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1. Introduction  
 

People who work at height with mobile elevating work 

platforms detect machine vibrations differently. However, 

almost everyone agrees that such work is uncomfortable 

and risky due to pronounced vibrations. Such a qualification 

emphasizes the importance of the research into the 

vibrations of support structures of elevating platforms. 

Particularly important are forced vibrations caused by 

incidental actions. The aim of such research is, above all, to 

increase the level of safety of people and reduce material 

damage. 

Leah et al. (2013) analyse the incidents that occurred in 

the operation of elevating work platforms in a twenty-year 

period from 1989 to 2009. In this analysis, the incidents are 

classified according to the type of machine and the outcome 

(Table 1). The outcomes are divided into six categories: 

fall, overturning, trapping, injury, collapse (failure), 

electrocution. According to Table 1, the most common 

incidents are those that happen in scissor lifts (50% of the 

total number), followed by articulating booms (21%) and 

vehicle mounted booms (20%). Incidental actions, which  
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Table 1 MEWP incident analysis for the observed period 

1989-2009 (Leah et al. 2013) 
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Totals 

O
u
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o

m
e 

Falls from 

MEWPs 
43 14 9 17 0 0 83 

MEWP 

overturned 
53 17 5 7 0 0 82 

Trapped/crushed 

by MEWP 
26 16 2 2 0 1 47 

Injured by MEWP 21 3 1 7 0 0 32 

Collapse/ MEWP 

failure 
4 7 6 20 1 0 38 

Electrocution 0 3 0 5 0 0 8 

Totals 147 60 23 58 1 1 290 

 

 

cause the extreme dynamics of transport machines with 

frame structures, are modelled in Radoičić et al. (2014). 

Elevating work platform incidents occur in irregular 

modes and extreme working conditions. The problems in 

maintaining the stability of tall machines appear in severe 

external circumstances, for example, gusts of wind 

(Bošnjak et al. 2009, Radoičić 2006, Radoičić and 

Jovanović 2017). A significant number of incidents stem 

from inadequate operation (Dong et al. 2012, Fujioka et al. 

2009), and even malicious intent. The occurrence of failures  
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Table 2 Elevating work platform CTE.Z19 - characteristics 

Manufacturer: CTE S.p.A., Italy 

Type of structure: Articulated-telescopic 

Produced: 2008 

Max working height: 19 m 

Max working range: 8 m 

Payload: 230 kg 

Turret rotation: 360o 

Gross weight: 3400 kg 

Dimensions (safe position): 655022002900H mm 

Max allowed wind speed: 12.5 m/s 

Basic vehicle type: Sprinter MB311 

Vehicle engine power: 80 kW (EU4) 

 

 

in responsible structural elements (Bošnjak et al. 2015), 

together with frequent problems of mechanical stability, 

places these transport machines into a very risky group, thus 

making these problems a pressing research topic. 

The dynamic analysis of the elevating work platform 

incidents was performed on the basis of the theory of small 

system vibrations. First, eigenvalues were determined 

(modal analysis) along with the behaviour of the platform 

as a whole when subjected to external excitation (transient 

analysis). The mechanical (analytical) model of the 

machine, developed in this paper, is discrete, with a finite 

number of degrees of freedom. The model is verified both 

numerically (FEM simulation) and experimentally, by 

measurement on a physical object. A vehicle mounted 

CTE.Z19 elevating work platform was used, with an 

articulated-telescopic boom and other characteristics as 

given in Table 2. 

The operating position of the support structure was 

chosen for the dynamic analysis, with the machine 

positioned using its stabilizers onto a relatively consolidated 

ground (asphalt) of typical compressibility. The elasticity of 

the supports was taken from previous research (Radoičić et 

al. 2014, Jovanović 1990). 
 
 

2. Free vibrations of the mechanical system of the 
elevating work platform with two vibrational degrees 
of freedom 

 

The mechanical system of the elevating work platform 

comprises twelve important elements (masses) connected 

by joints. In the basic (simple) analytical model, all masses 

are reduced to a single concentrated mass in the point of 

their centre of gravity. This facilitates the mathematical 

analysis of the complex system (Stojanović and Kozić 

2015). In such a case, the system is reduced to a single 

concentrated mass mu, which is connected using a “light” 

bar to the platform and the immovable support with two 

springs of equal rigidities cA and cB, Fig. 1. In this way the 

spatial problem is reduced to a planar one. The analysis is 

performed in the vertical plane, where the spatial system 

with four springs that support the platform in the horizontal 

(equilibrium) position – is reduced to two, rigidities cA and  

 

Fig. 1 Reduced dynamic MEWP model (MEWP - Mobile 

Elevating Work Platform) 
 

 

cB (Rašković 1965). The reduced mechanical model of the 

platform in Fig. 1 represents a system with two vibrational 

degrees of freedom with the generalized coordinates z(t) 

and (t). 

To determine the potential energy of the system in Fig. 

1, it is necessary to first determine the static deflections of 

the springs fst1 and fst2 and the forces within them from the 

system equilibrium conditions Eqs. (1)-(2): 

 

gmfcfcY ustBstA

i

i −+=
=

21

3

1  

(1) 

0
222

21

3

1

1 =







−−+−=

=

L
xgm

L
fc

L
fcM TustBstA

i

O
i

 

(2) 

By solving the system of Eqs. (1)-(2), we determine the 

forces in the springs in the following form: 
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(3) 

The kinetic energy of the reduced system in Fig. 1 is the 

kinetic energy of the concentrated mass mu, which moves at 

speed: 
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, i.e. 
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The potential energy of the system comprises the change 

in the potential energy of mass mu and the potential energies 

of the springs, and has the form, Eq. (5) 
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where 

( ) TBTA xLzzxzz −+=−= ,
 

(6) 
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By substituting the obtained expressions and the 

expression for the static deflections of the springs from Eq. 

(3) into the expression for potential energy Eq. (5) (bearing 

in mind that what is being considered are system vibrations 

at small angular displacements sin), we obtain a 

simplified expression for the potential energy of the system: 

( ) ( ) TuTBTA
s

p ymgxLzcxzcE 222)(
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1
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(7) 

By sorting the coefficients according to the generalized 

coordinates z(t) and (t), the potential energy is: 
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Based on the expression for the potential energy of the 

system Eq. (8), it can be concluded that there is a link 

between the generalized coordinates, conditioned by the 

asymmetrical geometry of the system. The application of 

Lagrange’s equations of the second kind for conservative 

systems: 
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(10) 

yields a homogeneous system of two differential 

equations with constant coefficients in the following form 

022 211 =++ bzbza 
 (11) 

022 232 =++ zbba 
 (12) 

where 
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(13) 

When it comes to the homogeneous system of 

differential equations of the second kind with constant 

coefficients, the solution of system Eqs. (11)-(12) is 

assumed in the following form 

1,, −=== iBeAez titi  
 

(14) 

where  is the natural frequency of the small system 

vibrations. 

By substituting solution Eq. (14) into the system of 

differential equations Eqs. (11)-(12), we obtain a 

homogeneous system of algebraic equations according to 

the unknown constants A and B, as follows 
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For the system of Eqs. (15)-(16) to have a nontrivial 

solution, it is necessary and sufficient that the system 

determinant according to the unknown constants A and B is 

equal to zero, i.e. 
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Developing the determinant Eq. (17) yields a bi-square 

frequency equation in the form 
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whose solutions are the natural frequencies of the 

system 
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Each of the natural frequencies of the system 

corresponds to the amplitude relation of the basic form of 

system vibrations 
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Then the final solutions are 
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After algebraic transformations and by introducing 

trigonometric functions and amplitude relations Eq. (21), 

the unknown functions of the generalized coordinates can 

be expressed in the following form 
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Constants Cj and Dj are determined from the initial 

conditions 

( ) ( ) ( ) ( ) 0000 0,0,0,0  ====  vzzz
 (26) 

Solving the algebraic system of equations yields the 

constants in the following form 
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By substituting constants from Eq. (27) into the 

expressions for the laws of vibration, Eqs. (24)-(25), we 

obtain the following final equations of vibration 
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3. Forced damped vibrations of the elevating work 
platform with two vibrational degrees of freedom 

 

In the case when the system shown in Fig. 2 is subjected 

to a random perturbing force and moment, taking into 

account the proportional Rayleigh-type damping, we obtain 

a non-homogeneous system of differential equations of a 

non-conservative system by applying Lagrange’s equations 

of the second kind 
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The virtual work  represents the work on the virtual 

displacement z from the random perturbing force F(t) and 

 from the random perturbing moment M(t). The 

dissipation function  is formed on the basis of 

proportional damping with coefficients  and . The non-

homogeneous system of differential equations of the 

mechanical system vibrations now possesses the following 

form 

( ) ( )tFbzbbzabza =+++++  212111 222 
 (33) 

( ) ( )tMzbbzbaba =+++++ 232232 222  
 (34) 

It is convenient to observe the coupled system of non-

homogeneous differential equations using the method of 

modal analysis by translating the system of the generalized  

 

Fig. 2 Mechanical MEWP model subjected to a random 

perturbing force and moment 

 

 

coordinates z(t) and (t) into the system of the main 

coordinates p1(t) and p2(t). In that case, it is necessary to 

write the system of Eqs. (33)-(34) in the matrix form 
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that is, 

( ) FKqqMKqM =+++    (36) 

The squares of the circular, eigenfrequencies of the 

system 1 and 2 represent the eigenvalues of the matrix 

M-1K. The non-homogeneous system of differential 

equations, which corresponds to the generalized coordinates 

q, can now be translated into the system of the main 

coordinates p, i.e. pj(t), j=1,2, by introducing the modal 

system matrix P=X1X2 whose columns represent 

the normalized basic forms of vibration 
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Transformation Eq. (37) is equivalent to the linear 

transformation between the generalized and main system 

coordinates 
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Substituting Eq. (38) into system Eq. (36) yields 
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If we multiply both sides of expression Eq. (39) scalarly 

with Xr for the random r=1, 2, we obtain 
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By applying the orthogonality conditions of the basic 

forms of vibration, in each of the sums we obtain only one 

member, which is different from zero for r=j. As the basic 

forms of vibration are normalized, Eq. (40) gets the form 

( ) ( ) ( ) ( ) 2,1,2 2 ==++ rtgtptptp rrrrrrr  
 

(41) 

where gr(t)=(Xr,F) and =(½ )(r+(r)-1). 

The convolution integral solution of equation Eq. (41) is 
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By substituting the obtained solutions Eq. (42) into the 

transformation equation of coordinates, Eq. (37), we obtain 

the final system vibration equation in the form 
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4. Numerical example 
 

As the mechanical system of the elevating work 

platform comprises twelve mass elements connected by 

joints that do not allow any changes in the length between 

their centres of gravity during vibrations, the actual values 

of measured masses were reduced to the centre of gravity of 

the system of material points. The masses of the mechanical 

system elements and the coordinates of their centres of 

gravity are shown in Table 3, in accordance with Fig. 3. 

 

 

Table 3 Masses of structural elements and coordinates of 

their gravity centres (MEWP CTE-Z19 model) 

Element   

#i 

Mass         

mi (kg) 

Coordinate     

xi (m) 

Coordinate     

yi (m) 

0 240 6.98 3.57 

1 158.36 4.7 2.96 

2 202.32 1.33 2.96 

3 84.08 1.22 2.34 

4 124.6 1.01 2.09 

5 111.33 2.51 1.67 

6 84.08 1.01 1.11 

7 128.34 1.22 0.83 

8 187.2 0 0 

9 3650 0.72 –0.47 

10 102.6 –0.27 2.48 

11 20.24 0.33 0.22 

12 38.2 0.83 2.34 

The coordinate system, upon which these dimensions 

with coordinates were selected, is positioned in the gravity 

centre of the structural element #8 (xT8, yT8). 
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The entire system mass is 

kg35.5131
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1
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(45) 

Taking into account the width of the platform of L=2.34 

m, i.e. for the coordinate system in Fig. 1, the gravity centre 

of the system has the following coordinates 

m549861.0,m8238.1 == TT yx  (46) 

By substituting the actual measured numerical values, 

we obtain the natural frequencies of the system 
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The rigidities of the supports are 

m

N

001.0

289 
== BA cc

 
(48) 

The obtained vibration periods are 

s209.0,s672.0 21 == TT  (49) 

 
 

5. Experimental testing of the elevating work 
platform 

 

The conducted experimental research into the dynamics 

of the elevating work platform (PUC “Gorica” Niš, 2012) 

determined the behaviour characteristics of the support 

structure in extreme and incidental situations (Radoičić 

2016). The research encompassed a large number of tests 

performed on the CTE-Z19 machine including the 

measurement of stress-strain, acceleration, force, unloading 

time, period of vibration. In this paper particular attention is 

paid to the experimental determination of the period of 

vibration and frequencies, during free and forced vibrations 

of the structure. 

The following equipment was used for testing: HBM 

MGC+ measuring signal amplifier, HBM U2A/10t force 

sensor, HBM LY 10/120 strain gauges, as well as Philips 

PR9369/10 acceleration sensor (Fig. 3). The mass of the test 

load corresponded approximately to the mass of one worker 

and accompanying tools in the platform basket (test load + 

measuring transducer = 120 kg). The work platform was 

operated using control instruments from the ground, without 

the presence of a worker on it. The testing was performed 

by repeating the given scenarios at several different work 

heights and reaches. 
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Fig. 3 Layout of the measuring equipment: a – Philips 

PR9369/10 acceleration sensor; b – HBM U2A/10t force 

transducer; c, d, e – HBM LY 10/120Ω strain gauge 

 

 
5.1 Free elevating work platform vibrations 

 
Deformations were measured using MT1 and MT2 

strain gauges positioned on the third and first section of the 

boom (positions “c” and “d”, Fig. 3), as well as MT3 strain 

gauge positioned on the front stabilizer (“e”, Fig. 3). The 

measuring points were chosen with the intent to avoid the 

zones of concentrated strains during measuring, Fig. 4. One 

of the measurements (measurement no. 2) was conducted at 

the platform reach of 6.7 m and the work height of 5-5.5 m 

(i.e. 4.1 m from the ground to the basket floor). The 

incident scenario encompassed lifting the load 

(accompanied by forced vibrations with the structure 

coming to rest) and the excitation that caused the load 

(object) to fall from the platform basket. The falling of the 

object was simulated by breaking the rope that tied the load 

of 120 kg in total mass to the platform basket, Fig. 3. The 

results of deformation measuring were used to identify the 

experimental values of the vibration period. 

For further analysis, we isolated the deformation values 

represented by MT1 curve. Figure 5 shows a detail of 

structural calming after the fall of the load. The first 40 

amplitudes of free vibrations become sufficiently 

observable, which facilitates the identification of the first 39 

individual periods of vibration, Fig. 5. This allows us to 

determine the mean experimental value of the period of 

vibration Tex, i.e. the eigenfrequency of the structure ex 

(after unloading – the fall of the load), values Eq. (50). 

Hz
T

sT
n

T
sr

ex

n

i

iex 4338.1
1

,6974.0
1 39

1

==== 
=

=



 

(50) 

After the fall of the load, the highest acceleration of the 

work platform in the vertical y-direction, as the dominant 

direction of vibrations, amounted approximately to ±0.6g, 

and it was measured using the “a” acceleration transducer 

shown in Fig. 3. 

 

Fig. 4 Measuring points on the support structure of the 

platform for the measurement of the stress-strain state 

(MT1, MT2 and MT3 strain gauge) 

 

 

Fig. 5 Determination of the mean experimental value of 

the vibration period Tex at free vibration (strain gauge 3) 

 

 

5.2 Forced elevating work platform vibrations 
 

Forced vibrations of the support structure were 

experimentally excited in the following manner: first, the 

work platform was raised with the load (without people); 

then, vibrations of the articulated-telescopic boom were 

calmed (led to rest) at the given work height and reach; 

finally, forced vibrations of the previously calmed structure 

were excited by a person from the ground continually and 

forcefully pulling the rope tied to the platform basket 

(simulated malicious action). The aim of this experiment 

was to show that any malicious action by people, caused by 

a relatively small perturbing force, can result in multiplied 

effects and significantly greater deflections of the structure, 

which can even lead to overturning. The period of forced 

vibrations Tex,2 (due to malicious action) was determined 

from the diagram in Fig. 6, which shows the curve of the 

change in the force of the rope during the experiment 

(measurement no. 3). In this measurement, the work 

platform of the lift with the load occupied the same position 

as in measurement no. 2 (section 5.1). After 455th sec of 

measurement, the structure was subjected to a more  
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Fig. 6 Experimental identification of the period of the 

MEWP forced vibrations 
 

 

intensive forced action, introduced by manually pulling the 

rope, which resulted in a gradual increase in the force 

amplitudes (Fig. 6). In the observed time interval, Fig. 6, 

the force measurement curve is characterized by a sufficient 

number of pure full harmonic vibrations. 

On the basis of thus obtained information, the period 

and frequency of forced vibrations were calculated as mean 

values of the parameters of the dynamic behaviour of the 

machine in the characteristic measuring interval, Eq. (51). 

This experiment with forced structural vibrations led to 

an increase in the dynamic force coefficient whose maximal 

value corresponds to the moment of reaching the highest 

manual (dynamic) force Fdyn
(max), Eq. (52). The static force 

was measured in the rope in the state when the lifted load 

was at rest, and before the introduction of the forced action, 

and it amounted to Fst=120 kg. 
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The “a” acceleration transducer (Fig. 3) was used, in the 

same experiment, to measure the largest acceleration of the 

work platform of ±1.3g in both senses of the vertical y-

direction (g=9.81 m/s2). 
 

 

6. Development of the MEWP FE model 
 

The possibilities of FEM allowed us to introduce the 

accurate topology of the structure and calculate the 

eigenvalues, structural and viscous damping, and elastic 

properties of the structure material. Parallel experimental 

testing can be of a great useful for the numerical analysis 

verification in the dynamic investigations of carrying 

structures. The examples of using FEM and SAP tools for 

the numerical analysis of the space steel structures, 

including adequate experimental support, in the papers of 

authors Arisoy and Erol (2018), Arslan et al. (2017) and Lu 

et al. (2010) are shown. 

 
Fig. 7 Original FE model of the MEWP; the second mode 

shape, 2=1.128894 Hz, Fp - perturbing force 

 

 
The support structures of platforms are usually modelled 

using the BEAM finite elements (Jovanović et al. 2010). In 

this research 229 BEAM elements and 33 PLATE elements 

(vehicle floor sheets) were used to create a model of the 

elevating work platform. Special attention was paid to the 

description of joints in nodes (DOF) which significantly 

influence the idealized deformation of the linear elements of 

the structure. Bearing in mind that the displacement of 

impact force points in the nodes is not small compared with 

the dimensions of the elevating work platform, the FE 

model in Fig. 7 is adapted for nonlinear analysis. The 

lowest frequency of the system was determined using the 

Lanczos method. The basis for the analysis of natural 

frequencies and mode shapes in large and high frame 

structures can also be the Euler-Bernoulli beam theory and 

numerical assembly method (Sabuncu et al. 2016, Tan et al. 

2017). 

The analysis in this research was conducted using the 

PLM SIEMENS (FEMAP) software. In addition, for the 

purposes of such modal and dynamic analyses, the 

modelling of the carrying elements of large structures very 

often is carried out using the ANSYS software (Wu et al. 

2017). Figure 7 shows the second mode shape of the model 

vibrations (the vertical direction), subjected to the 

perturbing force Fp. 

The modelling of damping using the damping 

coefficient is of utmost importance for transient analysis. 

Damping resistances occur within the material itself 

(viscous damping) and inside the mechanical structure of 

the oscillatory system (structural damping). It is very 

difficult to accurately determine the influence of damping 

resistances on the behaviour of the structure theoretically, 

thus it is best to do this experimentally (Radoičić and 

Jovanović 2013). Such experiences were used in this 

research as well. 
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Fig. 8 Numerical excitation force of the work platform 

 
Table 4 Comparative overview of the research results 

 
Investigation method 

Experimental Numerical Analytical 

Free 

vibration 

Frequency      

 (Hz) 
1.43 1.45 1.48 

Oscillation 

period T (sec) 
0.70 0.69 0.67 

Forced 

vibration 

Frequency     

 (Hz) 
1.08 1.13  

Oscillation 

period T2 (sec) 
0.93 0.89  

 
 
6.1 Modelling the excitation force 
 

The pronounced vertical vibrations of the real support 

structure were caused by the force of manually pulling the 

rope tied to the work platform. This dynamic excitation 

force was measured and it is presented in Fig. 6. According 

to that force, the numerical form of excitation was first 

defined and then applied in transient analyses of the FE 

model of the elevating work platform. 

The excitation force was modelled in the form of a 

repeated impulse function of growing intensity, with the 

impulse units, 14 of them, possessing the trapezoidal shape, 

Fig. 8. The modelling was performed in the PLM 

SIEMENS software. The same number of manually 

generated and measured impulses (cycles) can be seen in 

Fig. 6. To model the numerical impulse function of the 

excitation we used the experimentally obtained value of the 

forced vibration period. Thus the step of the numerical 

function of the force in Fig. 8 was defined, i.e. 

( )2,sec928.0 exnum TT =
 

(53) 

 

 
7. Comparative accuracy analysis  

 

A comparative overview of the analysis results is given 

in Table 4, in the form of frequencies and periods of 

vibration of the mobile elevating work platform system. 

Two cases of vibrations were observed, free and forced. 

Based on Table 4, the relative deviations of the results 

were calculated, %, and they are presented in Table 5. By 

comparing the numerical and analytical results of vibration 

frequencies and periods with the measured quantities, it can  

Table 5 Relative deviations of the results,  (%) 

 
Compared to* 

N-E A-E A-N 

Free 

vibration 

Frequency      

 (Hz) 
1.40 % 3.50 % 2.07 % 

Oscillation 

period T (sec) 
-1.43 % -4.29 % -2.90 % 

Forced 

vibration 

Frequency     

 (Hz) 
4.63 %   

Oscillation 

period T2 (sec) 
-4.30 %   

*N-E numerical compared to experimental, A-E analytical 

compared to experimental, A-N analytical compared to 

numerical 

 

 

Fig. 9 Comparative overview of the measured and 

numerically obtained deflection under the influence of the 

perturbing force 

 

 

be concluded that the analytical and numerical FE model of 

the platform possesses the accuracy with the deviation of ε 

<5% (Table 5). 

The proof of the quality of the FE platform model can 

be observed in Fig. 9, where diagrams are employed to 

comparatively present the vibration amplitudes of the 

support structure obtained from the numerical simulation 

and the experiment. The curve of the numerical change in 

the deflection of the boom end (work platform) in the 

vertical y-direction is shown in lighter colour, while the 

curve obtained experimentally is shown in darker colour. 

What is evident is the phase agreement of forced vibrations 

and a small relative deviation of the values of maximal 

amplitudes of 3.4%, with the total maximal numerical 

displacement (YNUM) being somewhat smaller than the 

experimental one (YEXP). The reason behind the deviation 

in the results lies in the deflection of the amplitude envelope 

function that depends on the calming time of the basket and 

the load. 

The relative deviation of the numerical values of the 

deflection can be reduced by fine-tuning the total structural 

damping coefficient G before transient analysis. The forced 

vibration frequency is not constant during the action of the 

perturbing force, since the force intensity and the speed of 

manually pulling the rope are not always the same during 

the experiment. As part of the numerical analyses, the 
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approximation was also performed by adopting the mean 

frequency value, which led to smaller deviations in the 

analysis results. 
 

 

8. Conclusions 

 

The observed oscillatory problems are commonly 

present in the engineering practice (mechanical engineering, 

civil engineering, aeronautical industry). It becomes very 

important to obtain the best possible solution 

approximations when analysing the vibrations of complex 

dynamic systems. One type of complex dynamic systems, 

analysed in this paper, includes vibration systems of mobile 

elevating work platforms. From the standpoint of the 

applied theory of vibration, such a problem occupies an 

important place in the analyses of mechanical systems with 

a large number of cyclic operations and excitations that can 

lead to resonance. 

Circular frequency is the basic quantity of a mechanical 

oscillatory system linked to its nature. The theoretical 

determination of frequencies of a mechanical system aims 

to facilitate the experimental analysis of the problem from 

the perspective of determining the law of vibration using 

the given final equations of motion. Such an analytical 

procedure, resulting in the laws of vibration, allows for a 

detailed insight into the dynamic behaviour of a system 

subjected to its physical parameters. In this way, it is 

possible to discuss the motion on the basis of the changes in 

the basic physical system parameters, which is not easy to 

do numerically or experimentally. In that case, if there is an 

analytical solution that corresponds to the mechanical 

model being analysed, it is possible to conduct a numerical 

or experimental analysis to verify the obtained analytical 

results. 

Every actual problem of complex dynamic structures 

has to contain certain idealizations and simplifications that 

can lead to possible analytical solutions. By including the 

characteristic influences through rigidity, damping and 

perturbing force of the system, it is possible, from the 

standpoint of the theory of vibration, to reach the 

conclusions on the behaviour of a system as a dynamic 

absorber. The behaviour of a system as a dynamic absorber 

represents the basic problem of systems with two 

vibrational degrees of freedom, and as such it was analysed 

in this paper. In such cases, on the basis of the known 

parameters of the perturbing force (amplitudes and forced 

frequencies) one can stabilize a system at the point of its 

direct excitation by changing the masses and rigidity of the 

basic system. Thus the oscillatory motion can be directed 

towards the system element that is already known as being 

capable of safely withstanding the displacements of high 

amplitudes with appropriate frequencies. 

As the basis for further analysis of the behaviour of 

systems, as dynamic absorbers, it is necessary to perform 

the mathematical analysis presented in this paper. 

Furthermore, from the standpoint of mechanics, numerical 

and experimental testing of analytical results is of special 

importance because it provides a global insight into the 

system behaviour, while the dynamic analysis of the 

problem receives its necessary verification. Every possible 

change in the system parameters consequently leads to a 

change in the system motion, which can be determined and 

used to predict a scenario from the safety perspective, as 

well as the perspective of preserving the structure from 

fracture and damage. 
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