^{\prime}, H_{s, L}^{\prime}, H_{m}^{\prime}, H_{s, R}^{\prime}, H_{a, R}^{\prime}$, where the subscripts a, s and m represent an anchor span, side span and main span, respectively; the subscript L and R represent the left and right spans, respectively; and the superscript ' indicates a parameter in the unloaded state. As $H_{s, L}^{\prime}=H_{m}^{\prime}=H_{s, R}^{\prime}$, the three can be regarded as one unknown quantity.
(2) Parameters of the catenary equations for different spans: $a_{a, L}, a_{s, L}, a_{m}, a_{s, R}, a_{a, R}$.
(3) Lengths of the orthogonal projection of catenary segments over different spans on the horizontal plan: $l_{a, L}^{\prime}, l_{s, L}^{\prime}, l_{m}^{\prime}, l_{s, R}^{\prime}, l_{a, R}^{\prime}$.
(4) Pre-offset distances for the tower saddles: $\Delta_{m, L}, \Delta_{m, R}$.
(5) Pre-offset angles for the splay saddles: $\alpha_{s, L}, \alpha_{s, R}$.

There are a total of 17 unknown quantities, and thus we need 17 equations to calculate them.

3.2 Coupled equations

Coupled equations can be derived from the conditions necessary for closed elevation difference and horizontal distance, conserved unstrained cable length, and balance of torques acting on each splay saddle.
(1) For the elevation difference between the two endpoints of cable segment over each span to be closed, the following conditions must be satisfied:

$$
\begin{align*}
\Delta h_{m} & =\Delta h_{m}^{\prime} \\
\Delta h_{s 1} & =\Delta h_{s, L}^{\prime} \\
\Delta h_{s 2} & =\Delta h_{s, R}^{\prime} \tag{52-1}\\
\Delta h_{a 1} & =\Delta h_{a, L}^{\prime} \\
\Delta h_{a 2} & =\Delta h_{a, R}^{\prime}
\end{align*}
$$

where Δh_{m} is the elevation difference between the circle centers of the left and right tower saddles, C_{1} and C_{2} (Figs. 3 and 4), under final dead load ; Δh_{m}^{\prime} is Δh_{m} expressed in terms of unknown parameters in the unloaded state; $\Delta h_{s 1}$ is the elevation difference between points I_{1} and C_{1} (Fig. 7) under final dead load, which is a known parameter; $\Delta h_{s, L}^{\prime}$ is $\Delta h_{s 1}$ expressed in terms of unknown parameters in the unloaded state; $\Delta h_{a 1}$ is the elevation difference between points A_{1} and I_{1} (Fig. 8) under final dead load, a known quantity; $\Delta h_{a, L}^{\prime}$ is the elevation difference between points A_{1} and I_{1} (Fig. 14) in the unloaded state and can be expressed as a function of unknown parameters in the unloaded state; and the subscripts " 1 " and " 2 " indicate a left span and a right span, respectively.
(2) For the horizontal distance between the ends of each span to be closed, the following conditions must be satisfied:

$$
\begin{align*}
& L_{m}=L_{m}^{\prime} \\
& L_{s 1}=L_{s, L}^{\prime} \\
& L_{s 2}=L_{s, R}^{\prime} \tag{52-2}\\
& L_{a 1}=L_{a, L} \\
& L_{a 2}=L_{a, R}^{\prime}
\end{align*}
$$

where L_{m} is the horizontal distance between the centerlines of the left and right towers under final dead load (Fig. 1), a known quantity; L_{m}^{\prime} is the horizontal distance between the two towers' centerlines in the unloaded state and can be expressed as a function of the aforementioned unknown parameters in the unloaded state; $L_{s 1}$ and $L_{s, L}^{\prime}$ are the horizontal distances between point I_{1} (Figs. 7 and 12) and the left tower's centerline under final dead load and in the unloaded state, respectively; and $L_{a 1}$ and $L_{a, L}^{\prime}$ denote the horizontal distances between points A_{1} and I_{1} (Figs. 8 and 14) under final dead load and in the unloaded state, respectively.
(3) For the unstrained cable length over each span to be conserved, the following conditions must be satisfied:

$$
\begin{align*}
& S_{m}=S_{m}^{\prime} \\
& S_{s, L}=S_{s, L}^{\prime} \\
& S_{s, R}=S_{s, R}^{\prime} \tag{52-3}\\
& S_{a, L}=S_{a, L}^{\prime} \\
& S_{a, R}=S_{a, R}^{\prime}
\end{align*}
$$

where S and S^{\prime} represent the unstrained cable lengths over a span under final dead load and in the unloaded state, respectively.
(4) The conditions necessary for the sum of torques about each splay saddle's center of rotation to be zero are as follows:

$$
\begin{align*}
& \sum M_{\mathrm{I}_{1}}^{\prime}=0 \\
& \sum M_{\mathrm{I}_{2}}^{\prime}=0 \tag{52-4}
\end{align*}
$$

where I_{2} is the right splay saddle's center of rotation.
Next, the parameters in the equations will be expressed in terms of the aforementioned 17 unknown quantities.

3.2.1 Main span

Expressions are built from relevant unknown quantities to describe the following three parameters: Δh_{m}^{\prime}, the elevation difference between the circle centers of the left and right tower saddles, C_{1} and C_{2}, for the completed bridge; L_{m}^{\prime}, the distance between the left and right towers' centerlines; and S_{m}^{\prime}, the unstrained cable length over the main span.
(1) Δh_{m}^{\prime} can be expressed as:

$$
\begin{align*}
\Delta h_{m}^{\prime} & =\Delta h_{\mathrm{C}_{1} \mathrm{C}_{2}}^{\prime}=h_{\mathrm{C}_{1}}^{\prime}-h_{\mathrm{C}_{2}}^{\prime} \\
& =-\Delta h_{t, L}-R_{1} \cos \beta_{4}^{\prime}+\Delta h_{c, m}^{\prime}+R_{2} \cos \beta_{5}^{\prime}+\Delta h_{t, R} \tag{53}
\end{align*}
$$

where $\Delta h_{t, L}$ and $\Delta h_{t, R}$ are the pre-uplifts for the left and right tower tops, respectively; and $\Delta h_{c, m}^{\prime}$ denotes the elevation difference between the catenary segment's two endpoints, F_{1}^{\prime} and F_{2}^{\prime}, in the unloaded state (Figs. 10 and 11), which is given by

$$
\begin{equation*}
\Delta h_{c, m}^{\prime}=y\left(l_{m}^{\prime}\right)-y(0)=c_{m}^{\prime}\left[\cosh \left(\frac{l_{m}^{\prime}}{c_{m}^{\prime}}+a_{m}^{\prime}\right)-\cosh a_{m}^{\prime}\right] \tag{54}
\end{equation*}
$$

Fig. 10 Left tower saddle in the unloaded state

Fig. 11 Right tower saddle in the unloaded state

Fig. 12 Cable configuration in the unloaded state over the left side span
where l_{m}^{\prime} is the length of the orthogonal projection of the catenary segment $\mathrm{F}_{1}^{\prime} \mathrm{F}_{2}^{\prime}$ on the horizontal plane in the unloaded state; $c_{m}^{\prime}=-H_{m}^{\prime} / q^{\prime}$, in which H_{m}^{\prime} denotes the horizontal component of cable tension in the unloaded state (kN) and q^{\prime} denotes the free cable's weight per unit length (kN / m).
(2) L_{m}^{\prime} can be described by

$$
\begin{align*}
L_{m}^{\prime}= & -\Delta_{m, L}-R_{1} \sin \gamma_{1}+R_{1} \sin \beta_{4}^{\prime}+l_{m}^{\prime} \\
& +R_{2} \sin \beta_{5}^{\prime}-\Delta_{m, R}-R_{2} \sin \gamma_{2} \tag{55}
\end{align*}
$$

where $\Delta_{m, L}$ and $\Delta_{m, R}$ are the pre-offsets for the left and right tower saddles, respectively (Figs. 10 and 11).
(3) S_{m}^{\prime} can be described by

$$
\begin{equation*}
S_{m}^{\prime}=S_{c, m}^{\prime}+S_{\mathrm{D}_{1} \mathrm{~F}_{\mathrm{F}}^{\prime}}^{\prime}+S_{\mathrm{F}_{2} \mathrm{D}_{2}^{\prime}}^{\prime} \tag{56}
\end{equation*}
$$

where $S_{c, m}^{\prime}, S_{\mathrm{D}_{1} \mathrm{~F}_{1}^{\prime}}^{\prime}$, and $S_{\mathrm{F}_{2} \mathrm{D}_{2}^{\prime}}^{\prime}$ are the unstrained lengths of the catenary segment $\mathrm{F}_{1}^{\prime} \mathrm{F}_{2}^{\prime}$, the arc segment $\mathrm{D}_{1}^{\prime} \mathrm{F}_{1}^{\prime}$ (Fig. 10), and the arc segment $\mathrm{F}_{2}^{\prime} \mathrm{D}_{2}^{\prime}$ (Fig. 11), respectively. They are given by the following equations

$$
\begin{align*}
S_{c, m}^{\prime}= & c_{m}^{\prime}\left[\sinh \left(\frac{l_{m}^{\prime}}{c_{m}^{\prime}}+a_{m}^{\prime}\right)-\sinh a_{m}^{\prime}\right] \\
& -\frac{H_{m}^{\prime}}{2 E A}\left\{l_{m}^{\prime}+\frac{c_{m}^{\prime}}{2}\left[\sinh 2\left(\frac{l_{m}^{\prime}}{c_{m}^{\prime}}+a_{m}^{\prime}\right)-\sinh 2 a_{m}^{\prime}\right]\right\} \tag{57-1}
\end{align*}
$$

$$
\begin{align*}
& S_{\mathrm{D}_{1} \mathrm{~F}_{1}^{\prime}}^{\prime}=\frac{R_{1}\left(\beta_{4}^{\prime}-\gamma_{1}\right)}{1+\frac{H_{m}^{\prime} \cosh a_{m}^{\prime}}{E A}} \tag{57-2}\\
& S_{\mathrm{F}_{2} \mathrm{D}_{2}^{\prime}}^{\prime}=\frac{R_{2}\left(\beta_{5}^{\prime}-\gamma_{2}\right)}{1+\frac{H_{m}^{\prime} \cosh a_{m}^{\prime}}{E A}} \tag{57-3}
\end{align*}
$$

3.2.2 Left side span

In this subsection, three expressions are created from relevant unknown quantities to describe the following three parameters: $\Delta h_{s, L}^{\prime}$, the elevation difference between points I_{1} and $\mathrm{C}_{1} ; L_{s, L}^{\prime}$, the horizontal distance between point I_{1} and the left tower's centerline (Fig. 12); and $S_{s, L}^{\prime}$, the unstrained cable length over the left side span.
(1) $\Delta h_{s, L}^{\prime}$ can be expressed by

$$
\begin{align*}
\Delta h_{s, L}^{\prime}= & \Delta h_{\mathrm{C}_{1} 1_{1}}^{\prime}=h_{\mathrm{C}_{1}}-h_{1_{1}}^{\prime}=-\left(l_{\mathrm{K}, L}-l_{\mathrm{l}, L}\right) \cos \left(\omega_{1}+\alpha_{s, L}\right) \\
& +r_{4, L} \cos \beta_{2}^{\prime}+\Delta h_{c, s, L}^{\prime}-\Delta h_{t, L}-R_{1} \cos \beta_{3}^{\prime} \tag{58}
\end{align*}
$$

where $l_{\mathrm{K}, L}$ and $l_{I, L}$ are the distances from the left splay saddle's IP point to its circle center, K_{1}, and center of rotation, I_{1}, respectively; $\alpha_{s, L}$ is the preset offset angle for the left splay saddle, i.e. the angle between the vertical line and segment $\mathrm{Z}_{1} \mathrm{~K}_{1}$, which was a vertical segment before the left splay saddle rotates; and $\Delta h_{c, s, L}^{\prime}$ is the elevation difference between the two endpoints of the catenary

Fig. 13 Cable configuration in the unloaded state over the right side span

Fig. 14 Cable configuration in the unloaded state over the left anchor span
segment over the left side span, defined by
$\Delta h_{c, s, L}^{\prime}=y\left(l_{s, L}^{\prime}\right)-y(0)=c_{s, L}^{\prime}\left[\cosh \left(\frac{l_{s, L}^{\prime}}{c_{s, L}^{\prime}}+a_{s, L}^{\prime}\right)-\cosh a_{s, L}^{\prime}\right]$.
(2) $L_{s, L}^{\prime}$ can be formulated as

$$
\begin{align*}
L_{s, L}^{\prime}= & \left(l_{\mathrm{K}, L}-l_{1, L}\right) \sin \left(\omega_{1}+\alpha_{s, L}\right)-r_{4, L} \sin \beta_{2}^{\prime} \\
& +l_{s, L}^{\prime}+R_{1}\left(\sin \beta_{3}^{\prime}+\sin \gamma_{1}\right)+\Delta_{m, L} \tag{59}
\end{align*}
$$

where $l_{s, L}^{\prime}$ is the length of the orthogonal projection of the catenary segment over the left side span on the horizontal plane.
(3) $S_{s, L}^{\prime}$ can be expressed as

$$
\begin{equation*}
S_{s, L}^{\prime}=S_{c, s, L}^{\prime}+S_{\mathrm{D}_{3}^{\prime} \mathrm{Q}_{1}}^{\prime}+S_{\mathrm{E}_{1} \mathrm{D}_{1}^{\prime}}^{\prime} \tag{60}
\end{equation*}
$$

where $S_{c, s, L}^{\prime}, S_{\mathrm{D}_{3}^{\prime} \mathrm{Q}_{1}}^{\prime}$, and $S_{\mathrm{E}_{1}^{\prime} \mathrm{D}_{1}^{\prime}}^{\prime}$ are the unstrained cable lengths of $\mathrm{Q}_{1} \mathrm{E}_{1}^{\prime}$ (the catenary segment over the left side span, as shown in Fig. 12), $D_{3}^{\prime} Q_{1}$ (the arc segment on the splay saddle), and $\mathrm{E}_{1}^{\prime} \mathrm{D}_{1}^{\prime}$ (the arc segment on the tower saddle), respectively. They can be expressed in the following forms:

$$
\begin{align*}
& S_{c, s, L}^{\prime}=c_{s, L}^{\prime}\left[\sinh \left(\frac{l_{s, L}^{\prime}}{c_{s, L}}+a_{s, L}^{\prime}\right)-\sinh a_{s, L}^{\prime}\right] \\
& -\frac{H_{s, L}^{\prime}}{2 E A}\left\{l_{s, L}^{\prime}+\frac{c_{s, L}^{\prime}}{2}\left[\sinh 2\left(\frac{l_{s, L}^{\prime}}{c_{s, L}^{\prime}}+a_{s, L}^{\prime}\right)-\sinh 2 a_{s, L}^{\prime}\right]\right\} \tag{61-1}\\
& S_{\mathrm{D}_{3}^{\prime} \mathrm{Q} \mathrm{I}}^{\prime}= \tag{61-2}\\
& 1+\frac{r_{3, L}\left(\omega_{1}-\varphi_{1}-\theta_{4, L}\right)+r_{4, L}\left[\left(\varphi_{1}+\theta_{4, L}+\alpha_{s, L}\right)-\beta_{2}^{\prime}\right]}{H_{s, L}^{\prime} \cosh \left(l_{s, L}^{\prime} / c_{s, L}^{\prime}+a_{s, L}^{\prime}\right)} \tag{61-3}\\
& E A
\end{aligned}, ~ \begin{aligned}
& S_{\mathrm{E}_{1}^{\prime} \mathrm{D}_{\mathrm{l}}^{\prime}}^{\prime}=\frac{R_{1}\left(\beta_{3}^{\prime}+\gamma_{1}\right)}{1+\frac{H_{s, L}^{\prime} \cosh a_{s, L}^{\prime}}{E A}}
\end{align*}
$$

3.2.3 Right side span

Three expressions are created from relevant unknown quantities to describe the following three parameters: $\Delta h_{s, R}^{\prime}$, the elevation difference between points C_{2} and $\mathrm{I}_{2} ; L_{l, R}^{\prime}$, the horizontal distance between point I_{2} and the right tower's centerline (Fig. 13); and $S_{s, R}^{\prime}$, the unstrained cable length over the right side span.
(1) $\Delta h_{s, R}$ can be expressed as

$$
\begin{align*}
\Delta h_{s, R}^{\prime}= & \Delta h_{\mathrm{C}_{2} \mathrm{I}_{2}}^{\prime}=h_{\mathrm{C}_{2}}-h_{1_{2}}^{\prime}=-\left(l_{\mathrm{K}, R}-l_{\mathrm{I}, R}\right) \cos \left(\omega_{2}+\alpha_{s, R}\right) \tag{62}\\
& +r_{4, R} \cos \beta_{7}^{\prime}+\Delta h_{c, s, R}^{\prime}-R_{2} \cos \beta_{6}^{\prime}-\Delta h_{t, R}
\end{align*}
$$

where $\alpha_{s, R}$ is the preset offset angle for the right splay saddle, i.e. the angle between the vertical line and segment $\mathrm{Z}_{2} \mathrm{~K}_{2}$, which was a vertical segment before the right splay saddle rotates; and $\Delta h_{c, s, R}^{\prime}$ is the elevation difference between the two endpoints of the catenary segment over the right side span, $\Delta h_{c, s, R}^{\prime}=c_{s, R}^{\prime}\left[\cosh \left(\frac{l_{s, R}^{\prime}}{c_{s, R}^{\prime}}+a_{s, R}^{\prime}\right)-\cosh a_{s, R}^{\prime}\right]$.
(2) $L_{l, R}^{\prime}$ can be formulated as

$$
\begin{align*}
L_{l, R}^{\prime}= & \left(l_{\mathrm{K}, R}-l_{\mathrm{I}, R}\right) \sin \left(\omega_{2}+\alpha_{s, R}\right)-r_{4, R} \sin \beta_{7}^{\prime} \\
& +l_{l, R}^{\prime}+R_{2}\left(\sin \beta_{6}^{\prime}+\sin \gamma_{2}\right)+\Delta_{m, R} \tag{63}
\end{align*}
$$

(3) $S_{s l, R}^{\prime}$ can be expressed as

$$
\begin{equation*}
S_{s l, R}^{\prime}=S_{c, s, R}^{\prime}+S_{\mathrm{D}_{2} E_{2}^{\prime}}^{\prime}+S_{\mathrm{Q}_{2} D_{4}^{\prime}}^{\prime} \tag{64}
\end{equation*}
$$

where $S_{c, s, R}^{\prime}, S_{\mathrm{D}_{2} E_{2}^{\prime}}^{\prime}$, and $S_{\mathrm{Q}_{2} D_{4}^{\prime}}^{\prime}$ are the unstrained lengths of catenary segment $\mathrm{E}_{2}^{\prime} \mathrm{Q}_{2}$, the arc segment on the tower saddle, $\mathrm{D}_{2}^{\prime} \mathrm{E}_{2}^{\prime}$, and the arc segment on the splay saddle, $\mathrm{Q}_{2} \mathrm{D}_{4}^{\prime}$, respectively. They are given by

$$
\begin{gather*}
S_{c, s, R}^{\prime}=c_{s, R}^{\prime}\left[\sinh \left(\frac{l_{s, R}^{\prime}}{c_{s, R}^{\prime}}+a_{s, R}^{\prime}\right)-\sinh a_{s, R}^{\prime}\right] \\
-\frac{H_{s, R}^{\prime}}{2 E A}\left\{l_{s, R}^{\prime}+\frac{c_{s, R}^{\prime}}{2}\left[\sinh 2\left(\frac{l_{s, R}^{\prime}}{c_{s, R}^{\prime}}+a_{s, R}^{\prime}\right)-\sinh 2 a_{s, R}^{\prime}\right]\right\} \tag{65-1}\\
S_{\mathrm{D}_{2}^{\prime} E_{2}^{\prime}}^{\prime}=\frac{R_{2}\left(\beta_{6}^{\prime}+\gamma_{2}\right)}{1+\frac{H_{s, R}^{\prime} \cosh a_{s, R}^{\prime}}{E A}} \tag{65-2}\\
S_{\mathrm{Q}_{2} D_{4}^{\prime}}^{\prime}= \tag{65-3}\\
1+\frac{r_{3, R}\left(\omega_{2}-\varphi_{2}-\theta_{4, R}\right)+r_{4, R}\left[\left(\varphi_{2}+\theta_{4, R}+\alpha_{s, R}\right)-\beta_{7}^{\prime}\right]}{H_{s, R}^{\prime} \cosh \left(l_{s, R}^{\prime} / c_{s, R}^{\prime}+a_{s, R}^{\prime}\right)} \\
E A
\end{gather*}
$$

3.2.4 Left anchor span

Here we provide four expressions created from relevant unknown quantities to describe the following parameters: $\Delta h_{a, L}^{\prime}$, the elevation difference between anchor point A_{1} and the splay saddle's center of rotation, $\mathrm{I}_{1} ; L_{a, L}^{\prime}$, the horizontal distance between points A_{1} and $\mathrm{I}_{1} ; S_{a, L}^{\prime}$, the unstrained cable length over the anchor span; and $\sum M_{\mathrm{I}_{1}}^{\prime}$, the sum of torques about the splay saddle's center of rotation.
(1) $\Delta h_{a, L}^{\prime}$ can be described by the equation below:

$$
\begin{align*}
\Delta h_{a, L}^{\prime}= & \Delta h_{1_{1, \mathrm{~A}_{1}}^{\prime}}^{\prime}=h_{1_{1}}-h_{\mathrm{A}_{1}}=\Delta h_{c, a, L}^{\prime}- \\
& \left(\Delta h_{1, L}^{\prime}+\Delta h_{2, L}^{\prime}+\Delta h_{3, L}^{\prime}+\Delta h_{4, L}^{\prime}\right)+\left(l_{\mathrm{K}, L}-l_{\mathrm{I}, L}\right) \cos \left(\omega_{1}+\alpha_{s, L}\right) \tag{66}
\end{align*}
$$

where $\Delta h_{c, a, L}^{\prime}$ represents the elevation difference between the two endpoints of the catenary segment over the left anchor span in the unloaded state, $\Delta h_{c, a, L}^{\prime}=c_{a, L}^{\prime}\left[\cosh \left(\frac{l_{a, L}^{\prime}}{c_{a, L}^{\prime}}+a_{a, L}^{\prime}\right)-\cosh a_{a, L}^{\prime}\right]$, in which $l_{a, L}^{\prime}$ is the length of the orthogonal projection of this catenary segment on the horizontal plane; $\Delta h_{1, L}^{\prime}$ is the elevation difference between tangent point J_{1} and the center of the splay saddle's first circular arc (Fig. 14); $\Delta h_{2, L}^{\prime}$ is the elevation difference between the centers of the first and second circular arcs of the splay saddle; $\Delta h_{3, L}^{\prime}$ is the elevation difference between the centers of the second and third circular arcs of the splay saddle; and $\Delta h_{4, L}^{\prime}$ is the elevation difference between the center of the third circular arc and the fourth arc's center, K_{1}. They are given by

$$
\begin{gather*}
\Delta h_{1, L}^{\prime}=r_{1, L} \cos \beta_{1}^{\prime} \tag{67-1}\\
\Delta h_{2, L}^{\prime}=\left(r_{2, L}-r_{1, L}\right) \cos \left(\theta_{2, L}+\theta_{3, L}+\theta_{4, L}+\varphi_{1}+\alpha_{s, L}\right) \tag{67-2}\\
\Delta h_{3, L}^{\prime}=\left(r_{3, L}-r_{2, L}\right) \cos \left(\theta_{3, L}+\theta_{4, L}+\varphi_{1}+\alpha_{s, L}\right) \tag{67-3}\\
\Delta h_{4, L}^{\prime}=\left(r_{4, L}-r_{3, L}\right) \cos \left(\theta_{4, L}+\varphi_{1}+\alpha_{s, L}\right) \tag{67-4}
\end{gather*}
$$

(2) $L_{a, L}^{\prime}$ can be written as

$$
\begin{align*}
L_{a, L}^{\prime}= & l_{a, L}^{\prime}+\left(\Delta l_{1, L}^{\prime}+\Delta l_{2, L}^{\prime}+\Delta l_{3, L}^{\prime}+\Delta l_{4, L}^{\prime}\right) \\
& -\left(l_{\mathrm{K}, L}-l_{\mathrm{I}, L}\right) \sin \left(\omega_{1}+\alpha_{s, L}\right) \tag{68}
\end{align*}
$$

where $\Delta l_{1, L}^{\prime}$ is the horizontal distance between tangent point and the center of the splay saddle's first circular arc; $\Delta l_{2, L}^{\prime}$ is the horizontal distance between the centers of the first and second circular arcs of the splay saddle; $\Delta l_{3, L}^{\prime}$ is the horizontal distance between the centers of the second and third circular arcs; and $\Delta l_{4, L}^{\prime}$ is the horizontal distance between the third circular arc's center and the fourth circular arc's center K_{1}. They can be expressed in the following forms:

$$
\begin{gather*}
\Delta l_{1, L}^{\prime}=r_{1, L} \sin \beta_{1}^{\prime} \tag{69-1}\\
\Delta l_{2, L}^{\prime}=\left(r_{2, L}-r_{1, L}\right) \sin \left(\theta_{2, L}+\theta_{3, L}+\theta_{4, L}+\varphi_{1}+\alpha_{s, L}\right) \tag{69-2}\\
\Delta l_{3, L}^{\prime}=\left(r_{3, L}-r_{2, L}\right) \sin \left(\theta_{3, L}+\theta_{4, L}+\varphi_{1}+\alpha_{s, L}\right) \tag{69-3}\\
\Delta l_{4, L}^{\prime}=\left(r_{4, L}-r_{3, L}\right) \sin \left(\theta_{4, L}+\varphi_{1}+\alpha_{s, L}\right) \tag{69-4}
\end{gather*}
$$

(3) $S_{a, L}^{\prime}$ can be expressed as

$$
\begin{equation*}
S_{a, L}^{\prime}=S_{c, a, L}^{\prime}+S_{\mathrm{J}_{1} \mathrm{D}_{3}^{\prime}}^{\prime} \tag{70}
\end{equation*}
$$

where $S_{c, a, L}^{\prime}$ and $S_{\mathrm{J}_{1} \mathrm{D}_{3}^{\prime}}^{\prime}$ are the unstrained cable lengths of

Fig. 15 Balance of torques acting on the left splay saddle in the unloaded state
the catenary segment $A_{1} J_{1}$ and the arc segment $J_{1} D_{3}^{\prime}$. They are given by

$$
\begin{align*}
& S_{c, a, L}^{\prime}=c_{a, L}^{\prime}\left[\sinh \left(\frac{l_{a, L}^{\prime}}{c_{a, L}^{\prime}}+a_{a l, L}^{\prime}\right)-\sinh a_{a, L}^{\prime}\right] \\
&-\frac{H_{a, L}^{\prime}}{2 E A}\left\{l_{a, L}^{\prime}+\frac{c_{a, L}^{\prime}}{2}\left[\sinh 2\left(\frac{l_{a, L}^{\prime}}{c_{a, L}^{\prime}}+a_{a, L}^{\prime}\right)-\sinh 2 a_{a, L}^{\prime}\right]\right\} \tag{71-1}\\
& S_{J_{1, L}^{\prime} \mathrm{D}_{3}}^{\prime}=\frac{r_{1, L}\left[\beta_{1}^{\prime}-\left(\theta_{2, L}+\theta_{3, L}+\theta_{4, L}+\varphi_{1}+\alpha_{s, L}\right)\right]+r_{2,2} \theta_{2, L}+r_{3, L}\left[\theta_{3, L}-\left(\omega_{1}-\varphi_{1}-\theta_{4, L}\right)\right]}{1+\frac{H_{a, L}^{\prime} \cosh a_{a, L}}{E A}} \tag{71-2}
\end{align*}
$$

(4) In the unloaded state, the splay saddle over the left anchor span deviates by a certain angle, and the horizontal components of cable tension at the two sides of the splay saddle tend to change. Therefore, the sum of torques acting on the splay saddle needs to be recalculated (Fig. 15):

$$
\begin{align*}
\sum M_{\mathrm{I}_{1}}^{\prime}= & H_{s, L}^{\prime} \cdot e_{s 1, L}^{\prime}+V_{s, L}^{\prime} \cdot e_{s 2, L}^{\prime} \\
& -\left(H_{a, L}^{\prime} \cdot e_{a 1, L}^{\prime}+V_{a, L}^{\prime} \cdot e_{a 2, L}^{\prime}+G_{L} \cdot e_{g, L}^{\prime}\right) \tag{72}
\end{align*}
$$

where $e_{s 1, L}^{\prime}$ denotes the eccentricity of the horizontal component of cable tension over the left side span, $e_{s, L}^{\prime}=r_{4, L} \cos \beta_{2}^{\prime}-\left(l_{\mathrm{K}, L}-l_{\mathrm{I}, L}\right) \cos \left(\omega_{1}+\alpha_{s, L}\right) ; V_{s, L}^{\prime}$ represents the vertical component of cable tension over the left side span at tangent point $\mathrm{Q}_{1}, V_{s, L}^{\prime}=H_{s, L}^{\prime} \tan \beta_{2}^{\prime} ; e_{s 2, L}^{\prime}$ is the eccentricity of $V_{s, L}^{\prime}, e_{s, L}^{\prime}=r_{4, L} \sin \beta_{2}^{\prime}-\left(l_{\mathrm{K}, L}-l_{\mathrm{I}, L}\right) \sin \left(\omega_{1}+\alpha_{s, L}\right)$; $e_{a 1, L}^{\prime}$ is the eccentricity of the horizontal component of cable tension over the left anchor span, $e_{a 1, L}^{\prime}=\Delta h_{1, L}^{\prime}+\Delta h_{2, L}^{\prime}+\Delta h_{3, L}^{\prime}+\Delta h_{4, L}^{\prime}-\left(l_{\mathrm{K}, L}-l_{\mathrm{l}, L}\right) \cos \left(\omega_{1}+\alpha_{s, L}\right)$; $V_{a, L}^{\prime}$ is the vertical component of cable tension over the left anchor span at tangent point $\mathrm{J}_{1}, V_{a, L}^{\prime}=H_{a, L}^{\prime} \tan \beta_{1}^{\prime}$; $e_{a 2, L}^{\prime}$ is the eccentricity of $V_{a, L}^{\prime}$, $e_{a 2, L}^{\prime}=\Delta l_{1, L}^{\prime}+\Delta l_{2, L}^{\prime}+\Delta l_{3, L}^{\prime}+\Delta l_{4, L}^{\prime}-\left(l_{\mathrm{K}, L}-l_{\mathrm{I}, L}\right) \sin \left(\omega_{1}+\alpha_{s, L}\right) ;$ G_{L} is the force of gravity exerted on the left splay saddle; and $e_{g, L}^{\prime}$ is the eccentricity of $G_{L}, \dot{e}_{g, L}^{\prime}=l_{g, L} \sin \left(\omega_{1}+\alpha_{s, L}\right)$.

Fig. 16 Cable configuration in the unloaded state over the right anchor span

Fig. 17 Balance of torques acting on the right splay saddle in the unloaded state

3.2.5 Right anchor span

Expressions are constructed from relevant unknown quantities to describe the following four parameters: $\Delta h_{a, R}^{\prime}$, the elevation difference between the right splay saddle's center of rotation, I_{2}, and the right anchor point, $\mathrm{A}_{2} ; L_{a, R}^{\prime}$, the horizontal distance between points I_{2} and $\mathrm{A}_{2} ; S_{a, R}^{\prime}$, the unstrained cable length over right anchor span; and $\sum M_{\mathrm{I}_{2}}^{\prime}$, the sum of torques about the right splay saddle's center of rotation.
(1) $\Delta h_{a, R}^{\prime}$ can be expressed in the following form:

$$
\begin{align*}
\Delta h_{a, R}^{\prime} & =\Delta h_{\mathrm{I}_{2} \mathrm{~A}_{2}}^{\prime}=h_{\mathrm{l}_{2}}-h_{\mathrm{A}_{2}}=\Delta h_{c, a, R}^{\prime} \\
& -\left(\Delta h_{1, R}^{\prime}+\Delta h_{2, R}^{\prime}+\Delta h_{3, R}^{\prime}+\Delta h_{4, R}^{\prime}\right)+\left(l_{\mathrm{K}, R}-l_{\mathrm{I}, R}\right) \cos \left(\omega_{2}+\alpha_{s, R}\right) \tag{73}
\end{align*}
$$

where $\Delta h_{c, a, L}^{\prime}$ is the elevation difference between the two endpoints of the catenary segment over the right anchor span in the unloaded state, $\Delta h_{c, a, R}^{\prime}=c_{a, R}^{\prime}\left[\cosh \left(\frac{l_{a, R}^{\prime}}{c_{a, R}^{\prime}}+a_{a, R}^{\prime}\right)-\cosh a_{a, R}^{\prime}\right] ; l_{\mathrm{I}, R}$ is the

Fig. 18 Overall layout of the Jindong Bridge (Unit: m)

Fig. 19 The completed Jindong bridge under final dead load
distance from the right splay saddle's IP point to its center of rotation, $\mathrm{I}_{2} ; \Delta h_{1, R}^{\prime}$ is the elevation difference between tangent point J_{2} and the center of the first circular arc of the right splay saddle; $\Delta h_{2, R}^{\prime}$ is the elevation difference between the centers of the first and second circular arcs of the splay saddle; $\Delta h_{3, R}^{\prime}$ is the elevation difference between the centers of the second and third circular arcs; and $\Delta h_{4, R}^{\prime}$ is the elevation difference between the center of the third circular arc and the fourth circular arc's center, K_{2}. They can be written in the following forms:

$$
\begin{equation*}
\Delta \dot{1}_{1, R}^{\prime}=r_{1, R} \cos \beta_{8}^{\prime} \tag{74-1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta h_{2, R}^{\prime}=\left(r_{2, R}-r_{1, R}\right) \cos \left(\theta_{2, R}+\theta_{3, R}+\theta_{4, R}+\varphi_{2}+\alpha_{s, R}\right) \tag{74-2}
\end{equation*}
$$

$$
\begin{equation*}
\Delta h_{3, R}^{\prime}=\left(r_{3, R}-r_{2, R}\right) \cos \left(\theta_{3, R}+\theta_{4, R}+\varphi_{2}+\alpha_{s, R}\right) \tag{74-3}
\end{equation*}
$$

$$
\begin{equation*}
\Delta h_{4, R}^{\prime}=\left(r_{4, R}-r_{3, R}\right) \cos \left(\theta_{4, R}+\varphi_{2}+\alpha_{s, R}\right) \tag{74-4}
\end{equation*}
$$

(2) $L_{a, R}^{\prime}$ can be described by

$$
\begin{align*}
L_{l, R}^{\prime}= & l_{l, R}^{\prime}+\left(\Delta l_{1, R}^{\prime}+\Delta l_{2, R}^{\prime}+\Delta l_{3, R}^{\prime}+\Delta l_{4, R}^{\prime}\right) \\
& -\left(l_{\mathrm{K}, R}-l_{\mathrm{l}, R}\right) \sin \left(\omega_{2}+\alpha_{s, R}\right) \tag{75}
\end{align*}
$$

where $\Delta l_{1, R}^{\prime}$ is the horizontal distance between tangent point J_{2} and the center of the splay saddle's first circular arc (Fig. 16); $\Delta l_{2, R}^{\prime}$ is the horizontal distance between the centers of the first and second circular arcs of the splay saddle; $\Delta l_{3, R}^{\prime}$ is the horizontal distance between the centers of the second and third circular arcs; and $\Delta l_{4, R}^{\prime}$ denotes the

Fig. 20 The unloaded state of the Jindong bridge

Fig. 21 A splay saddle of the Jindong bridge
horizontal distance between center of the third circular arc and the fourth circular arc's center, K_{2}. They are given by

$$
\begin{equation*}
\Delta l_{1, R}^{\prime}=r_{1, R} \sin \beta_{8}^{\prime} \tag{76-1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta l_{2, R}^{\prime}=\left(r_{2, R}-r_{1, R}\right) \sin \left(\theta_{2, R}+\theta_{3, R}+\theta_{4, R}+\varphi_{2}+\alpha_{s, R}\right) \tag{76-2}
\end{equation*}
$$

$$
\begin{equation*}
\Delta l_{3, R}^{\prime}=\left(r_{3, R}-r_{2, R}\right) \sin \left(\theta_{3, R}+\theta_{4, R}+\varphi_{R}+\alpha_{s, R}\right) \tag{76-3}
\end{equation*}
$$

$$
\begin{equation*}
\Delta l_{4, R}^{\prime}=\left(r_{4, R}-r_{3, R}\right) \sin \left(\theta_{4, R}+\varphi_{2}+\alpha_{s, R}\right) \tag{76-4}
\end{equation*}
$$

(3) $S_{a, R}^{\prime}$ can be expressed as

$$
\begin{equation*}
S_{a, R}^{\prime}=S_{c, a, R}^{\prime}+S_{\mathrm{D}_{4}^{\prime} \mathrm{J}_{2}}^{\prime} \tag{77}
\end{equation*}
$$

where $S_{c, a, R}^{\prime}$ and $S_{\mathrm{D}_{4}^{\prime} J_{2}}^{\prime}$ are the unstrained cable lengths of the catenary segment over the right anchor span, $\mathrm{J}_{2} \mathrm{~A}_{2}$, and the arc segment on the right splay saddle, $\mathrm{D}_{4}^{\prime} \mathrm{J}_{2}$, respectively. They are given by

$$
\begin{align*}
S_{c, a, R}^{\prime} & =c_{a, R}^{\prime}\left[\sinh \left(\frac{l_{a, R}^{\prime}}{c_{a, R}^{\prime}}+a_{a, R}^{\prime}\right)-\sinh a_{a, R}^{\prime}\right] \\
& -\frac{H_{a, R}^{\prime}}{2 E A}\left\{l_{a, R}^{\prime}+\frac{c_{a, R}^{\prime}}{2}\left[\sinh 2\left(\frac{l_{a, R}^{\prime}}{c_{a, R}^{\prime}}+a_{a, R}^{\prime}\right)-\sinh 2 a_{a, R}^{\prime}\right]\right\} \tag{78-1}\\
S_{\mathrm{D}_{\mathrm{d}_{2}}^{\prime}}^{\prime}= & \frac{r_{1, R}\left[\beta_{8}^{\prime}-\left(\theta_{2, R}+\theta_{3, R}+\theta_{4, R}+\varphi_{2}+\alpha_{s, R}\right)\right]+r_{2, R} \theta_{2, R}+r_{3, R}\left[\theta_{3, R}-\left(\omega_{2}-\varphi_{2}-\theta_{4, R}\right)\right]}{1+\frac{H_{a, R} \cosh a_{a, R}}{E A}} \tag{78-2}
\end{align*}
$$

(4) According to Fig. 17, $\sum M_{\mathrm{I}_{2}}^{\prime}$ can be described by the equation below

$$
\begin{align*}
\sum M_{\mathrm{I}_{2}}^{\prime}= & H_{s, R}^{\prime} \cdot e_{s 1, R}^{\prime}+V_{s, R}^{\prime} \cdot e_{s 2, R}^{\prime} \tag{79}\\
& -\left(H_{a, R}^{\prime} \cdot e_{a 1, R}^{\prime}+V_{a, R}^{\prime} \cdot e_{a 2, R}^{\prime}+G_{R} \cdot e_{g, R}^{\prime}\right)
\end{align*}
$$

where $\dot{e}_{s 1, R}^{\prime}$ denotes the eccentricity of the horizontal component of cable tension over the left side span, $e_{s 1, R}^{\prime}=r_{4, R} \cos \beta_{7}^{\prime}-\left(l_{\mathrm{K}, R}-l_{\mathrm{I}, R}\right) \cos \left(\omega_{2}+\alpha_{s, R}\right) ; V_{s, R}^{\prime}$ denotes the vertical component of cable tension over the left side span at tangent point $\mathrm{Q}_{2}, \quad V_{s, R}^{\prime}=H_{s, R}^{\prime} \tan \beta_{7}^{\prime} ; \quad e_{s 2, R}^{\prime}$ represents the eccentricity of $V_{s, R}^{\prime}$, $e_{s 2, R}^{\prime}=r_{4, R} \sin \beta_{7}^{\prime}-\left(l_{\mathrm{K}, R}-l_{\mathrm{I}, R}\right) \sin \left(\omega_{2}+\alpha_{s, R}\right) ; \quad e_{a 1, R}^{\prime} \quad$ is the eccentricity of the horizontal component of cable tension over the left anchor span, $e_{a l, R}^{\prime}=\Delta h_{1, R}^{\prime}+\Delta h_{2, R}^{\prime}+\Delta h_{3, R}^{\prime}+\Delta h_{4, R}^{\prime}-\left(l_{\mathrm{K}, R}-l_{\mathrm{I}, R}\right) \cos \left(\omega_{2}+\alpha_{s, R}\right)$; $V_{a, R}^{\prime}$ is the vertical component of cable tension over the left anchor span at tangent point $\mathrm{J}_{2}, \quad V_{a, R}^{\prime}=H_{a, R}^{\prime} \tan \beta_{8}^{\prime}$; $e_{a 2, R}^{\prime} \quad$ is the eccentricity of $V_{a, R}^{\prime}$, $e_{a 2, R}^{\prime}=\Delta l_{1, R}^{\prime}+\Delta l_{2, R}^{\prime}+\Delta l_{3, R}^{\prime}+\Delta l_{4, R}^{\prime}-\left(l_{\mathrm{K}, R}-l_{\mathrm{I}, R}\right) \sin \left(\omega_{2}+\alpha_{s, R}\right)$; G_{R} is the force of gravity acting on the right splay saddle; and $e_{g, R}^{\prime}$ is the eccentricity of G_{R}, $e_{g, R}^{\prime}=l_{g, R} \cdot \sin \left(\omega_{2}+\alpha_{s, R}\right)$.

3.3 Equation solving

Substituting above expressions for the parameters built from the unknown quantities into Eq. (52) gives 17 coupled equations. Rearranging each equation to the left-hand side, we can get 17 functions of the form $f_{i}()=0$. The following objective function is then constructed by using the aforementioned 17 unknown quantities as the variables:

$$
\begin{equation*}
\min \left(\sum_{i=1}^{17} f_{i}^{2}\right) \tag{80}
\end{equation*}
$$

Solving this equation will give the values of the 17 known quantities in the unloaded state. Then the cable configuration in the unloaded state and pre-offsets for the saddles can be calculated from the values obtained.

4. Example analysis

4.1 Profile of the Jindong bridge

Located in the Kunming City, Yunnan Province, China, the Jindong Bridge is currently the suspension bridge with the longest span over the Jinsha River. As shown in Fig. 18, the bridge is spanned as $240 \mathrm{~m}+730 \mathrm{~m}+120 \mathrm{~m}$. The sag to span ratio of the main cable is $1 / 10$, and the deck width is 20 m . The center-to-center spacing between the upstream and downstream main cables is 17.5 m . The left and right ends of the cable are anchored by gravity-type and tunneltype anchorages, respectively. The left tower is 126 m high, and the right is 124 m high, both with a portal frame structure.

Prefabricated parallel wire strands (PPWS) are adopted for the two cables. Each strand consists of $91 \Phi 5.2$ highstrength galvanized steel wires and is regular hexagon in cross section. Each cable is made of 91 strands and thus has 8281 wires in total. Each main cable is connected with 71 hangers. Each hanger is composed of $109 \Phi 5.0$ highstrength galvanized steel wires.

The steel truss girder consists of the main truss, top and bottom bracings, and transverse trusses. The main truss is a Warren truss with 5 m height, 17.5 m width, and 5.0 m panel length, and it has a transverse truss in each panel. The bridge floor system combines longitudinal I-beams and concrete slab decks. They are simply supported by the top chords of the cross members in the main truss. The slab decks and longitudinal beams are fastened by shear pins.

The bridge's completed and unloaded states are shown in Figs. 19 and 20, respectively. A splay saddle is shown in Fig. 21.

4.2 Cable configuration under final dead load

Tables 1 and 2 summarize the known parameters needed for calculating the cable geometry of the completed bridge. Elevations of hanger anchor points on the deck, $h_{i, \text { deck }}$, and axial tensile forces at the hangers' lower ends, $P_{0, i}$, are also known parameters, as listed in Table 5.

4.2.1 Main span

The values of the unknown quantities, H, a_{1}, and l_{n+1} were determined by solving Eq. (15). Then other unknown parameters can be determined. Results of the main span for the completed bridge are listed in Table 3. Geometric parameters of all catenary cable segments are shown in Table 4. Calculated hanger parameters are listed in Table 5. Equation numbers, based on which the unknown parameters are calculated, are also listed in these tables.

4.2.2 Side spans

The values of the unknown quantities, a_{s} and l_{s} were determined by solving Eq. (33). Then other unknown parameters can be determined, as listed in Table 6.

4.2.3 Anchor spans

The values of the unknown quantities, a_{a}, l_{a}, and H_{a} were determined by solving Eq. (47). Then other unknown parameters can be determined, as listed in Table 7.

4.2.4 Tower top pre-uplift

Based on Eq. (51), the pre-uplifts, Δh_{t}, of the left and right tower tops were determined as 0.031 m and 0.023 m , respectively.

Table 1 Known parameters of the main span

Basic parameters of the completed bridge		Symbol	Unit	Value
Horizontal distance between the centerlines of the left and right towers, i.e. the main span length		Lm	m	730
Main cable	Weight per unit length	q	kN/m	14.268
	Elastic modulus	E	GPa	197.03
	Cross-sectional area	A	m^{2}	0.1759
	Number of the cable segments between the left tangent point, F_{1}, and the mid-span point, O_{m}	m	1	36
	Elevation of point O_{m} in the geodetic system	$h_{\mathrm{O}_{m}}$	m	856
Hanger	Number	n	1	71
	Spacing	$l_{2} \sim l_{71}$	m	10
	Horizontal distance between left tower's centerline and the first hanger	$l_{\mathrm{D}_{1} \mathrm{O}_{1}}$	m	15
	Horizontal distance between the rightmost hanger and right tower's centerline	$l_{\mathrm{O}_{71} \mathrm{D}_{2}}$	m	15
	Elastic modulus	E_{h}	GPa	199
	Cross-sectional area	A_{i}	m^{2}	0.00214
	Weight per unit length	w_{i}	kN / m	0.1835
Left tower saddle	Elevation of the circle center, C_{1}, in the geodetic system	$h_{\mathrm{C}_{1}}$	m	923.21
	Angle between vertical segment $\mathrm{B}_{1} \mathrm{C}_{1}$ and segment $\mathrm{C}_{1} \mathrm{D}_{1}$	γ_{1}	-	2.365
	Radius of the arc-shaped top	R_{1}	m	5.5
Right tower saddle	Elevation of the circle center, C_{2}, in the geodetic system	$h_{\mathrm{C}_{2}}$	m	923.09
	Angle between vertical segment $\mathrm{B}_{2} \mathrm{C}_{2}$ and segment $\mathrm{C}_{2} \mathrm{D}_{2}$	γ_{2}	-	-0.635*
	Radius of the arc-shaped top	R_{2}	m	5.5

*Note: the minus sign indicates that the line segment from point C_{2} to point D_{2} is bankward rather than riverward.
Table 2 Known parameters of the side and anchor spans

Basic parameters of the completed bridge	

Table 3 Results of the main span for the completed bridge

Parameter	Symbol	Unit	Value	Eq.
Horizontal component of the cable tension	H	kN	94239.75	(15)
A parameter of the catenary equation	c	m	-6604.97	$c=-H / q$
Elevation of the left tangent point, F_{1}, in the geodetic system	$h_{\mathrm{F}_{1}}$	m	928.327	(5)
Elevation of the right tangent point, F_{2}, in the geodetic system	$h_{\mathrm{F}_{2}}$	m	928.207	(7)
Elevation difference between points F_{1} and O_{m}	$\Delta h_{\mathrm{FO}_{m}}$	m	72.327	(6)
Horizontal distance between the right tangent point, F_{2}, and the right tower's centerline	$l_{\mathrm{F}_{2} \mathrm{D}_{2}}$	m	2.077	(9)
Angle between the vertical segment $\mathrm{B}_{1} \mathrm{C}_{1}$ and the segment connecting point F_{1} and the circle center, C_{1}	β_{4}	。	21.506	$\tan \beta_{4}=\sinh a_{1}$
Angle between the vertical segment $\mathrm{B}_{2} \mathrm{C}_{2}$ and the segment connecting point F_{2} and the circle center, C_{2}	β_{5}	-	21.503	$\begin{aligned} & \tan \beta_{5}= \\ & -\sinh \left(\frac{l_{n+1}}{c}+a_{n+1}\right) \end{aligned}$
Unstrained cable length of the arc segment $\mathrm{D}_{1} \mathrm{~F}_{1}$ on the left tower saddle	$S_{\mathrm{D}_{1} \mathrm{~F}_{1}}$	m	1.832	(21)
Total unstrained cable length of catenary segments	$S_{c, m}$	m	742.828	(19)
Unstrained cable length of the arc segment $\mathrm{F}_{2} \mathrm{D}_{2}$ on the right tower saddle	$S_{\mathrm{F}_{2} \mathrm{D}_{2}}$	m	2.119	(22)
Unstrained cable length over the main span	S_{m}	m	746.779	(23)

Table 4 Geometric parameters of all catenary cable segments in the main span

No.	a_{i}	b_{i} (m)	$l_{i}(\mathrm{~m})$	$\Delta h_{i}(\mathrm{~m})$	$S_{C, i}(\mathrm{~m})$	No.	Eq.(12)	$\begin{gathered} \hline \hline b_{i}(\mathrm{~m}) \\ b_{i}=-c \cosh a_{i} \end{gathered}$	$\begin{gathered} \hline l_{i}(\mathrm{~m}) \\ l_{72}: \\ \mathrm{Eq}(15) \end{gathered}$	$\begin{gathered} \hline \hline \Delta h_{i}(\mathrm{~m}) \\ \text { Eq. }(4) \end{gathered}$	$\begin{aligned} & \hline S_{c, i}(\mathrm{~m}) \\ & \text { Eq.(20) } \end{aligned}$
	$\begin{gathered} a_{1}: \text { Eq.(15) } \\ a_{2}-a_{72}: \\ \text { Eq.(12) } \\ \hline \end{gathered}$	$b_{i}=-c \cosh a_{i}$	$\begin{gathered} l_{1}: \\ \mathrm{Eq}(13) \end{gathered}$	Eq.(4)	Eq.(20)						
1	0.38449	6122.742	13.211	5.191	14.153	37	-0.00469	6604.900	10	-0.055	9.973
2	0.37172	6153.875	10	3.795	10.665	38	-0.01561	6604.168	10	-0.164	9.974
3	0.36113	6178.940	10	3.682	10.626	39	-0.02653	6602.648	10	-0.273	9.977
4	0.35070	6202.937	10	3.571	10.588	40	-0.03745	6600.342	10	-0.382	9.980
5	0.34024	6226.345	10	3.460	10.551	41	-0.04836	6597.251	10	-0.491	9.985
6	0.32973	6249.154	10	3.349	10.516	42	-0.05927	6593.375	10	-0.601	9.991
7	0.31920	6271.342	10	3.238	10.481	43	-0.07017	6588.717	10	-0.710	9.998
8	0.30863	6292.885	10	3.128	10.448	44	-0.08107	6583.279	10	-0.819	10.006
9	0.29805	6313.773	10	3.017	10.416	45	-0.09196	6577.063	10	-0.929	10.016
10	0.28744	6333.993	10	2.906	10.384	46	-0.10285	6570.072	10	-1.038	10.026
11	0.27681	6353.543	10	2.796	10.354	47	-0.11372	6562.309	10	-1.147	10.038
12	0.26616	6372.407	10	2.685	10.325	48	-0.12459	6553.778	10	-1.257	10.051
13	0.25548	6390.584	10	2.575	10.297	49	-0.13544	6544.482	10	-1.366	10.065
14	0.24479	6408.062	10	2.465	10.270	50	-0.14629	6534.425	10	-1.476	10.081
15	0.23408	6424.838	10	2.354	10.245	51	-0.15712	6523.612	10	-1.585	10.097
16	0.22336	6440.903	10	2.244	10.220	52	-0.16794	6512.047	10	-1.695	10.115
17	0.21261	6456.251	10	2.134	10.197	53	-0.17875	6499.737	10	-1.805	10.133
18	0.20185	6470.875	10	2.025	10.175	54	-0.18954	6486.684	10	-1.914	10.153
19	0.19107	6484.771	10	1.915	10.153	55	-0.20032	6472.897	10	-2.024	10.175
20	0.18028	6497.930	10	1.805	10.133	56	-0.21108	6458.378	10	-2.134	10.197
21	0.16947	6510.349	10	1.695	10.115	57	-0.22182	6443.137	10	-2.244	10.220
22	0.15865	6522.021	10	1.586	10.097	58	-0.23255	6427.177	10	-2.354	10.245
23	0.14782	6532.943	10	1.476	10.081	59	-0.24326	6410.507	10	-2.464	10.270
24	0.13698	6543.108	10	1.366	10.065	60	-0.25395	6393.132	10	-2.575	10.297
25	0.12612	6552.513	10	1.257	10.051	61	-0.26462	6375.061	10	-2.685	10.325
26	0.11525	6561.153	10	1.147	10.038	62	-0.27528	6356.298	10	-2.796	10.354
27	0.10438	6569.026	10	1.038	10.026	63	-0.28591	6336.855	10	-2.906	10.384
28	0.09349	6576.126	10	0.929	10.016	64	-0.29652	6316.736	10	-3.017	10.415
29	0.08260	6582.452	10	0.819	10.006	65	-0.30710	6295.951	10	-3.127	10.448
30	0.07171	6588.000	10	0.710	9.998	66	-0.31767	6274.508	10	-3.238	10.481
31	0.06080	6592.768	10	0.601	9.991	67	-0.32820	6252.423	10	-3.349	10.516
32	0.04989	6596.754	10	0.492	9.985	68	-0.33871	6229.709	10	-3.460	10.551
33	0.03898	6599.956	10	0.382	9.980	69	-0.34917	6206.403	10	-3.571	10.588
34	0.02806	6602.372	10	0.273	9.977	70	-0.35960	6182.503	10	-3.682	10.625
35	0.01715	6604.002	10	0.164	9.974	71	-0.37019	6157.541	10	-3.795	10.665
36	0.00623	6604.845	10	0.055	9.973	72	-0.38247	6127.724	12.923	-5.078	13.844

Table 5 Known and calculated hanger parameters

No.	$\begin{aligned} & h_{i, \mathrm{~d}} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{gathered} L_{i, \mathrm{~h}}(\mathrm{~m}) \\ =h_{i, \mathrm{c}} h_{i, \mathrm{~d}} \end{gathered}$	$\begin{aligned} & S_{i, \mathrm{~h}}(\mathrm{~m}) \\ & \text { Eq. }(16) \end{aligned}$	$P_{0, i}$ (kN)	$\begin{aligned} & P_{i}(\mathrm{kN}) \\ & \text { Eq. }(18) \end{aligned}$	No.	$h_{i, \mathrm{~d}}$ $(\mathrm{~m})$ (m)	$\begin{aligned} & L_{i, \mathrm{~h}}(\mathrm{~m}) \\ & =h_{i, \mathrm{c}}-h_{i, \mathrm{~d}} \end{aligned}$	$\begin{aligned} & S_{i, \mathrm{~h}}(\mathrm{~m}) \\ & \text { Eq. }(16) \end{aligned}$	$P_{0, i}$ (kN)	$\begin{aligned} & P_{i}(\mathrm{kN}) \\ & \text { Eq.(18) } \end{aligned}$
1	849.685	73.450	72.606	1074.5	1087.8	37	851.699	4.356	4.315	885.7	886.5
2	849.799	69.542	68.870	900.7	913.3	38	851.694	4.525	4.482	885.6	886.4
3	849.909	65.749	65.128	881.5	893.5	39	851.685	4.806	4.760	885.7	886.6
4	850.016	62.071	61.483	882.9	894.2	40	851.674	5.199	5.150	885.6	886.5
5	850.120	58.507	57.952	884.4	895.0	41	851.659	5.706	5.652	885.7	886.7
6	850.220	55.057	54.535	885.3	895.3	42	851.641	6.324	6.265	885.6	886.7
7	850.317	51.722	51.231	885.5	894.9	43	851.620	7.056	6.989	885.7	887.0
8	850.411	48.500	48.040	885.7	894.5	44	851.595	7.899	7.825	885.6	887.0
9	850.501	45.393	44.963	885.6	893.9	45	851.567	8.856	8.772	885.7	887.3
10	850.588	42.399	41.998	885.8	893.5	46	851.536	9.925	9.831	885.6	887.4
11	850.672	39.520	39.146	885.6	892.8	47	851.501	11.107	11.002	885.7	887.7
12	850.753	36.754	36.406	885.7	892.4	48	851.463	12.401	12.284	885.6	887.9
13	850.830	34.102	33.779	885.6	891.8	49	851.422	13.809	13.678	885.7	888.2
14	850.904	31.563	31.265	885.7	891.4	50	851.378	15.329	15.184	885.6	888.4
15	850.975	29.138	28.862	885.6	890.9	51	851.330	16.962	16.802	885.7	888.8
16	851.042	26.826	26.572	885.7	890.6	52	851.279	18.708	18.531	885.6	889.0
17	851.107	24.628	24.395	885.6	890.1	53	851.225	20.567	20.372	885.7	889.4
18	851.167	22.542	22.329	885.7	889.8	54	851.167	22.539	22.326	885.6	889.7
19	851.225	20.570	20.376	885.6	889.3	55	851.107	24.624	24.391	885.7	890.2
20	851.279	18.711	18.534	885.7	889.1	56	851.042	26.823	26.569	885.6	890.5
21	851.330	16.965	16.804	885.6	888.7	57	850.975	29.134	28.859	885.7	891.0
22	851.378	15.332	15.187	885.7	888.5	58	850.904	31.559	31.261	885.6	891.3
23	851.422	13.811	13.681	885.6	888.1	59	850.830	34.098	33.775	885.7	891.9
24	851.463	12.404	12.286	885.7	888.0	60	850.753	36.750	36.402	885.6	892.3
25	851.501	11.109	11.004	885.6	887.6	61	850.672	39.515	39.141	885.8	893.0
26	851.536	9.927	9.833	885.7	887.5	62	850.588	42.395	41.993	885.6	893.3
27	851.567	8.858	8.774	885.6	887.2	63	850.501	45.388	44.958	885.7	893.9
28	851.595	7.901	7.826	885.7	887.1	64	850.411	48.495	48.036	885.6	894.4
29	851.620	7.057	6.990	885.6	886.9	65	850.317	51.716	51.226	885.6	895.0
30	851.641	6.325	6.266	885.7	886.8	66	850.220	55.052	54.530	885.2	895.2
31	851.659	5.706	5.653	885.6	886.6	67	850.120	58.501	57.947	884.6	895.2
32	851.674	5.200	5.151	885.7	886.6	68	850.016	62.065	61.478	882.8	894.1
33	851.685	4.806	4.761	885.6	886.5	69	849.909	65.743	65.122	881.6	893.5
34	851.694	4.525	4.482	885.7	886.5	70	849.799	69.535	68.864	900.6	913.2
35	851.699	4.356	4.315	885.7	886.5	71	849.685	73.444	72.600	1074.6	1087.9
36	851.700	4.300	4.259	885.5	886.3						

Table 6 Results of side spans for the completed bridge

Parameter	Value		
	SymbolUn	Left Right	Eq.
Horizontal component of the cable tension	$H \quad \mathrm{kN}$	94239.75	Table 3
	a_{s} /	0.301700 .40643	(33)
Parameters of the catenary equation	$b_{s} \quad \mathrm{~m}$	6907.887146 .12	$b_{s}=-c \cosh a_{s}$
	m	-6604.97	Table 3
Length of the orthogonal projection of the catenary segment on the horizontal plane	$l_{s} \quad \mathrm{~m}$	237.180117.072	(33)
Elevation of tangent point E_{1} on the tower saddle	$h_{\mathrm{E}_{1}} \quad \mathrm{~m} 9$	928.469928 .165	(28)
Elevation of tangent point Q on the splay saddle	$h_{\mathrm{Q}} \quad \mathrm{m} 8$	860.258880 .387	(29)
			$\tan \beta_{2}$
Angle between vertical line and the segment QK	β_{2}	15.05222 .670	$\sinh \left(\frac{l_{s}}{c}+a_{s}\right)$
Angle between the vertical segment $\mathrm{B}_{1} \mathrm{C}_{1}$ and the segment connecting tangent point E_{1} to circle center C_{1}	β_{3}	17.03121 .730	an $\beta_{3}=\sinh a_{s}$
Horizontal distance between the tangent point E_{1} and point B_{1}	$\Delta_{1} \quad \mathrm{~m}$	1.6112 .120	$\Delta_{1}=R_{1} \sin \beta_{3}$
Horizontal distance between points B_{1} and D_{1}	$\Delta_{2} \quad \mathrm{~m}$	0.227-0.061	$\Delta_{2}=R_{1} \sin \gamma_{1}$
Horizontal distance between the tangent point on the splay saddle, Q , and circle center K	$\Delta_{3} \quad \mathrm{~m}$	$1.501 \quad 2.140$	$\Delta_{3}=r_{4} \sin \beta_{2}$
Horizontal distance between the IP point and circle center, K, of the splay saddle	$\Delta_{4} \quad \mathrm{~m}$	2.4843 .009	$\Delta_{4}=l_{K} \sin \omega_{1}$
Unstrained cable length of the arc segment $D_{3} Q$ on the splay saddle	$S_{\mathrm{D}_{3} \mathrm{Q}} \mathrm{m}$	$1.002 \quad 0.918$	(35)
Unstrained cable length of the catenary segment QE_{1}	$S_{C, s} \quad \mathrm{~m} 2$	246.107126 .076	(34)
Unstrained cable length of the arc segment $\mathrm{E}_{1} \mathrm{D}_{1}$ on the tower saddle	$S_{\mathrm{E}_{1} \mathrm{D}_{1}} \mathrm{~m}$	$1.857 \quad 2.109$	(36)
Total unstrained cable length over the side span	$S_{s} \mathrm{~m} 2$	248.965129 .104	(37)

Parameter	Value			
	SymbolUnit	Left	Right	Eq.
Horizontal component of the cable tension	$H_{a} \quad \mathrm{kN} 80$	80394.20	78101.52	(47)
	a_{a}	0.65259	0.76218	(47)
Parameters of the catenary equation	$b_{a} \quad \mathrm{~m}$	6877.59	7142.33	$b_{a}=-c_{a} \cosh a_{a}$
	$c_{a} \mathrm{~m}$	-5634.58	-5473.89	$c_{a}=-H_{a} / q$
Length of the orthogonal projection of the catenary segment on the horizontal plane	$l_{a} \mathrm{~m}$	15.765	14.769	(47)
Elevation difference between the tangent point J and the anchor point $\mathrm{A}_{i}(i=1$ and $i=2$ denote left and right, respectively)	$\Delta h_{\mathrm{JA}_{i}} \mathrm{~m}$	11.007	12.353	(43)
Angle between the vertical line and the segment connecting tangent point J and the center of the first circular arc	β_{1}	34.989	39.968	$\tan \beta_{1}=\sinh a_{a}$
Elevation of tangent point J on the splay saddle	$h_{\mathrm{J}} \quad \mathrm{m}$	859.536	879.500	(42)
Unstrained cable length of the catenary segment	$S_{c, a} \quad \mathrm{~m}$	19.173	19.198	(48)
Unstrained cable length of the arc segment JD_{3} on the splay saddle	$S_{\mathrm{JD}_{3}} \mathrm{~m}$	0.758	0.731	(49)
Total unstrained cable length over the anchor span	$S_{a} \quad \mathrm{~m}$	19.931	19.929	(50)

Table 8 Known parameters from the completed bridge

Elevation difference between points	SymbolValue (m)	Horizontal distance between points	SymbolValue (m)		Unstrained cable length	SymbolValue (m)		
C_{1} and C_{2}	Δh_{m}	0.120	D_{1} and D_{2}	L_{m}	730.000	Main span	S_{m}	746.779
I_{1} and C_{1}	$\Delta h_{s 1}$	68.517	I_{1} and D_{1}	$L_{s 1}$	238.711	Left side span	$S_{s, L}$	248.965
C_{2} and I_{2}	$\Delta h_{s 2}$	48.105	D_{2} and I_{2}	$L_{s 2}$	118.436	Right side span	$S_{s, R}$	129.104
$\mathrm{~A}_{1}$ and I_{1}	$\Delta h_{a 1}$	6.164	$\mathrm{~A}_{1}$ and I_{1}	$L_{a 1}$	17.673	Left anchor span	$S_{a, L}$	19.931
I_{2} and A_{2}	$\Delta h_{a 2}$	7.841	I_{2} and A_{2}	$L_{a 2}$	16.886	Right anchor span	$S_{a, R}$	19.929

Table 9 Calculated parameters of the cable configuration in the unloaded state

Parameter		Left anchor span	Left side span	Main span	Right side spa	ht anchor span
Horizontal component of the cable tension	Symbol	$H_{a, L}^{\prime}$	$H_{s, L}^{\prime}$	H_{m}^{\prime}	$H_{s, R}^{\prime}$	$H_{a, R}^{\prime}$
	Value (kN)	12345.43	14177.03	14177.03	14177.03	11550.51
	Eq.	(80)				
Parameters of the catenary equation	Symbol	$a_{a, L}^{\prime}$	$a^{\prime}{ }_{s, L}$	$a^{\prime}{ }_{m}$	$a_{s, R}^{\prime}$	$a_{a, R}^{\prime}$
	Value	0.65978	0.39931	0.35510	0.45613	0.76952
	Eq.	(80)				
	Symbol	$b_{a, L}^{\prime}$	$b_{s, L}^{\prime}$	b_{m}^{\prime}	$b_{s, R}^{\prime}$	$b_{a, R}^{\prime}$
	Value (m)	1096.047	1109.810	1092.217	1135.586	1096.874
	Eq.	$b^{\prime}=-c^{\prime} \cosh a^{\prime}$				
	Symbol	$c^{\prime}{ }_{\text {a }}{ }^{\prime}$	$c_{s, L}^{\prime}$	$c^{\prime}{ }^{\prime}$	$c^{\prime}{ }_{s, R}$	$c^{\prime}{ }^{\prime}, R$
	Value (m)	-894.272	-1026.949	-1026.949	-1026.949	-836.690
	Eq.	$c^{\prime}=-H^{\prime} / q^{\prime}$				
Length of the orthogonal projection of the catenary segment on the horizontal plane	Symbol	$l_{a, L}^{\prime}$	$l_{s, L}^{\prime}$	l_{m}^{\prime}	$l_{s, R}^{\prime}$	$l_{a, R}^{\prime}$
	Value (m)	15.743	234.958	728.094	116.089	14.748
	Eq.	(80)				
Elevation difference between the catenary segment's two endpoints	Symbol	$\Delta h^{\prime}, a, L$	$\Delta h^{\prime},{ }_{c, L}$	$\Delta h_{c, m}^{\prime}$	$\Delta h^{\prime},{ }_{\text {c, }, R}$	$\Delta h_{c, a, R}^{\prime}$
	Value (m)	10.987	67.939	0.127	47.645	12.332
	Eq.	$\Delta h^{\prime}=c^{\prime}\left[\cosh \left(l^{\prime} c^{\prime}+a^{\prime}\right)-\cosh a^{\prime}\right]$				
Left arc segment	Symbol	$\$ & $S_{\mathrm{D}_{3}^{\prime} \mathrm{Q}_{1}}^{\prime}$	$S_{\mathrm{D}_{1}^{\prime} \mathrm{F}_{1}^{\prime}}^{\prime}$	$S_{\mathrm{D}_{2} E_{2}^{\prime}}^{\prime}$	$S_{\mathrm{D}_{4}^{\prime} \mathrm{J}_{2}}^{\prime}$	
	Value (m)	1	1.629	1.683	2.363	0.717
	Eq.	1	(61-2)	(57-2)	(65-2)	(78-2)
Unstrained cable length Catenary segment Right arc segment	Symbol	$S_{c, a, L}^{\prime}$	$S_{c, s, L}^{\prime}$	$S_{c, m}^{\prime}$	$S_{c, s, R}^{\prime}$	$S_{c, a, R}^{\prime}$
	Value (m)	19.189	244.972	743.129	125.486	19.216
	Eq.	(71-1)	(61-1)	(57-1)	(65-1)	(78-1)
	Symbol	$S_{\mathrm{J}_{1} \mathrm{D}_{3}^{\prime}}^{\prime}$	$S_{\mathrm{E}_{1} \mathrm{D}_{1}^{\prime}}^{\prime}$	$S_{\mathrm{F}_{2} \mathrm{D}_{2}^{\prime}}^{\prime}$	$S_{\mathrm{Q}_{2} D_{4}^{\prime}}^{\prime}$	\backslash
	Value (m)	0.744	2.365	1.969	1.254	1
	Eq.	(71-2)	(61-3)	(57-3)	(65-3)	1

Table 10 Calculated angles of contingence, β^{\prime}

Tangent point	Left splay saddle		Left tower saddle		Right tower saddle		Right splay saddle	
	J_{1}	Q_{1}	E_{1}^{\prime}	F_{1}^{\prime}	F_{2}^{\prime}	E_{2}^{\prime}	Q_{2}	$\mathrm{~J}_{2}$
Symbol	β_{1}^{\prime}	β_{2}^{\prime}	β_{3}^{\prime}	β_{4}^{\prime}	β_{5}^{\prime}	β_{6}^{\prime}	$\beta_{7}^{\prime}{ }^{\prime}$	β_{8}^{\prime}
Value $\left({ }^{\circ}\right)$	35.323	9.709	22.281	19.908	19.889	25.266	19.276	40.289

4.3 Cable configuration in the unloaded state

Several parameters from the calculated cable configuration under final dead load are needed to determinethe cable configuration in the unloaded state, as listed in Table 8. The weight per unit length of the free cable is $q^{\prime}=13.805 \mathrm{kN} / \mathrm{m}$.

Based on Eq. (80), the 17 unknown quantities for determining the cable configuration in the unloaded state can be calculated. Then other parameters can be derived. The calculated parameters of the cable configuration in the
unloaded state are listed in Table 9. The Calculated angles of contingence are list in Table 10. An angle of contingence is the angle between the vertical line and the segment connecting the tangent point and the center of circular arc. The calculated pre-offsets of saddles are listed in Table 11.

The proposed method and above-mentioned results have been fully and successfully employed in the design and construction control of the Jindong bridge, which has passed the authorities' tests and is ready to be opened for traffic.

Table 11 Calculated pre-offsets of saddles

Pre-offset	Symbol	Unit	Value	Eq.	
	Left splay saddle	$\alpha_{s, L}$	\circ	0.851	
Right splay saddle	$\alpha_{s, R}$	\circ	0.850	DistanceLeft tower saddle	$\Delta_{m, L}$
	Right tower saddle	$\Delta_{m, R}$	m		0.489

5. Conclusions

Analytical methods for calculating a suspension bridge's main cable configuration under final dead load and in the unloaded state and relevant construction parameters are proposed based on the segmental catenary theory. The analytical results can be used as a reference for bridge design and construction control. This method has a number of strengths:
(1) It is capable of determining the unstrained cable length, unstrained hanger lengths, pre-offsets for tower and splay saddles, and other critical design and construction parameters.
(2) It takes into account the effects of cable strands over the anchor spans, arc-shaped tops of tower/splay saddles, and tower top pre-uplifts.
(3) In terms of cable configuration under final dead load, mechanical equilibrium conditions and geometric relationships are utilized to calculate the parameters of catenary equations for the cable segments over each span, coordinates of tangent points, and angles of contingence. The calculations are first performed for the main span, followed by the side spans and then anchor spans. Hanger tensile forces and unstrained hanger lengths are calculated by iteratively solving the equations governing hanger tensile forces and the cable configuration, which gives careful consideration to the effect of hanger weight.
(4) Equations for calculating cable configuration in the unloaded state are derived from the cable configuration under final dead load and the conditions for unstrained cable length to be conserved. By simultaneously solving the equations for the main span, two side spans and two anchor spans, we can obtain the pre-offsets for saddles, parameters of the catenary equation for the cable segment over each span, coordinates of tangent points, and angles of contingence.
(5) The coupled nonlinear equations are converted to objective functions in an unconstrained optimization problem and then solved by GRG for nonlinear programming. This avoids complicated iterative process for solving coupled equations. For example, the number of coupled equations involved in calculating cable configuration in the unloaded state reaches up to 17.
(6) Compared to finite element methods, the proposed analytical method does not require complex simulations, and features explicit physical concepts and easily adjustable parameters. With general applicability, it is expected to be popularized.

The feasibility and validity of the proposed method have
been demonstrated through a numerical example of a suspension bridge spanned as $240 \mathrm{~m}+730 \mathrm{~m}+120 \mathrm{~m}$.

Acknowledgments

The research described in this paper was financially supported by the NSFC under the Grant 51678148, a project supported by the Natural Science Foundation of Jiangsu Province (BK20181277), and the National Key R\&D Program of China (No. 2017YFC0806009), which are gratefully acknowledged.

References

Cao, H., Zhou, Y., Chen, Z. and Wahab, M.A. (2017), "Formfinding analysis of suspension bridges using an explicit Iterative approach", Struct. Eng. Mech., 62(1), 8595. https://doi.org/10.12989/sem.2017.62.1.085.

Chen, Z., Cao, H., Ye, K., Zhu, H. and Li, S. (2013), "Improved particle swarm optimization-based form-finding method for suspension bridge installation analysis", J. Comput. Civil Eng., 29(3), https://doi.org/10.1061/(ASCE)CP.1943-5487.0000354.
Chen, Z., Cao, H. and Zhu, H. (2015), "An iterative calculation method for suspension bridge's cable system based on exact catenary theory", Baltic J. Road Bridge Eng., 8(3), 196-204.
Irvine, H.M. (1981), Cable Structures, The MIT Press, Cambridge, Mass, USA.
Jayaraman, H.B. and Knudson, W.C. (1981), "A curved element for the analysis of cable structures", Comp. Struc., 14(3), 25333. https://doi.org/10.1016/0045-7949(81)90016-X.

Jung, M.R., Min, D.J. and Kim, M.Y. (2013), "Nonlinear analysis methods based on the unstrained element length for determining initial shaping of suspension bridges under dead loads", Comp. Struct., 128(5),

272-285.
https://doi.org/10.1016/j.compstruc.2013.06.014.
Jung, M.R., Min, D.J. and Kim, M.Y. (2015), "Simplified analytical method for optimized initial shape analysis of selfanchored suspension bridges and its verification", Math. Prob. Eng., 2015, 1-14. http://dx.doi.org/10.1155/2015/923508.
Karoumi, R. (2012), "Some modeling aspects in the nonlinear finite element analysis of cable supported bridges", Comp. Struct., 71(4), 397-412. https://doi.org/10.1016/S0045-7949(98)00244-2.
Kim, K.S. and Lee, H.S. (2001), "Analysis of target configurations under dead loads for cable supported bridges", Comp. Struct., 79(29), 2681-2692. https://doi.org/10.1016/S0045-7949(01)00120-1.
Kim, H.K. and Lee, M.J. (2002), "Chang SP. Non-linear shapefinding analysis of a self-anchored suspension bridge", Eng. Struct., 24(12), 1547-1559. https://doi.org/10.1016/S0141-0296(02)00097-4.
Lasdon, L.S., Fox, R.L. and Ratner, M.W. (1974), "Nonlinear optimization using the generalized reduced gradient method", RAIRO Oper. Res. Rech. Oper., 8(3), 73-103.
Lasdon, L.S., Waren, A.D., Jain, A. and Ratner, M. (1978), "Design and testing of a generalized reduced gradient code for nonlinear programming", ACM Trans. Math. Softw., 4(1), 3450. https://apps.dtic.mil/dtic/tr/fulltext/u2/a025724.pdf.

O'Brien, T. (1964), "General solution of suspended cable problems", J. Struct. Div., 93(ST1), 1-26.
O'Brien, T. and Francis, A.J. (1964), "Cable movements under two-dimensional loads", J. Struct. Div, 90(ST3), 89-123.
Sun, Y., Zhu, H.P. and Xu, D. (2014), "New method for shape finding of self-anchored suspension bridges with three-
dimensionally curved cables", J. Bridge Eng., 20(2), https://doi.org/10.1061/(ASCE)BE.1943-5592.0000642.
Thai, H.T. and Kim, S.E. (2011), "Nonlinear static and dynamic analysis of cable structures", Finite Elem. Anal. Des., 47(3), 237-246. https://doi.org/10.1016/j.finel.2010.10.005.
Thai, H.T. and Choi, D.H. (2013), "Advanced analysis of multispan suspension bridges", J. Constr. Steel Res., 90(41), 29-41.
Wang, P.H. and Yang, C.G. (1996), "Parametric studies on cablestayed bridges", Comp. Struct., 60(2), 243-260. https://doi.org/10.1016/0045-7949(95)00382-7.
Wang, S., Zhou, Z., Gao, Y. and Huang, Y. (2015), "Analytical calculation method for the preliminary analysis of self-anchored suspension bridges", Math. Prob. Eng., 2015(2), 1-12. http://dx.doi.org/10.1155/2015/918649.
Wilde, D.J. and Beightler, C.S. (1967), Foundations of Optimization, Prentice-Hall Inc., Englewood Cliffs, NJ, USA.
Zhang, W.M., Shi, L.Y., Li, L. and Liu, Z. (2018), "Methods to correct unstrained hanger lengths and cable clamps' installation positions in suspension bridges", Eng. Struct., 171, 202-213. https://doi.org/10.1016/j.engstruct.2018.05.039.

CC

