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1. Introduction 
 

A suspension bridge consists of main cables, hangers, a 

deck, towers, anchorages, tower saddles, splay saddles, 

cable clamps and other components. The ultimate aim of 

structural design and construction calculations is to achieve 

the desired bridge configuration with high accuracy. The 

first step in this process is to determine a target cable 

configuration under final dead load, which then serves as a 

data source for subsequent construction calculations. As 

post-installation adjustment of cable configuration is very 

difficult, accurately determining cable configuration in the 

unloaded state and construction parameters is a key to 

achieving target configurations of the completed bridge. 

Critical construction parameters include the unstrained 

cable length, unstrained hanger lengths, and pre-offsets for 

tower saddles and splay saddles. Accurate calculations of 

these parameters require full consideration of effects of 

cable strands over the anchor spans and the arc-shaped tops 

of saddles. Moreover, it is also necessary to take into 

account the effect of tower top pre-uplift when calculating 

the pre-offsets of saddles. 
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Cable saddles are used to turn main cables and thus they 

can directly constrain the deformation of main cables. Main 

cables are tangent to the arc-shaped tops of saddles in all 

conditions. A tower saddle normally has only one circular 

arc, while a splay saddle features multiple circular arcs of 

different radii. This increases the difficulties of calculating 

cable configurations over side spans and anchor spans.  

Offsets are preset for both tower saddles and splay 

saddles during installation. Under final dead load, the 

horizontal components of tension in the cable segments at 

the two sides of each tower saddle are equal, and the sum of 

torques by cable tensions about the each splay saddle’s 

center of rotation is zero. However, the external loads 

applied by different spans to a main cable differ. For 

example, a long main span can exert a relatively great load 

on the main cable, while a side span can exert only a low or 

even zero load on the main cable. In the unloaded state, 

these external loads do not arise and the internal force in a 

cable segment is equal to the internal force under final dead 

load minus the internal force arising from external load on 

it. Compared to external load from the side span, the 

external load from the main span can produce a greater 

internal force. If the saddles are installed at the positions for 

the completed bridge, there will inevitably be great 

unbalanced forces acting on the saddles in the unloaded 

state. These unbalanced forces may cause displacements of 

towers and sliding of cable strands in the saddles. To 

eliminate such unbalanced forces, tower saddles and splay 

saddles need to be offset by proper distances and angles, 

respectively, during installation. The resulting changes in 

span lengths between saddles will lead to significant 
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changes in the sags of the main cable over different spans, 

thereby changing the tension in the main cable. Then the 

main cable segments at the two sides of a saddle will be in 

equilibrium with each other. The proper offset distance or 

angle for a saddle is the pre-offset. During the installation 

of deck, the saddles move towards their target positions. 

Therefore, the pre-offsets of saddles vanish in the bridge’s 

completed state. 

The elevation of a bare tower top is higher than the 

tower top’s elevation under final dead load. The elevation 

difference is referred to as pre-uplift. Under final dead load, 

a main cable can exert a huge downward force on each 

tower, generating compression in the tower. If the bare 

tower is pre-uplifted to offset the amount of compression, 

the tower top’s elevation under final dead load will reach 

the target level. 

Configuration calculations for suspension bridges 

mostly use finite element methods based on the finite 

displacement theory (Irvine 1981, Jayaraman and Knudson 

1981, Kim and Lee 2002, Thai and Kim 2011, Wang and 

Yang, Karoumi 2012, Sun et al. 2014) or analytical methods 

based on suspended-cable mechanics (O'Brien 1964, 

O'Brien and Francis 1964, Chen et al. 2013, 2015, Wang et 

al 2015, Jung et al. 2015). Given the structural 

characteristics of a suspension bridge, finite element 

methods usually involve simulating a construction process 

based on construction characteristics and requirements 

regarding cables’ mechanical behavior and configuration 

under final dead load and then calculating cable 

configuration in the unloaded state via multiple loop 

iterations. However, finite element methods are inefficient 

in local detail processing and require an immense and 

complex computing system and a complicated 

computational process. In analytical methods, the first step 

is to calculate unstrained cable length on the basis of main 

cables’ designed state under final dead load. Then cable 

configuration in the unloaded state is calculated based on 

the principle that the unstrained length of any cable segment 

remains constant during structural construction and after 

completion. In comparison, analytical methods have more 

explicit computational process and better capability of 

detail processing such as cable length correction, and are 

thus more widely applied to cable configuration calculation 

for suspension bridges. However, analytical shape-finding 

methods considering the effects of cable strands over the 

anchor spans, arc-shaped saddle top, and tower top pre-

uplift are seldom reported. In addition, approaches for 

determining the pre-offsets of tower saddles and splay 

saddles are rare. 

 

This paper proposes analytical methods for calculating 

cable configurations under final dead load and in the 

unloaded state and relevant construction parameters, which 

takes the effects of cable strands over the anchor spans, arc-

shaped saddle top and tower top pre-uplift into account. 

They are later applied to the calculations involved in 

construction control for a suspension bridge with a 730m 

main span. The results demonstrate the feasibility and 

validity of the proposed methods. 

Cable configuration calculation requires solving a 

number of coupled non-linear transcendental equations. For 

example, in the calculation of cable configuration in the 

unloaded state, the number of coupled nonlinear 

transcendental equations reaches up to 17. To avoid 

complicated iterations for equations, the problem of solving 

a system of equations can be transformed to an 

unconstrained optimization problem. Then the system of 

equations can be solved by the generalized reduced gradient 

(GRG) method (Wilde and Beightler 1967, Lasdon et al. 

1974, 1978) for nonlinear programming. 
 

 

2. Calculation of cable configuration under final dead 
load 
 

The suspension bridge under study has one main span, 

two side spans and two anchor spans, as shown in Fig. 1. 

Calculation of cable configuration can only start from the 

configuration under final dead load. Unstrained cable length 

is an important parameter that relates the cable 

configuration under final dead load to that in the unloaded 

state, because the unstrained length of any cable segment 

remains constant in different stages of construction. In 

calculation of cable configuration under final dead load, the 

main span is first considered, followed by the side spans 

and then anchor spans. Specifically, the first step is to 

calculate the horizontal component of the tension in main 

cable over the main span. Next, cable configuration over a 

side span is calculated based on the principle that the 

horizontal components of the tension in the two cable 

segments at the two sides of each tower top are equal. Then 

cable configuration calculation is performed for an anchor 

span based on the conditions for the equilibrium at each 

splay saddle. Given the three-dimensional geometry of the 

cable strands over the anchor spans, the cable strands are 

usually treated as a whole when calculating their 

configuration and the anchor point is located at the center of 

the front anchor plane.  

 
 
 

 
Fig. 1 Schematic of the whole bridge 
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2.1 Main span 
 

2.1.1 Cable configuration 
Under the action of concentrated forces from hangers, 

the cable in the bridge's completed state consists of many 

catenary segments hanging between adjacent hangers. As 

shown in Fig. 2, a number of coordinate systems are 

established, with the origin being at the left tangent point, 

F1, and the suspension points, O1~On, along the cable, the 

positive x-axis pointing right, and the positive y-axis 

pointing downward. Then the shape of an arbitrary cable 

segment is governed by the following catenary equation: 

cosh i i

x
y c a b

c

 
= + + 

 
 (1) 

where c=-H/q, in which H is the horizontal component of 

the cable tension in the bridge’s completed state (kN) and q 

is the cable weight per unit length (kN/m); ai and bi are 

parameters of the catenary equation. 

From the boundary condition y(0)=ccoshai+bi=0, we 

obtain bi=-ccoshai. Plugging this into the equation above, 

the catenary equation can then be rewritten as: 

cosh coshi i

x
y c a a

c

  
= + −  

  
 (2) 

Three constraint conditions are introduced: (1) the 

elevation difference between the left tangent point and the 

mid-span point is closed; (2) the elevation difference  
 

 

between the two tangent points on the left and right saddles 

is closed; and (3) the length of the orthogonal projection of 

the rightmost catenary segment on the horizontal plane, ln+1, 

meets the relevant design requirement. The corresponding 

equations are as follows: 

1F

1

Om

m

i

i

h h
=

 =   (3-1) 

1 2F F

1

n

i

i

h h
=

 =   (3-2) 

2 2 21 O D F Dnnl l l+ = −  (3-3) 

where m is the number of the cable segments between the 

left tangent point, F1, and the mid-span point, Om; n is the 

number of suspension points along the cable; Δhi denotes 

the elevation difference between the two endpoints of an 

arbitrary catenary segment of the cable; 
1OF m

h is the 

elevation difference between the left tangent point, F1, and 

the mid-span point, Om; 
1 2F Fh is the elevation difference 

between the left tangent point, F1, and the right tangent 

point, F2; 
2O Dn

l is the designed horizontal distance between 

the rightmost hanger and the right tower’s centerline; 
2 2F Dl

is the horizontal distance between the right tangent point, 

F2, and the right tower’s centerline. 

There are three unknown quantities hidden in the three 

equations: H – the horizontal cable tension in the bridge’s 

completed state; a1 – the parameter in the catenary equation 

 
Fig. 2 Cable configuration under final dead load 

 
Fig. 3 Left tower saddle Fig. 4 Right tower saddle 

F

DB

C

E1

O

l2

β
β

3

4

P

P

R1

Tower centerline

1 1

1

O

Main spanLeft side span

γ1

l1

1

2

1

2

1

R1

ln ln+1

F

D B

C

E

β
β

P

P

R

Tower centerline

n-1

n

2

2
5

6

Right side span

γ2

2 2

2

Main span

O

O

n-1

n

2

R2

605



 

Wen-ming Zhang, Gen-min Tian, Chao-yu Yang and Zhao Liu 

for the first catenary segment; and ln+1 – the length of the 

orthogonal projection of the rightmost catenary segment on 

the horizontal plane. The next step is expressing the other 

parameters in the equations as functions of the three 

quantities. 

The Δhi can be expressed as follows: 

= ( ) (0) cosh coshi

i i i i

l
h y l y c a a

c

  
 − = + −  

  
 (4) 

where li is the length of the orthogonal projection of an 

arbitrary catenary segment on the horizontal plane, as 

shown in Fig. 2. 

In the left tower saddle (Fig. 3), for a given elevation of 

the circle center, C1, in the geodetic system, denoted as
1Ch , 

the elevation of the left tangent point, F1, in the geodetic 

system,
1Fh , can be written as 

1 1 1F C 1 4 C 1 1= cos sechh h R h R a+ = +  (5) 

where R1 is the radius of the left tower saddle’s arc-shaped 

top, as shown in Fig. 3; β4 is the angle between the vertical 

segment B1C1 and the segment connecting point F1 and the 

circle center, C1. Since
4 0 1

d
tan sinh

d
x

y
a

x
 == = , then cosβ4 = 

secha1, sinβ4 = tanha1. 

For a given elevation of point Om in the geodetic system, 

denoted as
Om

h , the elevation difference between points F1 

and Om, denoted as
1OF m

h , can be expressed by 

1 1 1O O OF F C 1 1sech
m m m

h h h h R a h = − = + −  (6) 

In the right tower saddle (Fig. 4), for a given elevation 

of the circle center, C2, in the geodetic system, denoted as

2Ch , the elevation of the right tangent point, F2, in the 

geodetic system,
2Fh , can be expressed as 

2 2 2

1

F C 2 5 C 2 1= cos sech n

n

l
h h R h R a

c
 +

+

 
+ = + + 

 
 (7) 

where R2 is the radius of the right tower saddle’s arc-shaped 

top, as shown in Fig. 4; β5 is the angle between the vertical 

segment B2C2 and the segment connecting point F2 and the 

circle center, C2. Since
1

1

5 1

d
tan sinh

d n

n

x l n

ly
a

x c


+

+

= +

 
= − = − + 

 

then 1

5 1cos sech n

n

l
a

c
 +

+

 
= + 

 
, 1

5 1sin tanh n

n

l
a

c
 +

+

 
= − + 

 

. 

Then the elevation difference between tangent points F1 

and F2, denoted as
1 2F Fh , can be expressed by 

1 2 1 2 1 2F F F F C C

1

1 1 2 1sech sech n

n

h h h h h

l
R a R a

c

+

+

 = − = − +

 
− + 

 

 (8) 

The horizontal distance between the right tangent point, 

F2, and the right tower’s centerline, denoted as 
2 2F D ,l can be  

 

Fig. 5 Equilibrium between forces at a suspension point 

 

 

expressed by 

2 2 2 2 2 2F D F B D B 2 5 2 2

1

2 1 2

- sin - sin

tanh sinn

n

l l l R R

l
R a

c

 

+

+

= =

  
= − + +  

  

 (9) 

where 
2 2F Bl represents the horizontal distance between 

points F2 and B2; 
2 2D Bl is the horizontal distance between 

points D2 and B2; γ2 is the angle between the vertical 

segment B2C2 and the segment connecting point D2 and the 

circle center, C2, as shown in Fig. 4. 

At an arbitrary suspension point on the main cable, the 

axial tensile force can be decomposed into a horizontal 

component and a vertical one, as shown in Fig. 5. Through 

the force equilibrium in the vertical direction, we can obtain 

(Zhang et al. 2018). 

tan tan iH H P = +  (10) 

where Pi is the hanger tensile force; δ and ϕ are the 

inclination angles for the cable segments at the left and right 

of the suspension point, Oi, respectively. 

Substituting tan sinh( / )i il c a = + and 1tan sinh ia +=

into the equation above leads to 

( ) 1sinh / sinhi i i iH l c a H a P++ = +  (11) 

Then 

1 asinh sinh i i

i i

l P
a a

c H
+

  
= + −  

  
 (12) 

In the equation above, the expression of l1 is needed. As 

shown in Fig. 3, the horizontal distance between the tangent 

point on the left tower saddle and the first hanger, l1, can be 

expressed as 

1 1

1 1

1 D O 1 4 1

D O 1 1 1

(sin sin )

(tanh sin )

l l R

l R a

 



= − −

= − −
 (13) 

where 
1 1D Ol is the horizontal distance between the left 

tower’s centerline and the first hanger; γ1 is the angle 

between the vertical segment B1C1 and the segment from 

the left tower saddle’s circle center, C1, to its actual apex, 

D1, as shown in Fig.3. 

Plugging Eqs. (4), (6), (8), (9), and (12) into Eq. (3) 

yields three nonlinear governing equations that are coupled 

to each other. The equations can be rewritten as three 

functions. 

606



 

Analytical methods for determining the cable configuration and construction parameters of a suspension bridge 

 

 
Fig. 6 Rigidly supported continuous beam 

 

 

1 1 1( , , ) 0nf H a l + =  (14-1) 

2 1 1( , , ) 0nf H a l + =  (14-2) 

3 1 1( , , ) 0nf H a l + =  (14-3) 

In order to solve the resultant system of these equations 

more conveniently, it can be transformed into an 

unconstrained optimization problem. 

( )
3

2

1 1

1

min , ,i n

i

f H a l +

=

 
 
 
  (15) 

This equation can be solved by using the generalized 

reduced gradient (GRG) algorithm, which is now available 

in the Microsoft Excel. Solving this equation gives the 

expressions for the aforementioned unknown quantities: H, 

a1 and ln+1. Then the cable shape over the main span, which 

includes the position of each tangent point, the elevation of 

each suspending point, and so on, can be determined. 
 

2.1.2 Hanger tensile force and unstrained hanger 
length 

In the calculation above, the hanger tensile force, Pi, is 

the axial tensile force at a hanger’s upper end. It can be 

resolved into two components: axial tensile force at the 

hanger’s lower end, denoted as P0,i, and hanger weight. P0,i 

can be calculated using the rigidly supported continuous 

beam method (Kim and Lee 2001, Jung et al. 2013, Thai 

and Choi 2013, Cao et al. 2017), namely by replacing the 

hangers for the stiffening girder with rigid supports (Fig. 6) 

so that P0,i equals the reaction force applied by each rigid 

support. However, hanger weight needs to be iteratively 

calculated. This is because calculating hanger lengths 

requires determining the elevations of suspension points 

along each main cable, which in term requires the exact 

values of hanger tensile forces. The iterative process 

involves the following steps: 

(1) Assume the axial tensile force at a hanger’s upper end, 

Pi, equals the value of P0,i. 

(2) Calculate the elevations of suspension points along the 

cable from Pi using the method described in the previous 

subsection. 

(3) Calculate the unstrained length of each hanger using the 

equation below: 

,h

,h

,h

h

0.5
1

i

i

i i i

i

L
S

P w L

E A

=
−

+

 
(16) 

where Li,h is the strained length of the ith hanger, Li,h=hi,c-

hi,d; hi,c is the elevation of the ith suspension point on the 

main cable in the geodetic system; hi,d is the elevation of the 

corresponding anchor point on the deck in the geodetic 

system; wi is the hanger weight per unit length (kN/m); Eh is 

the elastic modulus of the steel wires used to produce the 

hangers; and Ai is the cross-sectional area of the ith hanger. 

(4) Calculate the axial tensile force at the upper end using 

the equation below: 

'

0, ,hangeri i i iP P S w= +  (17) 

(5) Decide whether the iterative process converges 

according to the criterion shown in the following equation: 

'

1
max

i i

i n
i

P P

P


 

 −
  
 
 

 (18) 

where ε is the threshold and can be set at 0.035%. The 

iterative processes to solve for Pi and cable configuration 

terminate when this formula holds. Otherwise, assign the 

value of '

iP  to Pi and go back to step (2) and repeat. 

 

2.1.3 Unstrained cable length 
The unstrained cable length over the main span can be 

divided into three components: multiple catenary segments, 

the arc segment D1F1 on the left tower saddle, and the arc 

segment F2D2 on the right tower saddle. 

The total unstrained length of catenary segments in the 

main span, denoted as Sc,m, can be expressed as 

1

, ,

1

n

c m c i

i

S S
+

=

=  (19) 

where Sc,i is the unstrained length of the ith catenary 

segment. It can be formulated as follows:  

, sinh + sinh

sinh 2 + sinh 2
2 2

i

c i i i

i

i i i

l
S c a a

c

lH c
l a a

EA c

  
= −  

  

    
− + −   

    

 (20) 

The unstrained length of the arc segment D1F1 on the 

left tower saddle can be written as 

1 1

1 4 1

D F

1

( )

cosh
1

R
S

H a

EA

 −
=

+

 
(21) 

The unstrained length of the arc segment on the right 

tower saddle, F2D2, can be expressed as 

2 2

2 5 2

F D

1 1

( )

cosh( / )
1 n n

R
S

H l c a

EA

 

+ +

−
=

+
+

 
(22) 

Then the unstrained cable length over the main span can 

be calculated using the equation below: 

1 1 2 2, D F F Dm c mS S S S= + +  (23) 

 

2.2 Side spans 
 

2.2.1 Cable configuration 
After the calculation for the main span is completed, the  

P0,1 P0,2 P0, i P0, n-1 P0, n
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cable configurations over the side spans are calculated. The 

calculation method is basically the same as that used for the 

main span, except that the known quantities are slightly 

different. The sag to span ratio and elevation of the mid-

span point are known in the calculation for the main span, 

but are unknown in the calculation for the side spans. 

However, the horizontal component of the tension in main 

cable over a side span can be inferred from the equilibrium 

conditions for the saddle mounted on each tower top. It is 

generally assumed that towers are not subject to any 

horizontal force from main cables. Therefore, the horizontal 

component of the tension in main cable over a side span is 

considered equal to that over the main span. This means 

that H is a known quantity in the cable configuration 

calculation for the side spans and it takes the value 

calculated for the main span. 

Due to the absence of hanger tensile force, the main 

cable over a side span can be viewed as a complete catenary 

when calculating its configuration. Take for example the left 

side span. As shown in Fig. 7, a coordinate system is 

established, with the origin being at the left tangent point, 

E1, the positive x-axis pointing left, and the positive y-axis 

pointing downward. Then the catenary equation for main 

cable over the left side span can be written as 

cosh + s s

x
y c a b

c

 
= + 

 
 (24) 

where as and bs are parameters of the catenary equation, and 

the subscript s denotes a side span. 

From the boundary condition y(0)=ccoshas+bs=0, we 

obtain bs=-ccoshas. Substituting this into the equation 

above, the catenary equation can then be rewritten as 

cosh coshs s

x
y c a a

c

  
= + −  

  
 (25) 

Since both the elevation difference and horizontal 

distance between the tangent points on the tower and splay 

saddles are closed, we have 

1E Qsh h = 
 (26-1) 

 

1E Qsl l= 
 (26-2) 

where Δhs
 

is the elevation difference between the two 

endpoints of the catenary segment over the left side span; 

1E Qh  and 
1E Ql  represent the elevation difference and 

horizontal distance, respectively, between tangent points E1 

and Q; and ls is the length of the orthogonal projection of 

the catenary segment over the left side span on the 

horizontal plane. 

There are two unknown quantities hidden in this 

equation system: as and ls. Next, other parameters in the 

equations are to be expressed as functions of the two 

unknown quantities. 

The elevation difference between the two endpoints of 

the catenary segment is given by 

s

s s s s= ( ) (0) cosh cosh
l

h y l y c a a
c

  
 − = + −  

  
 (27) 

In the geodetic system, the elevation of tangent point E1 

on the left tower saddle, denoted as
1Eh , can be calculated 

from the elevation of circle center C1, denoted as
1Ch , using 

the equation below: 

1 1 1E C 1 3 C 1 scos sechh h R h R a= + = +  (28) 

where β3 is the angle between the vertical segment B1C1 and 

the segment connecting tangent point E1 to the circle center 

C1. Since
3 0 s

d
tan =sinh

d
x

y
a

x
 == , then cosβ3 = sechas and 

sinβ3 = tanhas. 

In the geodetic system, the elevation of tangent point Q 

on the splay saddle, hQ, can be calculated from the elevation 

of the splay saddle’s circle center, hK, using 

Q K 4 2 K 4cos sech s

s

l
h h r h r a

c


 
= + = + + 

 
 (29) 

where r4 is the radius of the arc at tangent point Q; and β2 is 

the angle between the vertical line and the segment 

connecting points Q and K. Since

 

Fig. 7 Cable configuration under final dead load over the left side span 
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s2

d
tan sinh

d

s

x l s

ly
a

x c
 =

 
= = + 

 
, then 

2cos sech s

s

l
a

c


 
= + 

 
 

2sin tanh s

s

l
a

c


 
= + 

 
. 

So the elevation difference between tangent points Q 

and E1 can be expressed as 

1 1

1

E Q E Q

C K 1 4sech sech s

s s

h h h

l
h h R a r a

c

 = −

 
= − + − + 

 

 (30) 

Their horizontal distance, denoted as ∆𝑙E1Q , can be 

expressed as 

1E Q , 1 2 3 4s Ll L = − − + −  (31) 

where Ls,L is the length of a side span, which is equivalent 

to the horizontal distance between the IP points of the left 

tower saddle and left splay saddle; Δ1 is the horizontal 

distance between the tangent point E1, and point B1, 

Δ1=R1sinβ3; Δ2 is the horizontal distance between points B1 

and D1, Δ2=R1sinγ1; Δ3 is the horizontal distance between 

the tangent point on the left splay saddle, Q, and circle 

center K, Δ3=r4sinβ2; Δ4 is the horizontal distance between 

the IP point and circle center of the left splay saddle, 

Δ4=lKsinω1, in which lK is the distance between the splay 

saddle’s IP point and circle center K, and ω1 is the angle 

between the vertical line and the segment connecting the IP 

point and K. 

Plugging Eqs. (27), (30) and (31) into Eq. (26) gives 

two coupled equations, which have the following functional 

forms: 

1( , ) 0s sf a l =
 (32-1) 

2 ( , ) 0s sf a l =
 (32-2) 

An objective function is constructed by using as and ls as 

the variables 

( )
2

2

1

min ,i s s

i

f a l
=

 
 
 
  (33) 

By solving the equations, we can get the values of as 

and ls, and then the main cable’s configuration and internal 

forces under final dead load. The method described above 

can also be utilized to calculate the configuration and 

internal forces for the main cable over the right side span. 
 

2.2.2 Unstrained cable length 
The unstrained cable length over the left side span 

consists of three parts: the catenary segment QE1, the arc 

segment D3Q on the left splay saddle, and the arc segment 

E1D1 on the left tower saddle. 

The unstrained length of the catenary segment QE1 can 

be expressed as 

, sinh + sinh

sinh 2 + sinh 2
2 2

s

c s s s

s

s s s

l
S c a a

c

lH c
l a a

EA c

  
= −  

  

    
− + −   

    

 (34) 

The unstrained length of the arc segment D3Q can be 

expressed as 

3

3 1 1 4 4 1 4 2

D Q

( ) [( ) ]

cosh( / )
1 s s

r r
S

H l c a

EA

     − − + + −
=

+
+

 
(35) 

where θ4 is the central angle of the rightmost circular arc on 

the left splay saddle (Fig. 8). 

The unstrained length of the arc segment E1D1 has the 

following form 

1 1

1 3 1

E D

( )

cosh
1 s

R
S

H a

EA

 +
=

+

 
(36) 

The total unstrained cable length over the left side span 

can be calculated using 

3 1 1, , D Q E Ds L c sS S S S= + +  (37) 

The unstrained cable length over the right side span can 

be obtained through the same method. 
 

2.3 Anchor spans 
 

2.3.1 Cable configuration 
The cable configuration under final dead load over the 

anchor spans is calculated usually after the calculation for 

the side spans is completed. The calculation method is 

roughly the same as that used for the side spans except for 

some differences. Over the anchor spans, the splay saddles 

are tilted, making it necessary to consider the balance of 

torques about the splay saddle’s center of rotation. 

Therefore, the horizontal component of cable tension over 

an anchor span is unknown. 

This subsection only presents the calculation for the left 

anchor span. As shown in Fig. 8, the splay saddle consists 

of 4 circular arcs. The radii of these arcs, from the anchor 

span to the side span, are r1, r2, r3, and r4, respectively, and 

the corresponding central angles are θ1, θ2, θ3, and θ4, 

respectively. 

A coordinate system is established, with the origin being 

at the tangent point on the left splay saddle, J, the positive 

x-axis pointing left, and the positive y-axis pointing 

downward. Then the catenary equation for main cable over 

the left anchor span can be written as 

cosha a a

a

x
y c a b

c

 
= + + 

 
 (38) 

where ca=-Ha/q, in which Ha represents the horizontal 

component of cable tension over the anchor span and is 

unknown; aa and ba are parameters of the catenary equation 

for main cable over the anchor span; and the subscript a 

denotes an anchor span. 

From the boundary condition y(0)=cacoshaa+ba=0, we 

obtain ba=-cacoshaa. Putting this into the equation above, 

the catenary equation can then be rewritten as follows: 

cosh cosha a a

a

x
y c a a

c

  
= + −  

   
 (39) 
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Fig. 8 Cable configuration under final dead load over the 

left anchor span 
 

 

Since both the elevation difference and horizontal 

distance between the left anchor point A1 and tangent point 

J are closed, and the sum of torques about the left splay 

saddle’s center of rotation, I1, is zero, the following 

equation system can be constructed: 

1JAah h =   (40-1) 

1JAal l=   (40-2) 

1I
0M =  (40-3) 

where Δha is the elevation difference between the two 

endpoints of the catenary segment over the left anchor span; 

1JAh  and 
1JAl  are the elevation difference and 

horizontal distance, respectively, between tangent point J 

and the left anchor point, A1; la is the length of the 

orthogonal projection of the catenary segment over the left 

anchor span on the horizontal plane; and
1I

M  represents 

the sum of torques about point I1 due to cable tension and 

the splay saddle’s weight. 

There are three unknown quantities hidden in the 

equation system: aa, la and Ha. Next, other parameters in the 

equations are to be expressed as functions of the three 

quantities. 

The elevation difference between the two endpoints of 

the catenary segment, denoted as Δha, can be described by 

( ) (0)

cosh cosh

a a

a

a a a

a

h y l y

l
c a a

c

 = −

  
= + −  

   

 (41) 

In the geodetic system, the elevation of tangent point J 

on the left splay saddle, denoted as hJ, can be inferred from 

the elevation of the splay saddle’s circle center K, denoted 

as hK, using 

J K 1, 2, 3, 4,L L L Lh h h h h h= + + + +  (42) 

where Δh1,L represents the elevation difference between  

 

 
Fig. 9 Balance of torques acting on the left splay saddle 

under final dead load 

 

 

tangent point J and the center of the first circular arc of the 

splay saddle, Δh1,L =r1cosβ1, in which β1 is the angle 

between the vertical line and the segment connecting 

tangent point J and the center of the first circular arc. Since 

1 0

d
tan sinh

d
x a

y
a

x
 == = , then cosβ1=sechaa , sinβ1=tanhaa; 

Δh2,L is the elevation difference between the centers of the 

first and second circular arcs of the splay saddle, 

2, 2 1 2 3 4 1( )cos( )Lh r r     = − + + + , in which φ1 is the 

angle between the vertical line and the segment connecting 

the outmost endpoint of the fourth circular arc and its circle 

center K; Δh3,L is the elevation difference between the 

centers of the second and third arcs of the splay saddle, 

3, 3 2 3 4 1( )cos( )Lh r r    = − + + ; and Δh4,L is the elevation 

difference between the centers of the third and fourth arcs 

of the splay saddle, 
4, 4 3 4 1( )cos( )Lh r r   = − + . 

So the elevation difference between points J and A1, 

denoted as
1JAh , can be written as 

1 1

1

JA J A

K 1, 2, 3, 4, A( )L L L L

h h h

h h h h h h

 = −

= + + + + −
 (43) 

where 
1Ah is the elevation of point A1 in the geodetic 

system. 

The horizontal distance between points J and A1, 

denoted
1JAl , can be written as 

1JA , 1, 2, 3, 4, 4( )a L L L L Ll L l l l l = −  + + + −  (44) 

where La,L is the length of the left anchor span, i.e. the 

horizontal distance between the left splay saddle’s IP point 

and left anchor point A1; Δl1,L is the horizontal distance 

between the tangent point on the left splay saddle, J, and the 

center of the first circular arc of the splay saddle, 

1, 1 1sinLl r  = ; Δl2,L is the horizontal distance between the 

centers of the first and second circular arcs of the splay 

saddle, 
2, 2 1 2 3 4 1( )sin( )Ll r r     = − + + + ; Δl3,L is the 

horizontal distance between the centers of the second and 

third circular arcs of the splay saddle, 

r
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3, 3 2 3 4 1( )sin( )Ll r r    = − + + ; and Δl4,L is the horizontal 

distance between the third circular arc’s center and the 

fourth circular arc’s center, K, 
4, 4 3 4 1( )sin( )Ll r r   = − + . 

As demonstrated in Fig. 9, the sum of torques about 

point I1 due to the tension in the cable segments at the two 

sides of the left splay saddle and the splay saddle’s self-

weight can be written as 

1I 1 2 1 2( )s s s a a a a gM H e V e H e V e G e=  +  −  +  +   (45) 

where es1 denotes the eccentricity of the horizontal 

component, H, of cable tension over the side span, and is 

defined by 
1 4 2 K I 1cos ( )cosse r l l = − − , in which lI is the 

distance between the splay saddle’s IP point and center of 

rotation, I1; Vs denotes the vertical component of cable 

tension over the side span at tangent point Q, 
2tansV H = ; 

es2 is the eccentricity of Vs, 2 4 2 K I 1sin ( )sinse r l l = − − ; 

ea1 is the eccentricity of the horizontal component, Ha, of 

cable tension over the anchor span, 

1 1, 2, 3, 4, K I 1( )cosa L L L Le h h h h l l =  + + + − − ; Va is the 

vertical component of cable tension over the left anchor 

span at tangent point J, 
1tana aV H = ; ea2 is the 

eccentricity of Va, 

2 1, 2, 3, 4, K I 1( )sina L L L Le l l l l l l =  + + + − − ; G is the 

force of gravity acting on the splay saddle; and eg is the 

eccentricity of G, 
1sing ge l = , in which lg denotes the 

distance between the splay saddle’s center of gravity and 

center of rotation I1. 

Substituting Eqs. (41), (43), (44), and (45) into Eq. (40) 

yields three coupled equations, which take the following 

functional forms: 

1( , , ) 0a a af H a l =
 (46-1) 

2 ( , , ) 0a a af H a l =
 (46-2) 

3( , , ) 0a a af H a l =
 (46-3) 

An objective function is constructed by using aa, la, and 

Ha as the variables: 

( )
3

2

1

min , ,i a a a

i

f H a l
=

 
 
 
  (47) 

By solving these equations, we can get the values of aa , 

la, Ha, and then the cable configuration under final dead 

load over the left anchor span. This method described above 

can also be used to calculate the cable configuration over 

the right anchor span. 

 
2.3.2 Unstrained cable length 
The unstrained cable length over the left anchor span is 

split into two parts: the catenary segment A1J and the arc 

segment JD3 on the left splay saddle. 

The unstrained length of the catenary segment A1J can 

be expressed as 

, sinh + sinh

sinh 2 + sinh 2
2 2

a

c a a a a

a

a a a

a a a

a

l
S c a a

c

H c l
l a a

EA c

  
= −  

   

    
− + −   

     

 (48) 

The unstrained length of the arc segment JD3 is given by 

3

1 1 2 3 4 1 2 2 3 3 1 1 4

JD

[ ( )] [ ( )]

cosh
1 a a

r r r
S

H a

EA

         − + + + + + − − −
=

+
 

(49) 

Then the total unstrained cable length over the left 

anchor span can be calculated using the equation below: 

3, , JDa L c aS S S= +  (50) 

This calculation method is also applicable to the right 

anchor span. 
 

2.4 Tower top pre-uplift 
 

Under final dead load, a tower tends to undergo axial 

compression due to the downward compressive forces from 

the main cables. The amount of compression can be 

calculated as follows: 

t

t t

3 4

t t

(tan tan )
1

h
h h

H

E A

 
 = −

+
−

 
(51) 

where ht is the tower’s target height of the completed 

bridge; Et is the tower’s elastic modulus; and At is the cross-

sectional area of a tower column. 

During construction, the tower top pre-uplift, Δht, is 

normally set as the calculated amount of compression. 
 

 

3. Calculation of cable configuration in the unloaded 
state 
 

Unlike in calculation of cable configuration under final 

dead load, we need to consider different spans 

simultaneously when calculating cable configuration in the 

unloaded state and pre-offsets for cable saddles. This is 

because cable configuration over any span and relevant 

parameters are affected by adjacent span(s). Coupled 

equations are established using the conditions for 

geometrical compatibility at the nodes between adjacent 

spans, mechanical equilibrium conditions, and geometric 

boundary conditions. Then parameters in the system of 

equations are expressed as functions of unknown quantities. 

The last step is to solve for the unknown quantities by 

nonlinear programming. 
 

3.1 Unknown quantities 
 

The horizontal component of cable tension over each 

span, parameters of corresponding catenary equation, and 

positions of saddles and tangent points in the unloaded state 

differ from those under final dead load. For this reason, 

unknown quantities in the unloaded state fall into the 

following five groups: 
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(1) The horizontal components of cable tension over 

different spans: 
' ' ' ' '

, , , ,a L s L m s R a RH H H H H, , , , , where the 

subscripts a, s and m represent an anchor span, side span 

and main span, respectively; the subscript L and R represent 

the left and right spans, respectively; and the superscript ' 

indicates a parameter in the unloaded state. As 

H’
s,L=H’

m=H’
s,R, the three can be regarded as one unknown 

quantity. 

(2) Parameters of the catenary equations for different 

spans:
' ' ' ' '

, , , ,a L s L m s R a Ra a a a a, , , , . 

(3) Lengths of the orthogonal projection of catenary 

segments over different spans on the horizontal plan:
' ' ' ' '

, , , ,a L s L m s R a Rl l l l l, , , , . 

(4) Pre-offset distances for the tower saddles: Δm,L, Δm,R. 

(5) Pre-offset angles for the splay saddles: αs,L, αs,R. 

There are a total of 17 unknown quantities, and thus we 

need 17 equations to calculate them. 
 

3.2 Coupled equations 
 

Coupled equations can be derived from the conditions 

necessary for closed elevation difference and horizontal 

distance, conserved unstrained cable length, and balance of 

torques acting on each splay saddle. 

(1) For the elevation difference between the two endpoints 

of cable segment over each span to be closed, the following 

conditions must be satisfied: 

'

'

1 ,

'

2 ,

'

1 ,

'

2 ,

m m

s s L

s s R

a a L

a a R

h h

h h

h h

h h

h h

 = 

 = 

 = 

 = 

 = 

 
(52-1) 

where Δhm is the elevation difference between the circle 

centers of the left and right tower saddles, C1 and C2 (Figs. 

3 and 4), under final dead load ; Δh'
m is Δhm expressed in 

terms of unknown parameters in the unloaded state; Δhs1 is 

the elevation difference between points I1 and C1 (Fig. 7) 

under final dead load, which is a known parameter; Δh'
s,L is 

Δhs1 expressed in terms of unknown parameters in the 

unloaded state; Δha1 is the elevation difference between 

points A1 and I1 (Fig. 8) under final dead load, a known 

quantity; Δh'
a,L is the elevation difference between points A1 

and I1 (Fig. 14) in the unloaded state and can be expressed 

as a function of unknown parameters in the unloaded state; 

and the subscripts “1” and “2” indicate a left span and a 

right span, respectively. 

(2) For the horizontal distance between the ends of each 

span to be closed, the following conditions must be 

satisfied: 

'

'

1 ,

'

2 ,

'

1 ,

'

2 ,

m m

s s L

s s R

a a L

a a R

L L

L L

L L

L L

L L

=

=

=

=

=

 (52-2) 

where Lm is the horizontal distance between the centerlines 

of the left and right towers under final dead load (Fig. 1), a 

known quantity; L'
m is the horizontal distance between the 

two towers’ centerlines in the unloaded state and can be 

expressed as a function of the aforementioned unknown 

parameters in the unloaded state; Ls1 and L'
s,L are the 

horizontal distances between point I1 (Figs. 7 and 12) and 

the left tower’s centerline under final dead load and in the 

unloaded state, respectively; and La1 and L'
a,L denote the 

horizontal distances between points A1 and I1 (Figs. 8 and 

14) under final dead load and in the unloaded state, 

respectively. 

(3) For the unstrained cable length over each span to be 

conserved, the following conditions must be satisfied: 

'

'

, ,

'

, ,

'

, ,

'

, ,

m m

s L s L

s R s R

a L a L

a R a R

S S

S S

S S

S S

S S

=

=

=

=

=

 (52-3) 

where S and S' represent the unstrained cable lengths over a 

span under final dead load and in the unloaded state, 

respectively. 

(4) The conditions necessary for the sum of torques about 

each splay saddle’s center of rotation to be zero are as 

follows: 

1

2

'

I

'

I

0

0

M

M

=

=




 (52-4) 

where I2 is the right splay saddle’s center of rotation. 

Next, the parameters in the equations will be expressed 

in terms of the aforementioned 17 unknown quantities. 

 
3.2.1 Main span 
Expressions are built from relevant unknown quantities 

to describe the following three parameters: '

mh , the 

elevation difference between the circle centers of the left 

and right tower saddles, C1 and C2, for the completed 

bridge; '

mL , the distance between the left and right towers’ 

centerlines; and '

mS , the unstrained cable length over the 

main span. 

(1) '

mh can be expressed as: 

1 2 1 2

' ' ' '

C C C C

' ' '

, 1 4 , 2 5 ,cos cos

m

t L c m t R

h h h h

h R h R h 

 =  = −

= − − + + +
 (53) 

where Δht,L and Δht,R are the pre-uplifts for the left and right 

tower tops, respectively; and Δh'
c,m denotes the elevation 

difference between the catenary segment’s two endpoints, 
'

1F  and '

2F  , in the unloaded state (Figs. 10 and 11), which 

is given by 

'

' ' ' ' '

, '
( ) (0) cosh coshm

c m m m m m

m

l
h y l y c a a

c

  
 = − = + −  

   
 (54) 
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where '

ml  is the length of the orthogonal projection of the 

catenary segment ' '

1 2F F  on the horizontal plane in the 

unloaded state; ' ' '/m mc H q= − , in which '

mH  denotes the 

horizontal component of cable tension in the unloaded state 

(kN) and q' denotes the free cable’s weight per unit length 

(kN/m). 

(2) '

mL can be described by 

' ' '

, 1 1 1 4

'

2 5 , 2 2

sin sin

sin sin

m m L m

m R

L R R l

R R

 

 

= − − + +

+ − −
 (55) 

where Δm,L and Δm,R are the pre-offsets for the left and right 

tower saddles, respectively (Figs. 10 and 11). 

(3) '

mS can be described by 

' ' ' '
1 1 2 2

' ' ' '

, D F F Dm c mS S S S= + +  (56) 

where 
'

,c mS , ' '
1 1

'

D F
S , and ' '

2 2

'

F D
S  are the unstrained lengths of 

the catenary segment ' '

1 2F F , the arc segment ' '

1 1D F (Fig. 10), 

and the arc segment ' '

2 2F D  (Fig. 11), respectively. They are 

given by the following equations 

'

' ' ' '

, '

' ' '

' ' '

'

sinh - sinh

sinh 2 - sinh 2
2 2

m

c m m m m

m

m m m

m m m

m

l
S c a a

c

H c l
l a a

EA c

  
= +  

   

    
− + +   

       

(57-1) 

 

 

' '
1 1

'

' 1 4 1

' 'D F

( )

cosh
1 m m

R
S

H a

EA

 −
=

+
 

(57-2) 

' '
2 2

'

' 2 5 2

' 'F D

( )

cosh
1 m m

R
S

H a

EA

 −
=

+
 

(57-3) 

 
3.2.2 Left side span 
In this subsection, three expressions are created from 

relevant unknown quantities to describe the following three 

parameters: 
'

,s Lh , the elevation difference between points 

I1 and C1; 
'

,s LL , the horizontal distance between point I1 

and the left tower’s centerline (Fig. 12); and 
'

,s LS , the 

unstrained cable length over the left side span.  

(1)
'

,s Lh can be expressed by 

1 1 1 1

' ' '

, C I C I K, I, 1 ,

' ' '

4, 2 , , , 1 3

( )cos( )

cos cos

s L L L s L

L c s L t L

h h h h l l

r h h R

 

 

 =  = − = − − +

+ + − −
 (58) 

where lK,L and lI,L are the distances from the left splay 

saddle’s IP point to its circle center, K1, and center of 

rotation, I1, respectively; αs,L is the preset offset angle for 

the left splay saddle, i.e. the angle between the vertical line 

and segment Z1K1, which was a vertical segment before the 

left splay saddle rotates; and Δh’
c,s,L is the elevation 

difference between the two endpoints of the catenary  

 
Fig. 10 Left tower saddle in the unloaded state Fig. 11 Right tower saddle in the unloaded state 

 
Fig. 12 Cable configuration in the unloaded state over the left side span 
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segment over the left side span, defined by 

'

,' ' ' ' '

, , , , , ,'

,

( ) (0) cosh cosh
s L

c s L s L s L s L s L

s L

l
h y l y c a a

c

  
 = − = + −   

   

. 

(2)
'

,s LL can be formulated as 

' '

, K, I, 1 , 4, 2

' '

, 1 3 1 ,

( )sin( ) sin

(sin sin )

s L L L s L L

s L m L

L l l r

l R

  

 

= − + −

+ + + +
 (59) 

where 
'

,s Ll  is the length of the orthogonal projection of the 
catenary segment over the left side span on the horizontal 
plane. 

(3) 
'

,s LS can be expressed as 

' ' '
3 1 1 1

' ' ' '

, , , D Q E Ds L c s LS S S S= + +  (60) 

where 
'

, ,c s LS , '
3 1

'

D Q
S , and ' '

1 1

'

E D
S  are the unstrained cable 

lengths of '

1 1Q E  (the catenary segment over the left side 

span, as shown in Fig. 12), '

3 1D Q  (the arc segment on the 

splay saddle), and ' '

1 1E D  (the arc segment on the tower 

saddle), respectively. They can be expressed in the 

following forms: 

 

 

'

,' ' ' '

, , , , ,'

,

' ' '

, , ,' ' '

, , ,'

,

sinh sinh

sinh 2 sinh 2
2 2

s L

c s L s L s L s L

s L

s L s L s L

s L s L s L

s L

l
S c a a

c

H c l
l a a

EA c

  
= + −   

   

    
− + + −    

     

 (61-1) 

'
3 1

'

3, 1 1 4, 4, 1 4, , 2'

' ' ' 'D Q
, , , ,

( ) [( ) ]

cosh( / )
1

L L L L s L

s L s L s L s L

r r
S

H l c a

EA

      − − + + + −
=

+
+

 
(61-2) 

' '
1 1

'

' 1 3 1

' 'E D
, ,

( )

cosh
1

s L s L

R
S

H a

EA

 +
=

+

 
(61-3) 

 

3.2.3 Right side span 
Three expressions are created from relevant unknown 

quantities to describe the following three parameters:
'

,s Rh , 

the elevation difference between points C2 and I2; 
'

,l RL , the 

horizontal distance between point I2 and the right tower’s 

centerline (Fig. 13); and 
'

,s RS , the unstrained cable length 

over the right side span. 

 

Fig. 13 Cable configuration in the unloaded state over the right side span 

 
Fig. 14 Cable configuration in the unloaded state over the left anchor span 
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(1)
'

,s Rh can be expressed as 

2 2 2 2

' ' '

, C I C I K, I, 2 ,

' ' '

4, 7 , , 2 6 ,

( )cos( )

cos cos

s R R R s R

R c s R t R

h h h h l l

r h R h

 

 

 =  = − = − − +

+ + − −
 (62) 

where αs,R is the preset offset angle for the right splay 

saddle, i.e. the angle between the vertical line and segment 

Z2K2, which was a vertical segment before the right splay 

saddle rotates; and Δh'
c,s,R is the elevation difference 

between the two endpoints of the catenary segment over the 

right side span,
'

,' ' ' '

, , , , ,'

,

cosh cosh
s R

c s R s R s R s R

s R

l
h c a a

c

  
 = + −   

   

. 

(2) 
'

,l RL can be formulated as 

' '

, K, I, 2 , 4, 7

' '

, 2 6 2 ,

( )sin( ) sin

(sin sin )

l R R R s R R

l R m R

L l l r

l R

  

 

= − + −

+ + + +
 (63) 

(3) 
'

,sl RS can be expressed as 

' ' '
2 2 2 4

' ' ' '

, , , D Qsl R c s R E D
S S S S= + +  (64) 

where 
'

, ,c s RS , ' '
2 2

'

D E
S , and '

2 4

'

Q D
S  are the unstrained lengths 

of catenary segment '

2 2E Q , the arc segment on the tower 

saddle, ' '

2 2D E , and the arc segment on the splay saddle, 

'

2 4Q D , respectively. They are given by 

'

,' ' ' '

, , , , ,'

,

' ' '

, , ,' ' '

, , ,'

,

sinh sinh

sinh 2 sinh 2
2 2

s R

c s R s R s R s R

s R

s R s R s R

s R s R s R

s R

l
S c a a

c

H c l
l a a

EA c

  
= + −   

   

    
− + + −    

     

 
(65-1) 

' '
2 2

'

' 2 6 2

' 'D
, ,

( )

cosh
1

E
s R s R

R
S

H a

EA

 +
=

+

 
(65-2) 

'
2 4

'

3, 2 2 4, 4, 2 4, , 7'

' ' ' 'Q
, , , ,

( ) [( ) ]

cosh( / )
1

R R R R s R

D
s R s R s R s R

r r
S

H l c a

EA

      − − + + + −
=

+
+

 
(65-3) 

 

3.2.4 Left anchor span 
Here we provide four expressions created from relevant 

unknown quantities to describe the following parameters:  
'

,a Lh , the elevation difference between anchor point A1 and 

the splay saddle’s center of rotation, I1; 
'

,a LL , the horizontal 

distance between points A1 and I1; 
'

,a LS , the unstrained 

cable length over the anchor span; and 
1

'

IM , the sum of 

torques about the splay saddle’s center of rotation. 

(1) 
'

,a Lh can be described by the equation below: 

1 1 1 1

' ' '

, I A I A , ,

' ' ' '

1, 2, 3, 4, K, I, 1 ,( ) ( )cos( )

a L c a L

L L L L L L s L

h h h h h

h h h h l l  

 =  = − =  −

 + + + + − +
 (66) 

where Δh'
c,a,L represents the elevation difference between 

the two endpoints of the catenary segment over the left 

anchor span in the unloaded state, 
'

,' ' ' '

, , , , ,'

,

cosh cosh
a L

c a L a L a L a L

a L

l
h c a a

c

  
 = + −   

   

, in which '

,a Ll  

is the length of the orthogonal projection of this catenary 

segment on the horizontal plane; 
'

1,Lh  is the elevation 

difference between tangent point J1 and the center of the 

splay saddle’s first circular arc (Fig. 14); 
'

2,Lh  is the 

elevation difference between the centers of the first and 

second circular arcs of the splay saddle;
'

3,Lh  is the 

elevation difference between the centers of the second and 

third circular arcs of the splay saddle; and 
'

4,Lh  is the 

elevation difference between the center of the third circular 

arc and the fourth arc’s center, K1. They are given by 

' '

1, 1, 1cosL Lh r  =  (67-1) 

'

2, 2, 1, 2, 3, 4, 1 ,( - )cos( )L L L L L L s Lh r r      = + + + +  (67-2) 

'

3, 3, 2, 3, 4, 1 ,( )cos( )L L L L L s Lh r r     = − + + +  (67-3) 

'

4, 4, 3, 4, 1 ,( )cos( )L L L L s Lh r r    = − + +

 

(67-4) 

(2) 
'

,a LL  can be written as 

' ' ' ' ' '

, , 1, 2, 3, 4,

K, I, 1 ,

( )

( )sin( )

a L a L L L L L

L L s L

L l l l l l

l l  

= +  + + +

− − +
 (68) 

where 
'

1,Ll  is the horizontal distance between tangent 

point and the center of the splay saddle’s first circular arc; 
'

2,Ll  is the horizontal distance between the centers of the 

first and second circular arcs of the splay saddle; 
'

3,Ll  is 

the horizontal distance between the centers of the second 

and third circular arcs; and 
'

4,Ll  is the horizontal distance 

between the third circular arc’s center and the fourth 

circular arc’s center K1. They can be expressed in the 

following forms: 

' '

1, 1, 1sinL Ll r  =  (69-1) 

'

2, 2, 1, 2, 3, 4, 1 ,( )sin( )L L L L L L s Ll r r      = − + + + +  (69-2) 

'

3, 3, 2, 3, 4, 1 ,( )sin( )L L L L L s Ll r r     = − + + +  (69-3) 

'

4, 4, 3, 4, 1 ,( )sin( )L L L L s Ll r r    = − + +

 

(69-4) 

(3) 
'

,a LS can be expressed as 

'
1 3

' ' '

, , , J Da L c a LS S S= +  (70) 

where 
'

, ,c a LS  and '
1 3

'

J D
S  are the unstrained cable lengths of  
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Fig. 15 Balance of torques acting on the left splay saddle 

in the unloaded state 
 
 

the catenary segment A1J1 and the arc segment '

1 3J D . They 

are given by 

'

,' ' ' '

, , , , ,'

,

' ' '

, , ,' ' '

, , ,'

,

sinh sinh

sinh 2 sinh 2
2 2

a L

c a L a L al L a L

a L

a L a L a L

a L a L a L

a L

l
S c a a

c

H c l
l a a

EA c

  
= + −   

   

    
− + + −    

     

 
(71-1) 

'
1 3

'

1, 1 2, 3, 4, 1 , 2, 2, 3, 3, 1 1 4,'

' 'J D
, ,

[ ( )] [ ( )]

cosh
1

L L L L s L L L L L L

a L a L

r r r
S

H a

EA

          − + + + + + + − − −
=

+

 

(71-2) 

(4) In the unloaded state, the splay saddle over the left 

anchor span deviates by a certain angle, and the horizontal 

components of cable tension at the two sides of the splay 

saddle tend to change. Therefore, the sum of torques acting 

on the splay saddle needs to be recalculated (Fig. 15): 

1

' ' ' ' '

I , 1, , 2,

' ' ' ' '

, 1, , 2, ,( )

s L s L s L s L

a L a L a L a L L g L

M H e V e

H e V e G e

=  + 

−  +  + 


 (72) 

where 
'

1,s Le  denotes the eccentricity of the horizontal 

component of cable tension over the left side span, 
' '

1, 4, 2 K, I, 1 ,cos ( )cos( )s L L L L s Le r l l  = − − + ; 
'

,s LV represents 

the vertical component of cable tension over the left side 

span at tangent point Q1,
' ' '

, , 2tans L s LV H = ; 
'

2,s Le  is the 

eccentricity of 
'

,s LV ,
' '

2, 4, 2 K, I, 1 ,sin ( )sin( )s L L L L s Le r l l  = − − + ; 

'

1,a Le is the eccentricity of the horizontal component of cable 

tension over the left anchor span, 
' ' ' ' '

1, 1, 2, 3, 4, K, I, 1 ,( )cos( )a L L L L L L L s Le h h h h l l  =  + + + − − +

; 
'

,a LV  is the vertical component of cable tension over the 

left anchor span at tangent point J1, 
' ' '

, , 1tana L a LV H = ; 

'

2,a Le  is the eccentricity of 
'

,a LV , 

' ' ' ' '

2, 1, 2, 3, 4, K, I, 1 ,( )sin( )a L L L L L L L s Le l l l l l l  =  + + + − − + ; 

GL is the force of gravity exerted on the left splay saddle; 

and 
'

,g Le is the eccentricity of GL, '

, , 1 ,sin( )g L g L s Le l  = + . 

 
Fig. 16 Cable configuration in the unloaded state over the 

right anchor span 

 

 
Fig. 17 Balance of torques acting on the right splay 

saddle in the unloaded state 
 

 

3.2.5 Right anchor span 
Expressions are constructed from relevant unknown 

quantities to describe the following four parameters: 
'

,a Rh , 

the elevation difference between the right splay saddle’s 

center of rotation, I2, and the right anchor point, A2; 
'

,a RL , 

the horizontal distance between points I2 and A2; 
'

,a RS , the 

unstrained cable length over right anchor span; and
2

'

IM , 

the sum of torques about the right splay saddle’s center of 

rotation. 

(1) 
'

,a Rh can be expressed in the following form: 

2 2 2 2

' ' '

, I A I A , ,

' ' ' '

1, 2, 3, 4, K, I, 2 ,( ) ( )cos( )

a R c a R

R R R R R R s R

h h h h h

h h h h l l  

 =  = − = 

−  + + + + − +

 
(73) 

where Δh'
c,a,L is the elevation difference between the two 

endpoints of the catenary segment over the right anchor 

span in the unloaded state, 
'

,' ' ' '

, , , , ,'

,

cosh cosh
a R

c a R a R a R a R

a R

l
h c a a

c

  
 = + −   

   

; lI,R is the  
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Fig. 19 The completed Jindong bridge under final dead load 

 

 

distance from the right splay saddle’s IP point to its center 

of rotation, I2; 
'

1,Rh  is the elevation difference between 

tangent point J2 and the center of the first circular arc of the 

right splay saddle; 
'

2,Rh  is the elevation difference 

between the centers of the first and second circular arcs of 

the splay saddle; 
'

3,Rh  is the elevation difference between 

the centers of the second and third circular arcs; and 
'

4,Rh  

is the elevation difference between the center of the third 

circular arc and the fourth circular arc’s center, K2. They 

can be written in the following forms: 

' '

1, 1, 8cosR Rh r  =  (74-1) 

'

2, 2, 1, 2, 3, 4, 2 ,( )cos( )R R R R R R s Rh r r      = − + + + +  (74-2) 

'

3, 3, 2, 3, 4, 2 ,( )cos( )R R R R R s Rh r r     = − + + +  (74-3) 

'

4, 4, 3, 4, 2 ,( )cos( )R R R R s Rh r r    = − + +

 

(74-4) 

(2) 
'

,a RL can be described by 

' ' ' ' ' '

, , 1, 2, 3, 4,

K, I, 2 ,

( )

( )sin( )

l R l R R R R R

R R s R

L l l l l l

l l  

= +  + + +

− − +
 (75) 

where 
'

1,Rl  is the horizontal distance between tangent 

point J2 and the center of the splay saddle’s first circular arc 

(Fig. 16); 
'

2,Rl  is the horizontal distance between the 

centers of the first and second circular arcs of the splay 

saddle; 
'

3,Rl  is the horizontal distance between the centers 

of the second and third circular arcs; and 
'

4,Rl  denotes the  

 

 

Fig. 20 The unloaded state of the Jindong bridge 
 

 

Fig. 21 A splay saddle of the Jindong bridge 
 

 

horizontal distance between center of the third circular arc 

and the fourth circular arc’s center, K2. They are given by 

' '

1, 1, 8sinR Rl r  =  (76-1) 

'

2, 2, 1, 2, 3, 4, 2 ,( )sin( )R R R R R R s Rl r r      = − + + + +  (76-2) 

'

3, 3, 2, 3, 4, ,( )sin( )R R R R R R s Rl r r     = − + + +  (76-3) 

'

4, 4, 3, 4, 2 ,( )sin( )R R R R s Rl r r    = − + +

 

(76-4) 

(3) 
'

,a RS can be expressed as 

'
4 2

' ' '

, , , D Ja R c a RS S S= +  (77) 

 

Fig. 18 Overall layout of the Jindong Bridge (Unit: m) 
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where 
'

, ,c a RS  and '
4 2

'

D J
S are the unstrained cable lengths of 

the catenary segment over the right anchor span, J2A2, and 

the arc segment on the right splay saddle, '

4 2D J , 

respectively. They are given by 

'

,' ' ' '

, , , , ,'

,

' ' '

, , ,' ' '

, , ,'

,

sinh sinh

sinh 2 sinh 2
2 2

a R

c a R a R a R a R

a R

a R a R a R

a R a R a R

a R

l
S c a a

c

H c l
l a a

EA c

  
= + −   

   

    
− + + −    

     

 
(78-1) 

'
4 2

'

1, 8 2, 3, 4, 2 , 2, 2, 3, 3, 2 2 4,'

' 'D J
, ,

[ ( )] [ ( )]

cosh
1

R R R R s R R R R R R

a R a R

r r r
S

H a

EA

          − + + + + + + − − −
=

+

 

(78-2) 

(4) According to Fig. 17, 
2

'

IM can be described by the 

equation below 

2

' ' ' ' '

I , 1, , 2,

' ' ' ' '

, 1, , 2, ,( )

s R s R s R s R

a R a R a R a R R g R

M H e V e

H e V e G e

=  + 

−  +  + 


 (79) 

where 
'

1,s Re  denotes the eccentricity of the horizontal 

component of cable tension over the left side span, 
' '

1, 4, 7 K, I, 2 ,cos ( )cos( )s R R R R s Re r l l  = − − + ; 
'

,s RV  denotes 

the vertical component of cable tension over the left side 

span at tangent point Q2, 
' ' '

, , 7tans R s RV H = ; 
'

2,s Re  

represents the eccentricity of 
'

,s RV , 

' '

2, 4, 7 K, I, 2 ,sin ( )sin( )s R R R R s Re r l l  = − − + ; 
'

1,a Re  is 

the eccentricity of the horizontal component of cable 

tension over the left anchor span, 
' ' ' ' '

1, 1, 2, 3, 4, K, I, 2 ,( )cos( )a R R R R R R R s Re h h h h l l  =  + + + − − +

; 
'

,a RV  is the vertical component of cable tension over the 

left anchor span at tangent point J2, 
' ' '

, , 8tana R a RV H = ; 

'

2,a Re  is the eccentricity of 
'

,a RV , 

' ' ' ' '

2, 1, 2, 3, 4, K, I, 2 ,( )sin( )a R R R R R R R s Re l l l l l l  =  + + + − − +

; GR is the force of gravity acting on the right splay saddle; 

and 
'

,g Re  is the eccentricity of GR, 

'

, , 2 ,sin( )g R g R s Re l  =  + . 

 

3.3 Equation solving 
 

Substituting above expressions for the parameters built 

from the unknown quantities into Eq. (52) gives 17 coupled 

equations. Rearranging each equation to the left-hand side, 

we can get 17 functions of the form fi( )=0. The following 

objective function is then constructed by using the 

aforementioned 17 unknown quantities as the variables: 

17
2

1

min i

i

f
=

 
 
 
  (80) 

Solving this equation will give the values of the 17 

known quantities in the unloaded state. Then the cable 

configuration in the unloaded state and pre-offsets for the 

saddles can be calculated from the values obtained. 

4. Example analysis 
 

4.1 Profile of the Jindong bridge 
 

Located in the Kunming City, Yunnan Province, China, 
the Jindong Bridge is currently the suspension bridge with 
the longest span over the Jinsha River. As shown in Fig. 18, 
the bridge is spanned as 240m+730m+120m. The sag to 
span ratio of the main cable is 1/10, and the deck width is 
20m. The center-to-center spacing between the upstream 
and downstream main cables is 17.5m. The left and right 
ends of the cable are anchored by gravity-type and tunnel-
type anchorages, respectively. The left tower is 126m high, 
and the right is 124m high, both with a portal frame 
structure. 

Prefabricated parallel wire strands (PPWS) are adopted 
for the two cables. Each strand consists of 91Φ5.2 high-
strength galvanized steel wires and is regular hexagon in 
cross section. Each cable is made of 91 strands and thus has 
8281 wires in total. Each main cable is connected with 71 
hangers. Each hanger is composed of 109Φ5.0 high-
strength galvanized steel wires. 

The steel truss girder consists of the main truss, top and 
bottom bracings, and transverse trusses. The main truss is a 
Warren truss with 5m height, 17.5m width, and 5.0m panel 
length, and it has a transverse truss in each panel. The 
bridge floor system combines longitudinal I-beams and 
concrete slab decks. They are simply supported by the top 
chords of the cross members in the main truss. The slab 
decks and longitudinal beams are fastened by shear pins. 

The bridge’s completed and unloaded states are shown 
in Figs. 19 and 20, respectively. A splay saddle is shown in 
Fig. 21. 

 

4.2 Cable configuration under final dead load 
 

Tables 1 and 2 summarize the known parameters needed 

for calculating the cable geometry of the completed bridge. 

Elevations of hanger anchor points on the deck, hi,deck, and 

axial tensile forces at the hangers’ lower ends, P0,i, are also 

known parameters, as listed in Table 5. 
 

4.2.1 Main span 
The values of the unknown quantities, H, a1, and ln+1 

were determined by solving Eq. (15). Then other unknown 
parameters can be determined. Results of the main span for 
the completed bridge are listed in Table 3. Geometric 
parameters of all catenary cable segments are shown in 
Table 4. Calculated hanger parameters are listed in Table 5. 
Equation numbers, based on which the unknown parameters 
are calculated, are also listed in these tables. 
 

4.2.2 Side spans 
The values of the unknown quantities, as and ls were 

determined by solving Eq. (33). Then other unknown 
parameters can be determined, as listed in Table 6. 

 

4.2.3 Anchor spans 
The values of the unknown quantities, aa , la, and Ha 

were determined by solving Eq. (47). Then other unknown 
parameters can be determined, as listed in Table 7. 
 

4.2.4 Tower top pre-uplift 
Based on Eq. (51), the pre-uplifts, Δht, of the left and 

right tower tops were determined as 0.031m and 0.023m, 
respectively. 
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Table 1 Known parameters of the main span 

Basic parameters of the completed bridge Symbol Unit Value 

Horizontal distance between the centerlines of the left and right towers, i.e. the main span length  Lm m 730 

Main cable  

Weight per unit length q kN/m 14.268 

Elastic modulus E GPa 197.03 

Cross-sectional area A m2 0.1759 

Number of the cable segments between the left tangent point, F1,  

and the mid-span point, Om 
m / 36 

Elevation of point Om in the geodetic system Om
h  m 856 

Hanger 

Number n / 71 

Spacing l2~l71 m 10 

Horizontal distance between left tower’s centerline and the first hanger 
1 1D Ol  m 15 

Horizontal distance between the rightmost hanger and right tower’s centerline  
71 2O Dl

 
m 15 

Elastic modulus Eh GPa 199 

Cross-sectional area Ai m2 0.00214 

Weight per unit length wi kN/m 0.1835 

Left tower saddle 

Elevation of the circle center, C1, in the geodetic system 
1Ch

 
m 923.21 

Angle between vertical segment B1C1 and segment C1D1 γ1 ° 2.365 

Radius of the arc-shaped top R1 m 5.5 

Right tower saddle 

Elevation of the circle center, C2, in the geodetic system 
2Ch

 
m 923.09 

Angle between vertical segment B2C2 and segment C2D2 γ2 ° -0.635* 

Radius of the arc-shaped top R2 m 5.5 

*Note: the minus sign indicates that the line segment from point C2 to point D2 is bankward rather than riverward. 

 

Table 2 Known parameters of the side and anchor spans 

Basic parameters of the completed bridge Symbol Unit 
Value 

Left Right 

Side span length Ls m 240 120 

Anchor span length La m 16.38 15.32 

Elevation of the anchor point Ai in the geodetic system (i=1 and i=2 denote left and right, 

respectively) 
Ai

h
 

m 848.53 867.14 

Splay saddle 

Elevation of the circle center, K, in the geodetic system hK m 854.68 874.96 

Radius of the arc-shaped top 

First circular arc r1 m 1.781 1.781 

Second circular arc r2 m 3.081 3.081 

Third circular arc r3 m 4.781 4.781 

Fourth circular arc r4 m 5.781 5.781 

Central angle 

First circular arc θ1 ° 19.78 15.6 

Second circular arc θ2 ° 6 6 

Third circular arc θ3 ° 6 6 

Fourth circular arc θ4 ° 10 10 

Angle between the vertical line and the segment connecting the IP point, center of 

gravity, center of rotation, I1, and the fourth circular arc’s circle center, K 
ω1 ° 25.01 30.86 

Angle between the vertical line and the segment connecting the outmost endpoint of 

the fourth circular arc and its circle center, K 
φ1 ° 15.01 20.86 

Distance between the IP point and the center of rotation, I1 lI m 3.05 3.05 

Distance from the IP point to the circle center, K, of the fourth circular arc lK m 5.875 5.866 

Self-weight G kN 406.262 384.792 

Distance between center of gravity and center of rotation, I1 lg m 1.879 1.879 

Tower 

Target height of the completed bridge ht m 126 124 

Elastic modulus Et GPa 32.5 32.5 

Cross-sectional area of a tower column At m2 8.260 12.707 
 

619



 

Wen-ming Zhang, Gen-min Tian, Chao-yu Yang and Zhao Liu 

 

Table 3 Results of the main span for the completed bridge 

Parameter Symbol Unit Value Eq. 

Horizontal component of the cable tension H kN 94239.75 (15) 

A parameter of the catenary equation c m -6604.97 c=-H/q 

Elevation of the left tangent point, F1, in the geodetic system 
1Fh

 
m 928.327 (5) 

Elevation of the right tangent point, F2, in the geodetic system 
2Fh

 
m 928.207 (7) 

Elevation difference between points F1 and Om 
1OF m

h  m 72.327 (6) 

Horizontal distance between the right tangent point, F2, and the right tower’s centerline 
2 2F Dl

 
m 2.077 (9) 

Angle between the vertical segment B1C1 and the segment connecting point F1 and the 

circle center, C1 
β4 ° 21.506 4 1tan sinh a =  

Angle between the vertical segment B2C2 and the segment connecting point F2 and the 

circle center, C2 
β5 ° 21.503 

5

1
1

tan

sinh n
n

l
a

c



+
+

=

 
− + 

 

 

Unstrained cable length of the arc segment D1F1 on the left tower saddle 
1 1D FS  m 1.832 (21) 

Total unstrained cable length of catenary segments  Sc,m m 742.828 (19) 

Unstrained cable length of the arc segment F2D2 on the right tower saddle 
2 2F DS  m 2.119 (22) 

Unstrained cable length over the main span Sm m 746.779 (23) 

Table 4 Geometric parameters of all catenary cable segments in the main span 

No. 

ai bi (m) li (m) Δhi (m) Sc,i (m) 

No. 

ai bi (m) li (m) Δhi (m) Sc,i (m) 

a1:Eq.(15) 

a2-a72: 

Eq.(12) 

bi=-ccoshai 
l1: 

Eq(13) 
Eq.(4) Eq.(20) Eq.(12) bi=-ccoshai 

l72:  

Eq(15) 
Eq.(4) Eq.(20) 

1 0.38449 6122.742 13.211 5.191 14.153 37 -0.00469 6604.900 10 -0.055 9.973 

2 0.37172 6153.875 10 3.795 10.665 38 -0.01561 6604.168 10 -0.164 9.974 

3 0.36113 6178.940 10 3.682 10.626 39 -0.02653 6602.648 10 -0.273 9.977 

4 0.35070 6202.937 10 3.571 10.588 40 -0.03745 6600.342 10 -0.382 9.980 

5 0.34024 6226.345 10 3.460 10.551 41 -0.04836 6597.251 10 -0.491 9.985 

6 0.32973 6249.154 10 3.349 10.516 42 -0.05927 6593.375 10 -0.601 9.991 

7 0.31920 6271.342 10 3.238 10.481 43 -0.07017 6588.717 10 -0.710 9.998 

8 0.30863 6292.885 10 3.128 10.448 44 -0.08107 6583.279 10 -0.819 10.006 

9 0.29805 6313.773 10 3.017 10.416 45 -0.09196 6577.063 10 -0.929 10.016 

10 0.28744 6333.993 10 2.906 10.384 46 -0.10285 6570.072 10 -1.038 10.026 

11 0.27681 6353.543 10 2.796 10.354 47 -0.11372 6562.309 10 -1.147 10.038 

12 0.26616 6372.407 10 2.685 10.325 48 -0.12459 6553.778 10 -1.257 10.051 

13 0.25548 6390.584 10 2.575 10.297 49 -0.13544 6544.482 10 -1.366 10.065 

14 0.24479 6408.062 10 2.465 10.270 50 -0.14629 6534.425 10 -1.476 10.081 

15 0.23408 6424.838 10 2.354 10.245 51 -0.15712 6523.612 10 -1.585 10.097 

16 0.22336 6440.903 10 2.244 10.220 52 -0.16794 6512.047 10 -1.695 10.115 

17 0.21261 6456.251 10 2.134 10.197 53 -0.17875 6499.737 10 -1.805 10.133 

18 0.20185 6470.875 10 2.025 10.175 54 -0.18954 6486.684 10 -1.914 10.153 

19 0.19107 6484.771 10 1.915 10.153 55 -0.20032 6472.897 10 -2.024 10.175 

20 0.18028 6497.930 10 1.805 10.133 56 -0.21108 6458.378 10 -2.134 10.197 

21 0.16947 6510.349 10 1.695 10.115 57 -0.22182 6443.137 10 -2.244 10.220 

22 0.15865 6522.021 10 1.586 10.097 58 -0.23255 6427.177 10 -2.354 10.245 

23 0.14782 6532.943 10 1.476 10.081 59 -0.24326 6410.507 10 -2.464 10.270 

24 0.13698 6543.108 10 1.366 10.065 60 -0.25395 6393.132 10 -2.575 10.297 

25 0.12612 6552.513 10 1.257 10.051 61 -0.26462 6375.061 10 -2.685 10.325 

26 0.11525 6561.153 10 1.147 10.038 62 -0.27528 6356.298 10 -2.796 10.354 

27 0.10438 6569.026 10 1.038 10.026 63 -0.28591 6336.855 10 -2.906 10.384 

28 0.09349 6576.126 10 0.929 10.016 64 -0.29652 6316.736 10 -3.017 10.415 

29 0.08260 6582.452 10 0.819 10.006 65 -0.30710 6295.951 10 -3.127 10.448 

30 0.07171 6588.000 10 0.710 9.998 66 -0.31767 6274.508 10 -3.238 10.481 

31 0.06080 6592.768 10 0.601 9.991 67 -0.32820 6252.423 10 -3.349 10.516 

32 0.04989 6596.754 10 0.492 9.985 68 -0.33871 6229.709 10 -3.460 10.551 

33 0.03898 6599.956 10 0.382 9.980 69 -0.34917 6206.403 10 -3.571 10.588 

34 0.02806 6602.372 10 0.273 9.977 70 -0.35960 6182.503 10 -3.682 10.625 

35 0.01715 6604.002 10 0.164 9.974 71 -0.37019 6157.541 10 -3.795 10.665 

36 0.00623 6604.845 10 0.055 9.973 72 -0.38247 6127.724 12.923 -5.078 13.844 
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Table 5 Known and calculated hanger parameters 

No. 
hi,d 

(m) 

Li,h (m) Si,h (m) P0,i  

(kN) 

Pi (kN) 
No. 

hi,d 

(m) 

Li,h (m) Si,h (m) P0,i  

(kN) 

Pi (kN) 

=hi,c-hi,d Eq.(16) Eq.(18) =hi,c-hi,d Eq.(16) Eq.(18) 

1 849.685  73.450 72.606 1074.5 1087.8 37 851.699  4.356 4.315 885.7 886.5 

2 849.799  69.542 68.870 900.7 913.3 38 851.694  4.525 4.482 885.6 886.4 

3 849.909  65.749 65.128 881.5 893.5 39 851.685  4.806 4.760 885.7 886.6 

4 850.016  62.071 61.483 882.9 894.2 40 851.674  5.199 5.150 885.6 886.5 

5 850.120  58.507 57.952 884.4 895.0 41 851.659  5.706 5.652 885.7 886.7 

6 850.220  55.057 54.535 885.3 895.3 42 851.641  6.324 6.265 885.6 886.7 

7 850.317  51.722 51.231 885.5 894.9 43 851.620  7.056 6.989 885.7 887.0 

8 850.411  48.500 48.040 885.7 894.5 44 851.595  7.899 7.825 885.6 887.0 

9 850.501  45.393 44.963 885.6 893.9 45 851.567  8.856 8.772 885.7 887.3 

10 850.588  42.399 41.998 885.8 893.5 46 851.536  9.925 9.831 885.6 887.4 

11 850.672  39.520 39.146 885.6 892.8 47 851.501  11.107 11.002 885.7 887.7 

12 850.753  36.754 36.406 885.7 892.4 48 851.463  12.401 12.284 885.6 887.9 

13 850.830  34.102 33.779 885.6 891.8 49 851.422  13.809 13.678 885.7 888.2 

14 850.904  31.563 31.265 885.7 891.4 50 851.378  15.329 15.184 885.6 888.4 

15 850.975  29.138 28.862 885.6 890.9 51 851.330  16.962 16.802 885.7 888.8 

16 851.042  26.826 26.572 885.7 890.6 52 851.279  18.708 18.531 885.6 889.0 

17 851.107  24.628 24.395 885.6 890.1 53 851.225  20.567 20.372 885.7 889.4 

18 851.167  22.542 22.329 885.7 889.8 54 851.167  22.539 22.326 885.6 889.7 

19 851.225  20.570 20.376 885.6 889.3 55 851.107  24.624 24.391 885.7 890.2 

20 851.279  18.711 18.534 885.7 889.1 56 851.042  26.823 26.569 885.6 890.5 

21 851.330  16.965 16.804 885.6 888.7 57 850.975  29.134 28.859 885.7 891.0 

22 851.378  15.332 15.187 885.7 888.5 58 850.904  31.559 31.261 885.6 891.3 

23 851.422  13.811 13.681 885.6 888.1 59 850.830  34.098 33.775 885.7 891.9 

24 851.463  12.404 12.286 885.7 888.0 60 850.753  36.750 36.402 885.6 892.3 

25 851.501  11.109 11.004 885.6 887.6 61 850.672  39.515 39.141 885.8 893.0 

26 851.536  9.927 9.833 885.7 887.5 62 850.588  42.395 41.993 885.6 893.3 

27 851.567  8.858 8.774 885.6 887.2 63 850.501  45.388 44.958 885.7 893.9 

28 851.595  7.901 7.826 885.7 887.1 64 850.411  48.495 48.036 885.6 894.4 

29 851.620  7.057 6.990 885.6 886.9 65 850.317  51.716 51.226 885.6 895.0 

30 851.641  6.325 6.266 885.7 886.8 66 850.220  55.052 54.530 885.2 895.2 

31 851.659  5.706 5.653 885.6 886.6 67 850.120  58.501 57.947 884.6 895.2 

32 851.674  5.200 5.151 885.7 886.6 68 850.016  62.065 61.478 882.8 894.1 

33 851.685  4.806 4.761 885.6 886.5 69 849.909  65.743 65.122 881.6 893.5 

34 851.694  4.525 4.482 885.7 886.5 70 849.799  69.535 68.864 900.6 913.2 

35 851.699  4.356 4.315 885.7 886.5 71 849.685  73.444 72.600 1074.6 1087.9 

36 851.700  4.300 4.259 885.5 886.3       
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Table 6 Results of side spans for the completed bridge 

Parameter Symbol Unit 
Value 

Eq. 
Left Right 

Horizontal component of the cable tension H kN 94239.75 Table 3 

Parameters of the catenary equation 

as / 0.30170 0.40643 (33) 

bs m 6907.88 7146.12 bs=-ccoshas 

c m -6604.97 Table 3 

Length of the orthogonal projection of the catenary segment on the horizontal plane ls m 237.180 117.072 (33) 

Elevation of tangent point E1 on the tower saddle 
1Eh  m 928.469 928.165 (28) 

Elevation of tangent point Q on the splay saddle hQ m 860.258 880.387 (29) 

Angle between vertical line and the segment QK β2 ° 15.052 22.670 

2tan

sinh s
s

l
a

c



 
= + 

 

 

Angle between the vertical segment B1C1 and the segment connecting tangent point E1 to circle 

center C1 
β3 ° 17.031 21.730 3tan sinh sa =  

Horizontal distance between the tangent point E1 and point B1 Δ1 m 1.611 2.120 Δ1=R1sinβ3 

Horizontal distance between points B1 and D1 Δ2 m 0.227 -0.061 Δ2=R1sinγ1 

Horizontal distance between the tangent point on the splay saddle, Q, and circle center K Δ3 m 1.501 2.140 Δ3=r4sinβ2 

Horizontal distance between the IP point and circle center, K, of the splay saddle Δ4 m 2.484 3.009 Δ4=lKsinω1 

Unstrained cable length of the arc segment D3Q on the splay saddle 
3D QS  m 1.002 0.918 (35) 

Unstrained cable length of the catenary segment QE1 Sc,s m 246.107 126.076 (34) 

Unstrained cable length of the arc segment E1D1 on the tower saddle 
1 1E DS  m 1.857 2.109 (36) 

Total unstrained cable length over the side span Ss m 248.965 129.104 (37) 

Table 7 Results of anchor spans for the completed bridge 

Parameter Symbol Unit 
Value 

Eq. 
Left Right 

Horizontal component of the cable tension Ha kN 80394.20 78101.52 (47) 

Parameters of the catenary equation 

aa / 0.65259 0.76218 (47) 

ba m 6877.59 7142.33 ba=-cacoshaa 

ca m -5634.58 -5473.89 ca=-Ha /q 

Length of the orthogonal projection of the catenary segment on the horizontal plane la m 15.765 14.769 (47) 

Elevation difference between the tangent point J and the anchor point Ai (i=1 and i=2 denote 

left and right, respectively) 
JAi

h  m 11.007 12.353 (43) 

Angle between the vertical line and the segment connecting tangent point J and the center of 

the first circular arc 
β1 ° 34.989 39.968 1tan sinh aa =  

Elevation of tangent point J on the splay saddle hJ m 859.536 879.500 (42) 

Unstrained cable length of the catenary segment Sc,a m 19.173 19.198 (48) 

Unstrained cable length of the arc segment JD3 on the splay saddle 
3JDS  m 0.758 0.731 (49) 

Total unstrained cable length over the anchor span Sa m 19.931 19.929 (50) 

Table 8 Known parameters from the completed bridge 

Elevation difference between 

points 
Symbol 

Value 

 (m) 

Horizontal distance between 

points 
Symbol 

Value 

 (m) 

Unstrained cable 

length 
Symbol 

Value 

 (m) 

C1 and C2 Δhm 0.120 D1 and D2 Lm 730.000 Main span Sm 746.779 

I1 and C1 Δhs1 68.517 I1 and D1 Ls1 238.711 Left side span Ss,L 248.965 

C2 and I2 Δhs2 48.105 D2 and I2 Ls2 118.436 Right side span Ss,R 129.104 

A1 and I1 Δha1 6.164 A1 and I1 La1 17.673 Left anchor span Sa,L 19.931 

I2 and A2 Δha2 7.841 I2 and A2 La2 16.886 Right anchor span Sa,R 19.929 
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4.3 Cable configuration in the unloaded state 
 

Several parameters from the calculated cable 

configuration under final dead load are needed to 

determinethe cable configuration in the unloaded state, as 

listed in Table 8. The weight per unit length of the free 

cable is q'=13.805 kN/m. 

Based on Eq. (80), the 17 unknown quantities for 

determining the cable configuration in the unloaded state 

can be calculated. Then other parameters can be derived. 

The calculated parameters of the cable configuration in the  

 
 

unloaded state are listed in Table 9. The Calculated angles 

of contingence are list in Table 10. An angle of contingence 

is the angle between the vertical line and the segment 

connecting the tangent point and the center of circular arc. 

The calculated pre-offsets of saddles are listed in Table 11.  

The proposed method and above-mentioned results have 

been fully and successfully employed in the design and 

construction control of the Jindong bridge, which has 

passed the authorities’ tests and is ready to be opened for 

traffic. 

Table 9 Calculated parameters of the cable configuration in the unloaded state 

Parameter Left anchor span Left side span Main span Right side span Right anchor span 

Horizontal component of the 

cable tension 

Symbol H'
a,L H'

s,L H'
m H'

s,R H'
a,R 

Value (kN) 12345.43 14177.03 14177.03 14177.03 11550.51 

Eq. (80) 

Parameters of the catenary 

equation 

Symbol a'
a,L a'

s,L a'
m a'

s,R a'
a,R 

Value 0.65978 0.39931 0.35510 0.45613 0.76952 

Eq. (80) 

Symbol b'
a,L b'

s,L b'
m b'

s,R b'
a,R 

Value (m) 1096.047 1109.810 1092.217 1135.586 1096.874 

Eq. b'=-c'cosha' 

Symbol c'
a,L c'

s,L c'
m c'

s,R c'
a,R 

Value (m) -894.272 -1026.949 -1026.949 -1026.949 -836.690 

Eq. c'=-H'/ q' 

Length of the orthogonal 

projection of the catenary 

segment on the horizontal plane 

Symbol l'
a,L l'

s,L l'
m l'

s,R l'
a,R 

Value (m) 15.743 234.958 728.094 116.089 14.748 

Eq. (80) 

Elevation difference between the 

catenary segment’s two endpoints 

Symbol Δh'
c,a,L Δh'

c,s,L Δh'
c,m Δh'

c,s,R Δh'
c,a,R 

Value (m) 10.987 67.939 0.127 47.645 12.332 

Eq. Δh'= c'[cosh(l'/ c'+ a')-cosha'] 

Unstrained 

cable length 

Left arc segment 

Symbol \ '
3 1

'

D Q
S  ' '

1 1

'

D F
S  ' '

2 2

'

D E
S  '

4 2

'

D J
S  

Value (m) \ 1.629 1.683 2.363 0.717 

Eq. \ (61-2) (57-2) (65-2) (78-2) 

Catenary 

segment 

Symbol 
'

, ,c a LS  
'

, ,c s LS  
'

,c mS  
'

, ,c s RS  
'

, ,c a RS  

Value (m) 19.189 244.972 743.129 125.486 19.216 

Eq. (71-1) (61-1) (57-1) (65-1) (78-1) 

Right arc 

segment 

Symbol '
1 3

'

J D
S  ' '

1 1

'

E D
S  ' '

2 2

'

F D
S  '

2 4

'

Q D
S  \ 

Value (m) 0.744 2.365 1.969 1.254 \ 

Eq. (71-2) (61-3) (57-3) (65-3) \ 
 

Table 10 Calculated angles of contingence, β’ 

Tangent point 
Left splay saddle Left tower saddle Right tower saddle Right splay saddle 

J1 Q1 
'

1E  
'

1F  
'

2F  
'

2E  Q2 J2 

Symbol β'
1
 β'

2 β'
3 β'

4 β'
5 β'

6 β'
7 β'

8 

Value (°) 35.323 9.709 22.281 19.908 19.889 25.266 19.276 40.289 
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Table 11 Calculated pre-offsets of saddles 

Pre-offset Symbol Unit Value Eq. 

Angle 

Left splay 

saddle 
αs,L ° 0.851 

(80) 

Right splay 

saddle 
αs,R ° 0.850 

Distance 

Left tower 

saddle 
Δm,L m 1.183 

Right tower 

saddle 
Δm,R m 0.489 

 
 

5. Conclusions  
 

Analytical methods for calculating a suspension bridge’s 

main cable configuration under final dead load and in the 

unloaded state and relevant construction parameters are 

proposed based on the segmental catenary theory. The 

analytical results can be used as a reference for bridge 

design and construction control. This method has a number 

of strengths: 

(1) It is capable of determining the unstrained cable 

length, unstrained hanger lengths, pre-offsets for tower and 

splay saddles, and other critical design and construction 

parameters. 

(2) It takes into account the effects of cable strands over 

the anchor spans, arc-shaped tops of tower/splay saddles, 

and tower top pre-uplifts. 

(3) In terms of cable configuration under final dead 

load, mechanical equilibrium conditions and geometric 

relationships are utilized to calculate the parameters of 

catenary equations for the cable segments over each span, 

coordinates of tangent points, and angles of contingence. 

The calculations are first performed for the main span, 

followed by the side spans and then anchor spans. Hanger 

tensile forces and unstrained hanger lengths are calculated 

by iteratively solving the equations governing hanger 

tensile forces and the cable configuration, which gives 

careful consideration to the effect of hanger weight. 

(4) Equations for calculating cable configuration in the 

unloaded state are derived from the cable configuration 

under final dead load and the conditions for unstrained 

cable length to be conserved. By simultaneously solving the 

equations for the main span, two side spans and two anchor 

spans, we can obtain the pre-offsets for saddles, parameters 

of the catenary equation for the cable segment over each 

span, coordinates of tangent points, and angles of 

contingence. 

(5) The coupled nonlinear equations are converted to 

objective functions in an unconstrained optimization 

problem and then solved by GRG for nonlinear 

programming. This avoids complicated iterative process for 

solving coupled equations. For example, the number of 

coupled equations involved in calculating cable 

configuration in the unloaded state reaches up to 17. 

(6) Compared to finite element methods, the proposed 

analytical method does not require complex simulations, 

and features explicit physical concepts and easily adjustable 

parameters. With general applicability, it is expected to be 

popularized. 

The feasibility and validity of the proposed method have 

been demonstrated through a numerical example of a 

suspension bridge spanned as 240m+730m+120m. 
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