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1. Introduction  
 

Different structures such as beams, plates (Wu et al. 

(2018)), Panels (Civalek, (2008)), Carbon nanotubes 

(Mercan and Civalek, (2017)) and shells (Civalek, (2006)) 

with laminated composite (Talebitooti, (2013)) are widely 

used in engineering fields such as, mechanical, civil, 

aircrafts, automobiles, ship, petro-chemical, aeronautical, 

aerospace and submarine structures due to their high 

specific strength and low specific density (Civalek, (2013) 

and Baltacıoglu et al. (2010)). Functionally graded 

materials (FGMs) are inhomogeneous composite materials 

and their mechanical properties vary continuously in one (or 

more) direction(s) based on a specific function (Bourada et 

al. (2018)). The concept of functionally graded (FG) 

material was proposed in 1984 by the material scientists in 

the Sendai area of Japan (Koizumi (1997)). In the past two 

ten years, by using the FGM in different engineering 

applications, FGM structures are gaining the considerable 

importance and find great deal of applications in high 

temperature applications (Demir et al, (2016)). FGMs are 

typically made of isotropic components such as metals and 

ceramics. These materials used in many researches as a 

perfect material in micro and nano (Zemri et al. (2015) and 

Karami, (2018)) scale and came in the size-dependent  
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(Besseghier, (2017)) and nonlocal (Bounouara et al. (2016), 

Bouafia et al. (2017)) analyses of different structures by 

Bouhadra et al. (2018), (2019), Hichem, (2017), Abdelaziz, 

(2017), Younsi, (2018), Benchohra, (2018), Yahia, (2015) 

and Bousahla, (2014).  Also, FG materials exploit the ideal 

performance of their composition, e.g. heat and corrosion 

resistance of ceramics on one side (El-Haina, (2016)), and 

mechanical strength and toughness of metals on the other 

side of a body (Bousahla et al. (2016)). Many studies have 

been developed for static (Meski et al. (2019)), buckling 

(Akgöz and Civalek, (2011), Ghorbanpour Arani et al. 

(2011), Mohammadimehr et al. (2011) and Meziane, 

(2014)), and vibration (Mohammadimehr et al. (2016), 

(2017),  Bennoun et al. (2016), Mohammadimehr and 

Shahedi (2017), Belabed et al. (2018) and Abualnour et al. 

(2018)), dynamic (Ghorbanpour Arani et al. (2011)) 

analyses of homogeneous or non-homogeneous plates with 

different shapes such as Menasria, (2017), Fourn, (2018) 

and Bakhadda (2018). 

 As a first example; static analysis of functionally 

graded (FG) sandwich axisymmetric annular plates is 

considered by Alipour (2016). He used the layer-wise and 

3D elasticity theories for various elastically restrained edges 

under arbitrary distributed loads using a novel economical 

analytical solution procedure. The obtained results of his 

research investigated that transverse shear and normal 

stresses boundary conditions are exactly satisfied on the 

face sheets of sandwich plate and interlaminar continuity 

conditions of the in-plane displacement, transverse shear 

and normal stresses. Using differential quadrature method 
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Abstract.  In the present study, buckling and free vibration analyses of annular thin sector plate made of functionally graded 

materials (FGMs) resting on visco-elastic Pasternak foundation, subjected to external radial, circumferential and shear in-plane 

loads is investigated. Material properties are assumed to vary along the thickness according to an power law with Poisson’s ratio 

held constant. First, based on the classical plate theory (CPT), the governing equation of motion is derived using Hamilton’s 

principle and then is solved using the generalized differential quadrature method (GDQM). Numerical results are compared to those 

available in the literature to validate the convergence and accuracy of the present approach. Finally, the effects of power-law 

exponent, ratio of radii, thickness of the plate, sector angle, and coefficients of foundation on the fundamental and higher natural 

frequencies of transverse vibration and critical buckling loads are considered for various boundary conditions. Also, vibration and 

buckling mode shapes of functionally graded (FG) sector plate have been shown in this research. One of the important obtained 

results from this work show that ratio of the frequency of FG annular sector plate to the corresponding values of homogeneous plate 

are independent from boundary conditions and frequency number. 
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(DQM) and Chebyshev collocation technique, Kumar and 

Lal (2013) predicted first three natural frequencies of free 

axisymmetric vibration of two directional FG annular plates 

resting on Winkler foundation. They investigated the effects 

of volume fraction index, coefficient of radial variations, 

exponent of the power law, foundation parameter, radius 

ratio and boundary condition on first three natural 

frequencies. Mohammadimehr and Rahmati (2013) studied 

the effect of small scale on electro-thermo-mechanical 

vibration analysis of single-walled boron nitride nanorods 

under electric excitation. Bhaskara and Kameswara (2014) 

by using classical plate theory (CPT) presented buckling 

analysis of elastic circular plates with elastically restrained 

edges and an internal elastic ring support for rotation and 

simply supported edges. They showed that rotational 

restrains effects on the buckling load is more than 

translational restraints of the internal elastic ring support. 

Based on eigenvalues and eigenfunctions problem, Yakhno 

and Ozdek (2014) illustrated a new analytical method for 

approximate computation of time-dependent Green’s 

function for equations of the transverse vibration of a 

composite circular membrane with piecewise constant 

varying density and tension. They compared the obtained 

results from analytical method with experimental tests and 

showed that there was a good agreement with analytical and 

experimental outputs. Wu and Li (2017) considered three-

dimensional free vibration behavior of simply supported 

single-layer nanoplates and graphene sheets (GSs) rested in 

an elastic medium using multiple time scale method based 

on Eringen’s nonlocal elasticity theory. Their results 

demonstrated that natural frequencies parameters decrease 

when the nonlocal parameter became greater, which means 

the small length scales will soften the nanoplate. Powmya 

and Narasimhan (2015) investigated free vibration analysis 

of laminated, polar orthotropic, circular and annular plates 

based on first order shear deformation theory (FSDT) and 

principle collocating equations of motion at Chebyshev 

zeros. Their obtained results showed that transverse shear 

effects are more significant for polar orthotropic laminated 

plates than isotropic plates. Behera and Chakraverty (2015) 

investigated free vibration of nano beams based on Euler-

Bernoulli (EBT), Timoshenko, Reddy and Levinson 

theories using DQM.  The results of their study showed 

that the frequency parameter was overpredicted in EBT than 

other types of beam theories. Using a refined higher order 

exponential shear deformation theory, buckling analysis of 

non-axisymmetric cross-ply laminated composite plates 

under different boundary conditions is presented by Adim et 

al. (2016). They demonstrated that considering the refined 

higher order exponential shear deformation theory has 

strong similarity with CPT and it is simple in solving the 

buckling behaviors of non-axisymmetric composite plates. 

Thang et al. (2016) presented closed-form expression for 

nonlinear analysis of imperfect sigmoid-FGM plates with 

variable thickness resting on elastic medium. A new 

solution of free vibration response of thick-walled annular 

sector plates under various boundary conditions are 

estimated by Fadaee (2015) based on third order shear 

deformation theory (TSDT). Wang et al. (2017) 

investigated the micro structure dependent axisymmetric 

large deflection bending of pressure loaded circular FGM 

microplates subjected to various boundary conditions. The 

obtained results from their studies demonstrated that size 

dependent effect on the bending deflection of simply 

supported boundary conditions was not important against 

clamped boundary conditions. Dung et al. (2017) studied 

nonlinear stability of FG sandwich cylindrical shells 

reinforced by FGM stiffeners in thermal environment. 

Using finite difference discretization technique, Mehrabian 

and Golmakani (2015) discussed about nonlinear bending 

of laminated stiffened annular sector plates under 

mechanical loadings with various boundary conditions and 

orthotropic properties based on FSDT. Using finite element 

method (FEM) Long et al. (2016) developed a new eight-

unknown shear deformation theory for bending and free 

vibration behaviors of various power-law indices FG plates. 

Based on the nonlocal elasticity theory, Ansari and Torabi 

(2016) studied vibration analysis of circular double-layered 

graphene sheets (DLGSs) rested in an elastic medium with 

Winkler spring and Pasternak shear constants in a thermal 

environment. Their numerical results demonstrated that the 

presence of elastic foundation leads to increase the 

fundamental frequencies of DLGSs.  

Computational methods applied for vibration analysis of 

various structural elements can be categorized into two 

main groups: time-dependent methods and frequency-

dependent methods (Mercan and Civalek, (2016) and 

Civalek, (2017)). Vibration of an annular circular plate 

(Xiang et al. (2002)) was investigated using numerical and 

analytical methods proposed throughout the last decades 

(Shirmohammadi and Bahrami, (2017)).  

Recently, with increasing use of fast computers, a 

variety of numerical methods, i.e. FEM, the finite 

differences method (FDM), quadrature element method 

(Zhong and Yu, (2009)) and the boundary element method 

(BEM) are available for engineering goals. The DQM is a 

numerical approach for solving the differential equations 

which was initially introduced by Bellman et al. (1972). 

Bert and his co-workers (1972) contributed to the 

development of the method and used the DQM for the 

analysis of the structural problems. In the application of this 

method to the structural problems, one would meet a 

difficulty in implementation of the boundary conditions. 

Thus, this method developed and several ideas introduced 

to impose the boundary conditions. Also, Bert et al. (1966) 

and (1988) employed two approximate methods, which 

have not previously been used for structural dynamics 

problems. They applied these methods to the free vibration 

analysis of various structural components. The first method 

is a new version of the complementary energy method. It is 

shown to be considerably more accurate than the 

conventional Rayleigh and Rayleigh-Schmidt methods 

when applied to spatially one-dimensional free vibration 

problems: prismatic and tapered bars, prismatic beams, and 

axisymmetric motion of circular membranes. The second 

method is the DQM introduced by Bellman and his 

associates. Yousefitabar and Matapouri (2017) presented 

instability of thin annular FG CPT plates subjected to 

transversely distributed temperature loading. They are 

found that, while the temperature loading through the plate 
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is symmetric, first buckled configuration of a fully clamped 

FG plate is always asymmetric. In the other work, 

Mohammadimehr and Mehrabi (2017), (2018) investigated 

stability and free vibration analyses of double-bonded micro 

composite sandwich Reddy cylindrical shells conveying 

fluid flow based on the modified couple stress theory 

(MCST) and third-order shear deformation theory (TSDT) 

rested in an orthotropic elastic foundation under magneto-

thermo-mechanical loadings using general differential 

quadrature method (GDQM). They concluded that the effect 

of static fluid flow in the both of cylindrical shells in 

comparison with influences of flow in the one of them was 

the same for the moderately thick-walled micro cylindrical 

shells. Satouri et al. (2015) studied free vibration of two 

dimensional (2D)-FG sectorial plate with variable thickness 

resting on Winkler–Pasternak elastic foundation and 

assumed that the plate properties vary continuously through 

its both circumference and thickness according to power 

law distribution of the volume fraction. They solved the 

motion equations by using the numerical DQM for various 

boundary conditions. Liang et al. (2015) showed a semi-

analytical methodology for the transient response of FG 

annular sector plate with arbitrary circular boundary 

conditions. They integrated into this methodology, the state 

space method, DQM and the numerical inversion method of 

Laplace transform. They compared their results with the 

obtained results by FEM. It showed that the results of the 

present and the FEM always agree with each other 

excellently, regardless of which boundary condition, load 

and geometry are employed. Mirsalehi et al. (2017) 

illustrated the mechanical instability and free vibration of 

FGM micro-plate based on the modified strain gradient 

theory (MSGT) using the spline finite strip method. Torabi 

and Afshari employed differential quadrature element 

method (DQEM) and studied various engineering problems 

including vibration analysis of damaged cantilever 

Timoshenko beams with non-uniform cross section (Torabi 

et al, 2014a), vibration analysis of cantilever Timoshenko 

beams with non-uniform cross section carrying multiple 

concentrated elements (Torabi et al. (2013)), vibration 

analysis of rotating blades of non-uniform cross section 

with multiple cracks (Torabi et al. (2014b)) and whirling 

analysis of multi-span multi-stepped rotors (Afshari and 

Irani Rahaghi, (2018)). GDQM also can be considered as a 

useful tool for analyze mechanical characteristics of plates 

with unconventional shapes; for example Torabi and 

Afshari hired GDQM and investigated vibration and flutter 

analysis of cantilever trapezoidal plates (Torabi and 

Afshari, (2016) and (2017a), Afshari and Torabi, (2017), 

Torabi et al. (2017b)). 

Recently, Mohammadimehr and co-workers (2016) 

investigated vibration and wave propagation analysis of a 

twisted microbeam on Pasternak foundation based on the 

strain gradient theory (SGT) to implement the size 

dependent effect. Finally, using an energy method and 

Hamilton’s principle, they derived the governing equations 

of motion for the twisted micro-beam. Also, Swaminathan 

and Sangeetha (2017) presented a comprehensive review of 

developments, applications, various mathematical 

idealizations of materials, temperature profiles, modeling 

techniques and solutions methods that are adopted for the 

thermal analysis of FG plates.  

In this article, GDQM is employed to study the free 

vibration and stability analysis of FG annular thin sector 

plate resting on visco- elastic Pasternak foundation. It is 

noted that in the previous papers, often analytical solutions 

used in order to solve the governing equations of beam, 

cylindrical shells and circular plates, such as alipour, (2016) 

and Kumar and Lal, (2013) studies. They only investigated 

static bending (Alipour, (2016)) and vibration analysis 

(Kumar and Lal, (2013)) of annular plate, While in this 

paper vibration and buckling analysis of a circular sector 

plate is performed based on a numerical method (GDQM). 

On the other hand, because in the most of the previous 

works the structures were considered resting on the elastic 

foundation (Ansari and Torabi, (2016) and Satouri, (2013)), 

in the present study, the FG thin sector annular plate 

assumed on viscoelastic medium to see its effects of as a 

completion of previous work and could be used by the other 

researchers. In fact, it can be said that the novelty of this 

research is the combining the visco-elastic thin sector 

annular plate with the numerical method (GDQM). The 

effects of the geometrical parameters of sector plate such as 

power-law exponent, ratio of radii, thickness of the plate 

and sector angle and also coefficients of foundation and in-

plane loads on the fundamental and higher natural 

frequencies of transverse vibration and critical buckling 

loads are considered for various boundary conditions. Also, 

vibration and buckling mode shapes of functionally graded 

(FG) sector plate have been shown in this research. 
 

 

2. Governing equation of motion 
 

As shown in Fig. 1, a thin sector plate of inside radius b, 

outside radius a, thickness h and sector angle α, made of FG 

material is considered. The plate’s material is graded 

through the thickness from the metal surface to the ceramic 

one according to a power law function as the following 

relations (Wang et al. (2017)): 

( ) ( ) ( ) ( )
1 1

,
2 2

q q

m c m m c m

z z
E z E E E z

h h
   

   
= + − + = + − +   

     
(1) 

where E and ρ are modulus of elasticity and density of 

materials, respectively. Meanwhile, subscripts c and m are 

used to indicate corresponding properties in ceramic and 

metal, respectively. Eq. (1) can be rewritten in 

dimensionless form as 

( ) ( )
11

1 1 1 1 ,
2 2

q qE

q q

m m

E

E

 
 



− − 
= + + = + +  

     

(2) 

in which 

2
.c c

E

m m

Ez

h E



  


= = =

 

(3) 

Let uz, vz and wz be the radial, circumferential and lateral 

components of displacement of points at a distance z from 

the middle surface (z=0), respectively. Also, u, v and w be 

corresponding values in the midplane of the sector plate.  

527



 

Mehdi Mohammadimehr, Hasan Afshari, M. Salemi, K. Torabi and Mojtaba Mehrabi 

 

Fig. 1 A schematic of functionally graded annular sector 

plate 
 

 

The strain-displacement relations are (Reddy, (2002)) 

1
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u v w
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r r z
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(4) 

where εr, εθ, εz, γrθ, γθz and γrz are corresponding components 

of strain. For thin plates εz, γθz and γrz can be neglected. 

Thus, components of displacement can be written as 

follows: 

( ) ( )
( )

( ) ( )
( )

( ) ( )

, ,
, , , , , ,

, , ,

z z

z

w r w rz
u r z u r z v r z v r

r r

w r z w r

 
   



 

 
= − = −

 

=
 

(5) 

By neglecting radial and circumferential components of 

displacement of the plate in midplane (Reddy 2002), 

displacement fields can be stated based on Kirchhoff’s 

theory as follows: 

( )
( )

( )
( )

( ) ( )
, ,

, , , , , , ,z z z
w r w rz

u r z z v r z w r z w r
r r

 
   



 
= − = − =

 

 (6) 

Substituting Eq. (6) into the Eq. (4), following non-zero 

components of strain can be obtained: 

2 2 2

2 2

1 2 1
r r

w z w w z w w
z

r r r r r rr
   

 

       
= − = − + = − −   

         
(7) 

According to the Kirchhoff’s assumption, by neglecting 

z-component of stress in the Hook’s laws, following 

relations can be stated 

( ) ( )
2 21 1

r r r r r

E E
G           

 
= + = + =

− −  
(8) 

In which σr, σθ and σrθ are radial, circumferential and in-

plane components of stress, respectively. In order to derive 

the governing differential equations of motion, Hamilton’s 

principle is considered as follows (Mohammadimehr et al. 

(2018)) 

( )
2

1

0
t

t
U V T dt  + − =

 
(9) 

where T, U, V, and   denote the kinetic and strain 

energies, work done by external loads and variation 

operator, respectively. Also [t1,t2] is a desired time interval. 

The virtual strain energy δU is given by 

( )r r r rU d         


= + + 
 

(10) 

The virtual potential energy due to applied external 

loads δV can be stated as 

2

r

s rr

A A

N Nw w w w w w w w
V F wdA N dA

r r r r rr
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 

   

          
= − + + + +  

         
 

 
(11) 

where Nrr, Nθθ and Nrθ are external radial, 

circumferential and shear in-plane loads per unit length 

applied at the midplane of the plate, respectively and Fs is 

the foundation force given by Mohammadimehr et al. 

(2010) as 

2

s

w
F kw G w c

t

 
= − −  + 

   

(12) 

In which k, G and c are Winkler, Pasternak and damping 

coefficients, respectively. The virtual kinetic energy δT is 

written as follows 

2 2 2

1

2

z z zu v w
T d

t t t
 



        
 = + +      
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

 

(13) 

Substituting Eqs. (10)-(13) into Eq. (9), the following 

relation can be derived 

( )
2 22
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2 2

2 3 4

0 22 2 2 2

1 2
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(14) 

in which I0 and I2 are the principal mass inertia and the 

rotatory inertia, respectively, defined as follows 

  ( ) 
3

2 22
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2
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where 
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2
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3 1 21
1 1 .
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(16) 

In Eq. (14), the resultant bending moments are defined 

as follows 
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in which 

( )
( )( )
( )( )( )

23

2 22

3 1 2
1

1 2 312 1

Em
q qE h

D Df D f
q q q





− + +
 = = = +

+ + +−
 

(18) 

 

 

z 

θ 

r 

metal 

ceramic 

 

  

 

1 

2 

3 

4 

 

528



 

Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM 

 

Substituting Eq. (15) into Eq. (14), the governing 

differential equation can be derived as follows 
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Considering deflection of the sector plate as the product 

of the functions W(ζ,Θ) which only depends on the spatial 

coordinates and a time dependent harmonic function as 

( ) ( ), , , ,tw t aW e  = 
 

(20) 

where ω is the natural frequency; Eq. (19) can be 

rewritten in dimensionless form as 
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in which 
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3. Boundary conditions 
 

In this article, combinations of simply supported, 

clamped and free edges in boundary conditions are studied. 

The boundary conditions (BCs) on the circular edges 

(r=b,a) can be written as 

Simply supported (s): 0 0rrw M= =
 

(1) Clamped (c): 0 0
w

w
r


= =

  

Free (f): 0 0rr rM V= =
 

And on the radial edges are: 

Simply 

supported (s): 
0 0w M= =

 

(24) Clamped (c): 0 0
w

w



= =

  

Free (f): 0 0M V = =
 

In Eqs. (23)-(24) Vr and Vθ are effective shear forces in 

radial and circumferential directions, respectively. 

Neglecting effect of the rotatory inertia on the effective 

shear forces, these parameters can be stated as (Reddy, 

(2002)): 
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where Qr and Qt are shear forces in radial and 

circumferential directions, respectively. These terms can be 

defined as the following form 
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Substituting Eq. (17) and Eq. (26) into Eq. (25), the 

effective shear forces can be stated in terms of 

displacements as follows: 
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Eqs. (17) and (27) can be rewritten in the following 

dimensionless forms: 
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(27) 

 

 

4. Differential quadrature method (DQM) 
 

According to the differential quadrature method (DQM), 

derivatives of a function at the point (ζi,Θi) can be 

expressed in terms of the value of function in throughout 

domain as follows: 
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where A(m) is the weighting coefficients associated with the 

mth order derivative and N and M are number of grid points 

in the ζ-direction and Θ-direction, respectively. These 

coefficients for the first-order derivatives are given by (Bert 

and Malik, (1996)) 
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 (29) 

and the weighting coefficients of higher-order derivatives 

are extracted from the following relations (Bert and Malik, 

(1996)) 
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(30) 

A convenient option for the grid points are the equally 

spaced points. Another choice which gives more accurate 

results is unequally spaced grid points (Bert and Malik, 

(1996)). A well-accepted set of the grid points is the Gauss–

Lobatto–Chebyshev points given for interval [0,1] by 
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(31) 

 

 

5. Differential quadrature (DQ) analogue of 
governing equations 

 

In this section, using Eq. (29), differential quadrature 

(DQ) forms of the governing equation and boundary 

conditions are obtained. 

 

5.1 Governing Equation 
 

Using Eq. (29) in Eq. (22) DQ form of the governing 

equation can be written as follows: 
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(32) 

where 

( ),ij i jW W = 
 

(33) 

 

5.1.1 Vibration analysis 
For vibration analysis, Eq. (33) can be written using 

Kronecker product as follows 
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in which following column vector is defined 
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where IN and IM are identity matrix of size N and M, 

respectively. In order to eliminating the redundant 

equations, motion equations should be represented only for 

domain points (Bert et al. 1988). Thus: 
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thickness in which bar sign shows the corresponding 

truncated non-square matrices. Eq. (38) may be rearranged 

and partitioned in order to separate the boundary and 

domain components as: 
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(40) 

 

5.1.2 Stability analysis 
In order to stability analysis, in Eq. (33) value of the 

frequency should be considered as zero; By definition 

critical loads as: 

0 0 0cr cr cr

rr rr r rN N N N N N   = − = − =
 

(41) 

Eq. (33) can be written for buckling of the plate under 

radial, circumferential or shear loads as: 

     2ˆ ˆ , , ,  cr

s kl klQ W N P W k r l r  = − = =  (42) 
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(43) 

In a similar manner with vibration analysis, Eq. (38) 

may be rearranged and partitioned in order to separate the 

boundary and domain components as 
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 (44) 

 

5.2 Boundary conditions 
 

Before implying boundary conditions, DQ form of Eq. 

(28) should be written as follows 
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(45) 

where 
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Eq. (44) can be rewritten using Kronecker product as 
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(47) 

in which following column vectors are defined 
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(48) 

Each boundary condition contains constrains on the 

transverse deflection, slope, bending moment or effective 

shear force written as 

  ˆ 0T W =
 

(49) 

Eq. (50) may be rearranged and partitioned in order to 

separate the boundary and domain components as 

       ˆ ˆ 0 
b db d

T W T W+ =  (50) 

Substituting Eq. (51) into Eq. (43), following eigenvalue 

equation can be obtained for stability analysis 
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According to Eq. (25), this procedure cannot be 

followed for cases whose boundary conditions contains free 

edge(s).  

Using Eq. (51) in Eq. (39), following eigenvalue 

equation can be obtained for vibration analysis 
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By introducing following vector 
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(55) 

Eq. (54) can be replaced by a standard eigenvalue 

problem as 

   ,f fK M    =      
(56) 
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6. Numerical results 
 

In this section numerical results are presented for 

various cases. Results are presented for FG plates made of 

Ni (as metal) and Al2O3 (as ceramic) with the properties 

presented in Table 1. Also, Posisson’s ratio is considered as 

υ=0.3. It is worth mentioning that boundary conditions are 

numbered according to numbers assigned to each edge in 

Fig. 1. 

For FG plates with different boundary conditions, the 

effect of the number of grid points (N=M) on the 

dimensionless values of the natural frequency of first four 

modes are depicted in Fig. 2. As shown in this figure 

presented solution is convergent in all combination of 

boundary conditions. In what follows, results are reported  

 

Table 1 Material properties of metal and ceramic (Cho and 

Oden, 2000) 

 

for N=M=19. 

In order to confirm accuracy of the proposed solution a 

homogenous annular sector plate with simply supported 

radial edges (Kim and Dickinson, (1989)) is considered. 

Table 2 shows the lowest four dimensionless frequencies (λ) 

for various cases in boundary conditions of circular edges. 

According to this table, the presented results are in excellent 

agreement with those reported by Kim and Dickinson 

(1989) based on the Rayleigh-Ritz method. It should be 

noted that Kim and Dickinson (1989) neglected rotary 

inertia, so in this table results are presented for a small 

value of η. 

It is worth mentioning that many numerical approaches 

like finite element method (FEM), Rayleigh-Ritz method, 

Galerkin method and differential transform method (DTM) 

need to integral operation and it makes them too time-

consuming (Afshari and Irani Rahaghi, (2018)). Also, some  

  

  

  

Fig. 2. Convergence of the presented solution in first six modes (q=1, φ=0.3, α=π/2, η=0.05, kn=Gn=10, cn=0, Nrr=Ntt=Nrt=10) 

Properties Metal (Ni) ceramic (Al2O3) 

Modulus of elasticity (GPa) 199.5 393 

Density (kg/m3) 8900 3970 
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Table 2 First four dimensionless natural frequencies of 

homogeneous annular sector plates (φ=0.2, α=π/3, ν=0.3, 

η=0.0001, kn=0, Gn=0, cn=0, Nrr= Nθθ= Nrθ=0) 

  Mode 1 Mode 2 Mode 3 Mode 4 

FSFS 

Present 12.4229 47.3836 52.4489 102.1073 

Kim and Dickinson, 

(1989) 
12.40 47.38 52.47 102.1 

FSSS 

Present 39.6545 92.6784 97.9922 162.9927 

Kim and Dickinson, 

(1989) 
39.66 92.68 97.99 163 

FSCS 

Present 50.449 108.6301 114.1272 184.1136 

Kim and Dickinson, 

(1989) 
50.51 108.4 114.2 183.3 

SSFS 

Present 12.5022 47.3828 53.6651 102.1089 

Kim and Dickinson, 

(1989) 
12.47 47.38 53.7 102.1 

SSSS 

Present 40.2712 97.4852 97.9804 177.1823 

Kim and Dickinson, 

(1989) 
40.31 97.52 98 177.6 

SSCS 

Present 51.6672 114.2143 115.3345 198.3216 

Kim and Dickinson, 

(1989) 
51.7 114.2 115.4 198.8 

CSFS 

Present 12.5756 47.3655 55.4678 102.1072 

Kim and Dickinson, 

(1989) 
12.61 47.38 55.41 102.1 

CSSS 

Present 41.4165 98.0153 102.2578 177.1837 

Kim and Dickinson, 

(1989) 
41.33 98 102.4 177.6 

CSCS 

Present 53.4162 144.2379 121.7530 198.3220 

Kim and Dickinson, 

(1989) 
53.39 144.2 121.7 198.8 

 

 

 

Fig. 3 Distribution of elasticity modulus and mass density 

through the thickness for various values of q 

Table 3 First three dimensionless natural frequencies of FG 

sector plate for some boundary conditions and various 

values of q (φ=0.3, α=π/3, η=0.05, kn=0, Gn=0, cn=0, 

Nrr=Nθθ=Nrθ=0) 

 

 

of them need to admissible functions which are not 

available for some combination of boundary conditions. 

GDQM converts differential equation to an equivalent 

algebraic system of equations which is less time-consuming 

in comparison with above mentioned numerical methods 

and it is the main reason for authors to choose this 

numerical method 

Table 3 presents the value of the first three natural 

frequencies for various values of power-law exponent (q). 

As shown in this table, the values of the all frequencies 

SSSS 

q λ1 λ2 λ3 λ4 λ5 λ6 

0 87.68716 203.9808 224.8771 366.5062 382.1282 433.7152 

0.2 75.67697 176.0031 194.0266 316.1404 329.6062 374.0695 

0.5 66.65008 155.0140 170.8890 278.4513 290.3130 329.4799 

1 59.79844 139.1051 153.3554 249.9397 260.5931 295.773 

1.5 56.46105 131.3620 144.8225 236.0772 246.1446 279.3912 

3 52.04373 121.1105 133.5249 217.7172 227.0078 257.6916 

5 49.51072 115.2214 127.0332 207.1443 215.9850 245.1836 

CSCS 

q λ1 λ2 λ3 λ4 λ5 λ6 

0 125.5506 238.7432 300.6602 409.8043 437.455 550.2541 

0.2 108.3525 205.9924 259.4018 353.4766 377.3158 474.5482 

0.5 95.42822 181.4276 228.4696 311.3379 332.3366 417.9855 

1 85.61948 162.8114 205.0358 279.4669 298.3234 375.2469 

1.5 80.84199 153.7513 193.6332 263.9728 281.7895 354.4808 

3 74.51843 141.7559 178.5353 243.4511 259.8899 326.9713 

5 70.89183 134.8637 169.8569 231.6301 247.2722 311.1053 

CFSC 

q λ1 λ2 λ3 λ4 λ5 λ6 

0 71.24048 146.0303 218.0415 281.5541 318.2204 443.948 

0.2 61.48788 126.0251 188.1479 242.9253 274.5468 382.9375 

0.5 54.15287 110.9931 165.7089 213.9568 241.8093 337.2855 

1 48.58259 99.58566 148.6939 192.0064 217.0111 302.7513 

1.5 45.86860 94.02978 140.4103 181.3243 204.9454 285.9609 

3 42.27674 86.67581 129.4443 167.1811 188.9692 263.723 

5 40.21841 82.45779 123.1483 159.0535 179.7843 250.9162 

SFFC 

q λ1 λ2 λ3 λ4 λ5 λ6 

0 13.09325 53.62929 76.76795 179.9553 222.5286 343.9605 

0.2 11.30188 46.29101 66.25924 155.3041 192.0303 296.7626 

0.5 9.953528 40.76845 58.35498 136.7795 169.127 261.3751 

1 8.928970 36.57261 52.35207 122.7209 151.7538 234.5646 

1.5 8.429617 34.52777 49.4272 115.8735 143.2945 221.5185 

3 7.768817 31.82175 45.55629 106.8102 132.0964 204.2447 

5 7.390425 30.27196 43.33820 101.6121 125.6699 194.3162 
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Table 4 First six natural frequencies of FG sector plate for some boundary conditions and various values of the ratio of inner 

radius to outer radius (q=1, α=π/3, η=0.05, kn=0, Gn=0, cn=0, Nrr=Nθθ=Nrθ=0) 

 

φ φ 

0.2 0.35 0.5 0.65 0.8 0.2 0.35 0.5 0.65 0.8 

λ1 λ2 

CCCC 107.9169 114.1746 151.0405 273.6194 786.1806 207.3602 211.1418 225.6242 322.2992 815.4148 

SFSF 22.71056 33.60341 56.15057 113.8614 343.5715 43.19545 52.70108 73.3892 128.9942 356.0820 

FCFS 28.18914 28.07643 27.23989 25.14786 22.07486 87.22974 83.93159 80.15924 80.12216 74.34077 

SCCS 89.59816 93.40354 117.4830 200.8038 555.1901 180.6605 185.6399 194.2937 257.2116 593.9137 

SSFS 17.87429 18.29358 20.10083 25.63656 43.30435 67.67842 67.6895 68.11921 72.28581 96.83541 

FCSC 86.11596 86.75239 81.43751 72.84799 78.38543 125.0839 170.3379 161.1926 167.8737 168.8615 

 λ3 λ4 

CCCC 210.748 244.9321 345.2892 410.3125 867.4346 338.3199 341.8672 370.3755 537.2904 945.4887 

SFSF 87.90647 110.0525 125.3257 176.4963 398.5875 106.9391 132.2547 211.7457 253.8962 467.7817 

FCFS 92.42914 89.37469 85.24898 83.85605 111.4689 171.8520 197.7925 168.3138 166.7883 155.9104 

SCCS 187.1361 211.0542 309.9721 352.5015 660.2399 304.1410 309.2529 312.3023 483.5947 755.3218 

SSFS 76.59384 85.27862 114.4634 147.4523 172.1221 145.2119 145.2121 145.2778 200.1428 271.6170 

FCSC 182.0540 183.4890 181.2291 226.0094 282.5007 183.5397 270.8641 297.7219 294.8528 422.5825 

 λ5 λ6 

CCCC 341.9944 358.7864 443.2165 698.6306 1051.804 351.7568 436.3425 499.2020 710.3138 1186.864 

SFSF 120.9903 157.3217 221.7576 362.0457 562.9763 195.3347 205.4961 241.8891 445.9221 683.4520 

FCFS 182.0962 280.3728 183.7474 180.1072 225.5711 202.5584 285.4316 191.2264 278.3223 265.8007 

SCCS 309.4246 325.2642 388.4482 585.8907 879.1489 322.0097 387.5521 460.2212 639.8285 1030.310 

SSFS 164.9899 174.8430 190.5357 249.8975 395.6439 173.7467 203.7651 248.9443 265.7500 543.4669 

FCSC 293.2176 308.0842 307.5305 327.5277 570.998 308.1393 316.056 335.8858 449.9125 589.2373 

Table 5 First six natural frequencies of FG sector plate for some boundary conditions and various values of sector angle (q=1, 

φ=0.3, η=0.05, kn=0, Gn=0, cn=0, Nrr=Nθθ=Nrθ=0) 

 

α α 

π/6 π/3 π/2 2π/3 π π/6 π/3 π/2 2π/3 π 

λ1 λ2 

SSSS 139.1051 59.79844 43.24999 37.43206 33.33858 260.5931 139.1051 81.9745 59.79844 43.24999 

CSCS 162.8114 85.61948 73.02566 69.16845 66.65796 298.3234 162.8114 105.2831 85.61948 73.02566 

CCFC 145.9804 40.24125 19.96302 13.5196 10.2112 278.0886 103.0003 48.28978 28.61967 14.93389 

FSSS 138.9076 55.33666 34.47104 25.90009 18.34432 256.9438 126.3340 80.13399 55.33666 34.47104 

 λ3 λ4 

SSSS 387.4693 153.3554 132.6089 94.80982 59.79844 413.4524 249.9397 139.1051 125.3873 81.97459 

CSCS 423.1554 205.0358 162.8114 117.6207 85.61948 472.9878 279.4669 189.5151 162.8116 105.2832 

CCFC 384.7309 112.1142 79.87236 52.95229 25.17241 429.1788 194.4231 90.83694 70.52016 39.67382 

FSSS 387.4692 138.9076 92.65823 78.08015 55.33666 391.876 226.6484 138.9076 93.70433 65.44466 

 λ5 λ6 

SSSS 592.3029 260.5931 182.2421 139.1053 108.6608 606.2487 295.7730 209.9052 153.3554 120.2571 

CSCS 636.2839 298.3234 228.1704 184.3451 131.4317 692.1029 375.2469 237.3374 205.0358 162.7490 

CCFC 603.3879 222.6986 131.7742 84.73651 57.68649 620.2252 226.3481 145.7410 98.77285 64.64246 

FSSS 545.1456 249.936 166.0006 126.3340 80.13408 592.2986 256.9438 188.4585 138.9078 92.65823 
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decrease with increasing in value of the q that this result can 

be seen in Fig. 3. This figure shows that with increasing the 

value of the q, the modulus of elasticity decreases and mass  

 

 

density increases. An interesting result which can be 

derived from Table 3 is depicted in Fig. 4. This figure 

shows the ratio of the natural frequencies presented in Table 

3, to the corresponding values of the homogeneous ones 

(q=0). It is concluded from Fig. 3 that this ratio is 

independent from number of mode and external boundary 

conditions and decreases with increase in value of q. 

Fig. 5 depicts the effect of the kn and Gn on the first six 

natural frequencies of FG sector plate. It is seen that both 

Winkler and Pasternak coefficients cause to increase in the 

value of the natural frequencies. This figure shows that the 

effect of this coefficients decreases in higher modes. It can 

be justified by increasing number of nodes and inflection 

points in higher modes. 

The effect of the in-plane loads on the natural 

frequencies is investigated in Fig. 6. FGM annular sector 

plate resting on foundation and subjected to radial in-plane 

load is considered. Ratio of the first six frequencies to the 

corresponding values of a plate without radial in-plane load 

(Λi) are depicted versus the values of the dimensionless 

radial in-plane load; Similar graph is demonstrated in Fig. 7 

for circumferential in-plane load. As shown in these figures 

for some boundary conditions, tensile loads increase all  

  

  

  

Fig. 5 First six natural frequencies of simply supported FG sector plate on foundation for various values of foundation 

coefficients (q=1, φ=0.2, α=π/2, η=0.1, cn=0, Nrr=Ntt=Nrt=0) 

 
Fig. 4 Ratio of the natural frequencies presented in Table 

3 to the corresponding values of the homogeneous ones 

(q=0) 

535



 

Mehdi Mohammadimehr, Hasan Afshari, M. Salemi, K. Torabi and Mojtaba Mehrabi 

 

 
frequencies and compressive ones leads to decrease in all 

frequencies. It should be mentioned that as compressive 

loads lead first frequency to zero, corresponding form of 

buckling will be happened. In order to study about shear 

load, consider FGM annular sector plate resting on 

foundation and subjected to in-plane loads as N0
rr=N0

θθ=10. 

Ratio of the first six frequencies to the corresponding values 

of a plate without shear in-plane load (Λi) are depicted in 

Fig. 8 versus the values of the dimensionless shear in-plane 

load; As shown shear force leads to either increase or 

decrease in frequencies; but this figure shows an interesting 

result that for plates whose radial boundary conditions are 

same, there is no difference in direction of the shear force 

and in other cases, direction of the shear force effects on the 

natural frequencies. 

Tab le  6  sho ws  the  v a lu e  of  the  Ω𝑖 =  𝜂𝜆𝑖 =

𝑎𝜔𝑖√12(1 − 𝜐2)𝜌𝑚/𝐸𝑚  for various values of thickness 

ration (η) and some boundary conditions. As shown, all of 

the natural frequencies increase with increasing in value of 

the thickness. Also, corresponding mode shapes are  

 

 

depicted in Fig. 9 for η=0.05. It should be mentioned that as 

value of the η increases, accuracy of the Kirchhoff’s theory 

decreases. 

In order to study about the effect of the damping of the 

foundation on the frequencies, FGM annular sector plate 

resting on a viscous foundation and subjected to in-plane 

loads is considered; Tables 7-8 show the real and imaginary 

parts of the first six dimensionless frequencies versus values 

of cn for some boundary conditions. These tables reveal that 

as value of the damping coefficient increases, value of the 

frequencies decreases to zero and rate of the attenuation 

increases; As is anticipated, in comparison with higher 

modes, lower ones vanish for smaller values of damping 

coefficients. Because of increasing number of nodes in 

higher modes, the effect of the damping coefficients for 

higher frequencies is less than its effect on the lower ones. 

In order to propose a graphical view, Fig. 10 shows the 

variation of the ratio of the first six frequencies to the 

corresponding frequencies of a plate on a non-viscous 

foundation (cn=0), denoted by (Λi) versus values of cn for 

some boundary conditions. 

  

  

  

Fig. 6 First six natural frequencies of FG sector plate on foundation for various values of radial in-plane load (q=1, φ=0.3, 

α=π/3, η=0.05, kn=100, Gn=10, cn=0, Nθθ=Nrθ=0) 
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Fig. 7 First six natural frequencies of FG sector plate on foundation for various values of circumferential in-plane load (q=1, 

φ=0.3, α=π/3, η=0.05, kn=100, Gn=10, cn=0, Nrr= Nrθ=0) 
 

Table 6 Effect of the ratio of the thickness to the outer radius (η) on the first six natural frequencies of FG sector plate for 

some boundary conditions (q=1, φ=0.3, α=π/3, kn=100, Gn=10, cn=0, Nrr=Nθθ=Nrθ=10) 

 

η η 

0.005 0.01 0.02 0.05 0.1 0.005 0.01 0.02 0.05 0.1 

Ω1 Ω 2 

CCCC 0.587789 1.175391 2.349284 5.847195 11.51389 1.103965 2.207140 4.407975 10.91140 21.09569 

SCSC 0.479513 0.958883 1.916621 4.771644 9.40494 0.958194 1.915717 3.826069 9.472832 18.32691 

FCSC 0.478109 0.956076 1.911018 4.757842 9.378718 0.925569 1.850534 3.696251 9.157592 17.75614 

SFCF 0.271561 0.543089 1.085915 2.710194 5.387947 0.372583 0.745113 1.489806 3.717168 7.382510 

 Ω 3 Ω 4 

CCCC 1.178397 2.355881 4.704486 11.63615 22.43879 1.783660 3.565089 7.11241 17.47899 33.02483 

SCSC 0.973032 1.945392 3.885424 9.621259 18.62338 1.612077 3.222205 6.428881 15.80799 29.91957 

FCSC 0.970638 1.940609 3.875904 9.59824 18.58211 1.458667 2.915863 5.820002 14.34936 27.38360 

SFCF 0.693375 1.386509 2.771093 6.894314 13.55713 0.780434 1.560481 3.117869 7.741167 15.11718 

 Ω 5 Ω 6 

CCCC 1.845161 3.687916 7.356677 18.06642 34.05926 2.039326 4.075687 8.127775 19.92017 37.32757 

SCSC 1.660424 3.318735 6.620636 16.26498 30.68467 1.671932 3.341667 6.66585 16.36862 30.87096 

FCSC 1.613018 3.224089 6.432661 15.81767 29.9406 1.661917 3.321757 6.626972 16.28626 30.77359 

SFCF 0.918554 1.836616 3.669312 9.105492 17.74898 1.22277 2.444644 4.882133 12.08223 23.34146 
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Fig. 8 First six natural frequencies of FG sector plate on foundation for various values of shear in-plane load (q=1, φ=0.3, 

α=π/3, η=0.05, kn=100, Gn=10, cn=0, Nrr=Nθθ=10) 

SFCF FCSC SCSC CCCC 

 

  
 

 
 

 
 

 
 

  

 

 
 

 
 

Fig. 9 Mode shapes of FG annular sector plate described in Table 6 for η=0.05 

538



 

Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM 

 

  

Table 7 Effect of the damping coefficient on the first six frequencies of FG sector plate for some boundary conditions (q=1, 

φ=0.2, α=π, η=0.05, kn=100, Gn=10, Nrr=Nθθ=Nrθ=10) 

cn 0 10 30 70 120 0 10 30 70 120 

 Im (λ1) Im (λ2) 

SSSS 37.30479 36.66312 31.05614 0 0 48.97976 48.4947 44.42394 9.06868 0 

CCCC 59.55212 59.15291 55.85662 34.99186 0 72.14819 71.82041 69.14222 53.78677 0 

CSSC 44.07251 43.5312 38.93071 0 0 54.54698 54.11215 50.49886 25.69399 0 

SSCC 50.35201 49.87894 45.91924 14.55719 0 64.97286 64.60852 61.61624 43.68134 0 

 Im (λ3) Im (λ4) 

SSSS 67.50955 67.16044 64.29927 47.47377 0 90.92381 90.66668 88.58275 77.32523 39.28578 

CCCC 93.12486 92.87268 90.83007 79.83689 43.79471 120.1174 119.9234 118.3603 110.2126 87.88483 

CSSC 72.50953 72.18479 69.5323 54.36196 0 96.21436 95.97156 94.00655 83.49063 50.3749 

SSCC 87.02869 86.75868 84.56753 72.62682 28.5782 113.9121 113.7074 112.0568 103.4091 79.17132 

 Im (λ5) Im (λ6) 

SSSS 105.0544 104.8326 103.0411 93.57014 65.82476 118.0911 117.8948 116.3125 108.054 85.29324 

CCCC 148.3023 148.1459 146.8891 140.4364 123.7698 151.4088 151.2563 150.0302 143.743 127.5751 

CSSC 121.6877 121.4967 119.9576 111.9451 90.10351 124.1257 123.9391 122.4359 114.6245 93.49248 

SSCC 129.2328 129.053 127.6053 120.1051 100.0637 144.4105 144.2504 142.9638 136.3483 119.1736 

           

  

  

  
Fig. 10 Effect of the damping coefficient on the first six frequencies of FG sector plate for some boundary conditions (q=1, 

φ=0.2, α=π, η=0.05, kn=100, Gn=10, Nrr=Nθθ=Nrθ=10) 
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Fig. 11 Buckling loads of simply supported FG sector plate on foundation for various values of foundation coefficients 

(q=1, φ=0.3, α=π/3, η=0.05, cn=0) 

Table 8 Effect of the damping coefficient on the damping rate of the first six frequencies of FG sector plate for some 

boundary conditions (q=1, φ=0.2, α=π, η=0.05, kn=100, Gn=10, Nrr=Nθθ=Nrθ=10) 

cn 0 10 30 70 120 0 10 30 70 120 

 Re (λ1) Re (λ2) 

SSSS 0 -6.88931 -20.6679 - - 0 -6.87613 -20.6284 -48.1329 - 

CCCC 0 -6.88391 -20.6517 -48.1874 - 0 -6.86955 -20.6087 -48.0869 - 

CSSC 0 -6.88626 -20.6588 - - 0 -6.87378 -20.6213 -48.1165 - 

SSCC 0 -6.88597 -20.6579 -48.2018 - 0 -6.87114 -20.6134 -48.098 - 

 Re (λ3) Re (λ4) 

SSSS 0 -6.85682 -20.5704 -47.9977 - 0 -6.83321 -20.4996 -47.8325 -81.9986 

CCCC 0 -6.84868 -20.546 -47.9408 -82.1846 0 -6.82339 -20.4702 -47.7638 -81.881 

CSSC 0 -6.85478 -20.5643 -47.9835 - 0 -6.83108 -20.4932 -47.8176 -81.9731 

SSCC 0 -6.85021 -20.5506 -47.9515 -82.2029 0 -6.82513 -20.4754 -47.7759 -81.9019 

 Re (λ5) Re (λ6) 

SSSS 0 -6.82293 -20.4688 -47.7605 -81.8751 0 -6.80613 -20.4184 -47.6429 -81.6735 

CCCC 0 -6.80823 -20.4247 -47.6578 -81.6996 0 -6.79523 -20.3857 -47.5666 -81.5427 

CSSC 0 -6.81566 -20.447 -47.7097 -81.7882 0 -6.80397 -20.4119 -47.6278 -81.6476 

SSCC 0 -6.81521 -20.4456 -47.7065 -81.7828 0 -6.79668 -20.39 -47.5768 -81.5604 

   

137.5454cr

rN =
 

144.3611cr

tN =
 

323.1171cr

rtN =
 

Fig. 12 Buckling modes of simply supported FG annular sector plate described in Fig. 9 for kn=100, Gn=10 

540



 

Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM 

 

Results for the stability analysis are similar to the results 

of vibration analysis; In other words, each parameter which 

leads to increase (decrease) in natural frequencies, increases 

(decreases) the critical buckling loads, therefore, all results 

about the effect of the discussed parameters such as power-

law exponent, ratio of radii, thickness of the plate, sector 

angle and Winkler and Pasternak coefficients of foundation 

on the natural frequencies, can be obtained for buckling 

loads. For example, the effect of elastic foundation on the 

critical buckling loads is investigated in Fig. 11 for a simply 

supported annular sector plate. As shown, both Winkler and 

Pasternak coefficients increase value of the critical buckling 

loads. Also, buckling modes are depicted in Fig. 12 for 

kn=100 and Gn=10. This figure demonstrates the high 

accuracy of the proposed method in satisfying boundary 

conditions. 
 

 

7. Conclusions 
 

Vibration and stability analysis of FG annular thin 

sector plate resting on visco- elastic Pasternak foundation 

and subjected to normal and shear in-plane loads presented 

using GDQM. First, the governing equation was derived 

using Hamilton’s principle and then was solved numerically 

using GDQM. Natural frequencies were obtained and 

compared with the reported results of other researchers. 

Comparison of the results showed the accuracy and 

versatility of the proposed GDQM. Moreover, the 

numerical results revealed that ratio of the frequency of FG 

annular sector plate to the corresponding values of 

homogeneous plate are independent from boundary 

conditions and frequency numbers. Numerical results also 

showed that natural frequencies increase with increasing the 

inner to outer radius ratio in most kinds of boundary 

conditions except for cases which inner edge is free. It also 

concluded for all boundary conditions that as value of the 

sector angle and value of the thickness ratio increase, the 

value of the frequencies decreases. Numerical examples 

revealed that the Winkler and Pasternak coefficients of the 

foundation increases value of frequencies and damping 

coefficient leads to decrease in them; It also was shown that 

all effects of foundation are stronger for lower modes. 

Study about normal in-plane loads showed that for all 

boundary conditions, tensile loads increase all of the natural 

frequencies and compressive ones leads to decrease in 

them. Also, it was concluded that shear in-plane force leads 

to either increase or decrease in natural frequencies and it 

was shown that for plates whose radial boundary conditions 

are same, there is no difference in direct of the shear force 

and in other cases, direct of the shear force effects on the 

natural frequencies. Finally, it was shown that all 

parameters which lead to increase in the natural 

frequencies, increase the critical buckling loads and vice 

versa. 

It is noted that the results of this work acceptable for 

thin plates and they can be improved by using more 

accurate plate theories like first order shear deformation 

theory (FSDT) or third order shear deformation theory 

(TSDT). It can be considered as a good proposal for next 

studies.   
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