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1. Introduction 
 

Functionally graded materials (FGMs) are a novel 

generation of composites that exhibit continuous and 

smooth distribution in material characteristics from one 

surface to another, helping to reduce stress concentrations in 

laminated composites. The concept of FGM can be used 

effectively for a better management of the microstructure of 

the material in a beam/plate structure reinforced by CNT to 

improve the mechanical behavior. The addition of BNNT or 

CNT with FGM provides enhanced mechanical, electrical 

and thermal properties, as well as an additional advantage in 

achieving the desired properties by varying the distribution 

and composition of the BNNTs or CNTs (Liew et al. 2015, 

Mohammadimeh et al. 2016a, Mehar and Panda 2017, 

Bakhadda et al. 2018, Ghorbanpour Arani and Amir 2013). 

The design of micro and nano-electro-mechanical 

systems (MEMS / NEMS) at the micro or nano dimension 

requires the widely use of micro-structures with many 

complex behaviors. Thus, it is important to consider the 

scale influences in their mechanical responses. Wang et al. 

(2015) presented a wave propagation study in nonlinear  
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curved single-walled CNTs by considering a nonlocal 

elasticity theory. By employing DQM, Murmu and Pradhan 

(2009) discussed the buckling behavior of a SWCNT 

embedded in an elastic medium based on nonlocal elasticity 

and Timoshenko beam model. Bellifa et al. (2017) proposed 

a nonlocal zeroth-order shear deformation theory for 

nonlinear post-buckling of nano-beams. Using a nonlocal 

Euler–Bernoulli beam model, Narendar et al. (2012) 

investigated the wave propagation in SWCNT under 

longitudinal magnetic field. Mohammadimehr et al. (2016b) 

presented both vibration and wave propagation study of 

twisted micro-beam via strain gradient theory. Zhang et al. 

(2014) proposed a new Timoshenko beam element based on 

the strain gradient elasticity theory for the investigation of 

the bending, dynamic and stability responses of 

Timoshenko micro-beams. Wang et al. (2013) analyzed the 

nonlinear vibration of embedded SWCNT with geometrical 

imperfection subjected to harmonic force by considering a 

nonlocal Timoshenko beam theory. Using differential 

quadrature method (DQM), Mohammadimehr et al. (2016c) 

studied the size-dependent influence on biaxial and shear 

nonlinear stability behavior of nonlocal isotropic and 

orthotropic micro-plate based on surface stress and 

modified couple stress models. Karami et al. (2018a) 

presented a nonlocal strain gradient 3D elasticity theory for 

anisotropic spherical nano-particles. Based on a novel 
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Abstract.  In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by 

various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory 

(MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and 

FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress 

are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations 

of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy 

method and Hamilton’s principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different 

parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, 

slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale 

parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results 

indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus 

the non-dimensional nonlinear frequency of the micro structure reduces gradually. 
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nonlocal strain gradient higher order shell theory, Karami et 

al. (2018b) proposed a variational formulation for wave 

dispersion in anisotropic doubly-curved nano-shells. 
Investigations on the bending, vibration and buckling 

response of composite structures reinforced by BNNTs or 
CNTs are one of the considerable topics in structural 
mechanics. Vaccarini et al. (2000) provided mechanical and 
electronic properties of CNTs and BNNTs. Mosallaie 
Barzoki et al. (2012) considered the electro-mechanical 
torsional buckling of a piezoelectric polymeric shell 
reinforced by double walled boron nitride nanotubes 
(DWBNNTs). The results of their research showed that the 
buckling strength increases substantially as harder foam 
cores are employed. Nirmala and Kolandaivel (2007) 
investigated structure and electronic properties of armchair 
BNNTs as a function of tube diameter using density 
functional theory. The Young's moduli and the Poisson's 
ratio of the boron-nitride crystals determined by the 
continuum approach were comparable to both experimental 
and theoretical ones by Oh (2011s). Salehi-Khojin and Jalili 
(2008) studied the stability of BNNT reinforced 
piezoelectric polymeric composites under electrothermo-
mechanical loadings. Mohammadimehr et al. (2015) 
investigated the dynamic behavior of visco-elastic double-
bonded polymeric nano-composite plates reinforced by FG-
SWCNTs employing MSGT, sinusoidal shear deformation 
model and meshless technique. Using finite element 
method, Mohammadimehr and Alimirzaei (2017) discussed 
the buckling and free vibration response of tapered FG- 
CNTRC micro Reddy beam subjected to longitudinal 
magnetic field. Mohammadimehr and Alimirzaei (2016) 
presented nonlinear static and vibration investigation of 
Euler-Bernoulli composite beam model reinforced by FG-
SWCNT by considering initial geometrical imperfection via 
FEM. Yas and Samadi (2012) analyzed the dynamic and 
buckling behavior of CNT-reinforced composite 
Timoshenko beams resting on elastic foundation. Heshmati 
and Yas (2016) studied the dynamic response of FG multi-
walled carbon nanotube-polystyrene nano-composite beams 
under multi-moving loads. Mohammadimehr et al. (2016) 
employed a modified strain gradient Reddy rectangular 
plate model for biaxial stability and bending investigation 
of double-coupled piezoelectric polymeric nano-composite 
reinforced by FG-SWNT. Mohammadimehr et al. (2013) 
studied flexural static, buckling, and dynamic behaviors of 
MSGT micro-composite Reddy plate reinforced by FG-
SWCNTs with temperature-dependent material properties 
subjected to hydro-thermo-mechanical loadings by 
employing DQM. Ghorbanpour Arani et al. (2015) 
discussed the surface stress and agglomeration influences 
on nonlocal biaxial stability polymeric nano-composite 
plate reinforced by CNT by utilizing various formulations. 
Liew et al. (2014) analyzed post-buckling of carbon 
nanotube-reinforced FG cylindrical panels under axial 
compression via a meshless approach. Yas and Heshmati 
(2012) presented a dynamic investigation of FG nano 
composite beams reinforced by randomly oriented CNT 
subjected to a moving load. Moradi et al. (2013) analyzed 
the dynamic behavior of FG nano-composite cylinders 
reinforced by CNT by a mesh-free method. Zhang and 
Selim (2015 and 2017) used element-free improved moving 
least square (IMLS)-Ritz method developed for studying 
vibration analysis of CNT-reinforced thick composite plates 

based on Reddy’s higher-order shear deformation theory. 
Also, numerical methods have been used to calculate the 
normal stress in laminated carbon nanotube-reinforced 
functionally graded composite plates (2016a), piezoelectric 
and anisotropic multilayer composites in Reddy's plate 
(2016).  Zhang et al. (2013, 2016b, 2016c and 2016d) and 
Zhu et al. (2014) studied thermal and mechanical analysis 
of functionally graded plates using a numerical method. 
Also, some researchers worked about composite, nano and 
micro composite and various size dependent effect in the 
literature (Ghorbanpour Arani et al., 2011a, b, 2012; 
Mohammadimehr and Rahmati, 2013, Mohammadimehr et 
al. 2010, 2013, 2016f, 2017a, b,c). 

Although nonlinear analysis is studied widely in micro-
composite beam, to date no report has been found in the 
literature on nonlinear analysis of the embedded 
viscoelastic micro composite beam with initial geometrical 
imperfection using FEM. This research has the aim to 
investigate, the nonlinear static, buckling and vibration, 
analysis of micro composite beam reinforced by various 
distributions of BNNT using MSGT. In order to present a 
realistic model, the material properties of the system are 
assumed to be viscoelastic which are characterized by using 
Kelvin Voigt model. Timoshenko beam theory is applied for 
obtaining the motion equations. Finally, using FEM, the 
bending, buckling and natural frequencies of micro 
composite beam are calculated. Also the influences of the 
various parameters such as initial geometrical imperfection, 
different distributions of nanotube, damping coefficient, 
piezoelectric constant, slenderness ratio, Winkler spring 
constant, Pasternak shear constant, various boundary 
conditions and three material length scale parameters on the 
behavior of bending, buckling and vibration of non-linear 
micro composite beam are investigated. 
 

 

2. Geometry 
 

According to Fig. 1a, the Timoshenko micro composite 

beam under electro-thermo-mechanical loadings is 

considered with length L, width b and thickness h. This 

micro composite beam rested on elastic foundation with 

Winkler coefficient Kw and Pasternak shear coefficient Kg. 

Fig. 1b shows the various distributions of FG-SWBNNTs in 

micro composite Timoshenko beam. UD is uniform 

distribution of nanotube. USFG and SFG denote 

unsymmetrical and symmetrical functionally graded 

distributions of nanotube, respectively, that are famous to 

FG-V (functionally graded V distribution of nanotube) and 

FG-X (functionally graded V distribution of nanotube) and 

are assumed to reinforce the micro composite beam. 

Volume fraction for these distributions is defined as follows 

(Yas and Samad 2012, Yas and Heshmati 2012) 
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(1-b) 

WBNNT, ρBNNT and ρm are mass fraction of BNNT, density of 

BNNT and matrix, respectively. 
 

 

3. The extended rule of mixture 
 

According to the extended rule of mixture model, the 

effective Young’s modulus, shear modulus, Poisson’s ratio 

and mass density of FG-SWBNNT Timoshenko beams can 

be expressed as follows (Mohammadimehr et al. 2016, Yas 

and Heshmati 2012) 
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where 11

BNNTE
, 22

BNNTE
, 12

BNNTG
, BNNT


, BNNT


 and m
E

, m
G

,

m
 , ρm indicate the Young’s modulus, shear modulus, 

Poisson’s ratios and density of BNNT and matrix, 

respectively. (i 1,2,3)
i

 = denotes force transformation 

between FG-SWBNNTs and polymeric matrix. 
 

 

4. Governing equations of micro composite 
viscoelastic Timoshenko beam  
 

Displacements field of the FG-SWBNNT micro 

composite beam can be written as follows (Yas and 

Heshmati 2012, Adnan Elshafei 2013) 

1 0 1
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        ( , ) ( , )
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 
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= − + 

 

   
+ + +   

   

= =

 
(3) 

where u1, u2 and u3 represent components of displacement 

vector in x, y and z directions, respectively, and u and w 

denote the displacements on the mid-plane along x and z 

directions, respectively. Also ( , )x t  and ( , )x t  are the 

rotation angles of the cross-section.  

The coefficient of c0, c1, c2 and c3 for Timoshenko beam 

theory is defined as follows: 

0 1 2 30, 1, 0, 0c c c c= = = =
 (4a) 

Substituting Eq. (4a) into Eq. (3), the displacement filed 

for Timoshenko beam is obtained 
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Fig. 1 a) A schematic view of micro composite beam 

under electro-thermo-mechanical loadings embedded in 

an elastic foundation b) A schematic view of 

unsymmetrical and symmetrical functionally graded 

distributions of nanotube 
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By assuming large deformation of the imperfect FG-

SWBNNT micro-composite beam, the nonzero component 

of the von-Karman strain is approximately expressed as 

(Wang et al. 2015, Wang et al. 2013, Gu et al. 2019) 
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z
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w
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(5) 

where w0 is the initial geometrical imperfection. For 

imperfect beams, the initial geometrical imperfection w0 is 

assumed to be of the form similar to the deformed shape 

with w, and have w0 = μw, μ is the imperfection parameter. 
According to Kelvin–Voigt at real life, micro 

mechanical properties depend on the time variation. 
Therefore, visco-elastic model, Young’s modulus E and 
shear modulus G are replaced with the operator 
(Ghorbanpour Arani et al. 2014) 
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1
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(6) 

where g is damping coefficient.  

The constitutive equations of electro-thermo-mechanical 

beam model based on piezo-elasticity theory with 

considering Kelvin–Voigt model can be written as follows 

(Ghorbanpour Arani et al. 2011 and 2014) 

       
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(7) 

where σij and εkl denote the stress and strain tensors, 

respectively. Ek and c are the electric field and electric 

displacement vectors, respectively. cijkl, ekij, λij, ∈mk and λ𝑖
′  

state the elastic constants, piezoelectric coefficients, thermal 

expansion coefficients, dielectric, and piezoelectric, 

respectively. Then, using Hook’s law, stress-strain relations 

can be stated as follows 
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where Ex is the electric field in the x direction. The electric 

field versus the electric potential and Qij is defined as 

follows (Ghorbanpour Arani et al. 2011) 
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(10) 

The governing equations of micro composite 

viscoelastic Timoshenko beam based on minimum potential 

energy principle are obtained as follows: 

0
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t
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where 𝛿𝑈𝑆, 𝛿𝑊𝐸𝑥𝑡 , and 𝛿𝑇 are the virtual strain energy, 

the virtual work done by external forces, and the virtual 

kinetic energy, respectively. The variation of kinetic energy 

can be written as follows 
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(12) 

The governing electrodynamics Maxwell equations are 

written as follows 
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(13) 

where H is magnetic field vector and μ1 is the magnetic 

field permeability. The work done due to the external load 

such as the elastic medium, axial force, magnetic field, and 

distributed transverse load for micro-composite beam is 

described by (Yas and Samadi 2012) 

( )
2

2

2

1
d dA

2

1
( )

2

1

2

1

2

Ext E A L d

E E w g

A A

A M

A

L z

A

d

A

W W W W W

w
W F w A k w k w

x

w
W P dA

x

W f w dA

W qw dA

= + + +

  
= − = − − +  

 
 

= −



 = −




= −



 






 

(14) 

The virtual work done by the forces applied on the 

micro-composite beam can be expressed as 
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(15) 

where q, 𝑄𝑖
𝑒 , and Δ𝑖

𝑒  are the distributed transverse load, 

the element generalized forces, and element generalized 

displacements, respectively (Reddy 2004). 

According to the MSGT (Karami and Janghorban 2018, 

Lam et al. 2003), the strain energy US for micro-composite 

beam reinforced by various distributions of BNNT with 

initial geometrical imperfection is written as follows 
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Based on the MSGT, the dilatation gradient, γi, 

deviatoric stretch gradient, 𝜂𝑖𝑗𝑘
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, and symmetric rotation 
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Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM 

According to the constitutive equations for micro-

composite beam reinforced by various distributions of 

BNNT, the higher order stresses based on MSGT are 

considered as follows: 
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where l0, l1 and l2 are three material length scale parameters. 

Moreover, the parameters pi, 𝜏𝑖𝑗𝑘
(1)

, and mij represent the 

higher-order stresses; Also μ′ is shear modulus. Substituting 

Eq. (4) and (5) into Eqs. (17), the non-zero components of 

the dilation gradient vector, the deviatoric stretch gradient 

tensor, the symmetric part of the rotation gradient tensor are 

obtained. We use the principle of virtual displacements to 

develop the necessary weak statements of the TBT. The 

variation of strain energy based on MSGT can be obtained 

as follows: 

 0 0 0 0 0 0 0 0

, ,

0 , ,

0 0 0 0 0 1 1 1 1

, ,

2 3 3 1 1 4 1

5 5 5 2 5 5 5

1 2 8 2 2 3 3

2 5 5 5 5 5 5

L

s

x x xz x xyxxx xxx xyy xzz zzz xxz yyz

xx xx

xz xx xyxxz zzz xxz yyz xxx xxx xyy xzz

x x

U N u p u M w w

M M p p

          

       

   
= − + + − − − + −  − −   

   

   
+ − + +  − + − + + − −   

   



( )



0 0 0 0

, ,x ,

,

1 2 3 3
( ) (2 1)

2 5 5 5

x

x x xx xxxxxx xxx xyy xzz

x x

d
N w w p w w w

dx

D dx



      



 
− + + + + − − − +    

 

+

 

(19) 
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Substituting Eq. (20) into Eq. (19), the variation of 

strain energy for MSGT micro-composite beam reinforced 

by FG-SWBNNTs subjected to electro-mechanical loadings 

are obtained as follows: 
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Using Eq. (21) and separation of variables, for the 

nonlinear bending, buckling and free vibration analysis of 

micro-composite beams, a weak form may be derived from 

the dynamic form of the virtual work principle under the 

assumptions of the TBT reinforced by FG-SWBNNTs based 

on MSGT are obtained as follows: 
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5. Solving method  
 

In this paper, FEM is used to solve the governing 
equations of micro-composite beams. According to FEM, 
the axial displacement u, transverse deflection w, rotation 
ψx and electrical boundary condition φ are interpolated as 
follows (Chakraborty and Mahaptra 2002, Reddy 2004) 
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where Ni (i=1,…16) are the associated shape functions for 

axial, transverse, rotational and electrical degrees of 

freedom, respectively, that the following steps are 

considered to find the shape functions. 
The interpolation functions of displacement fields for 

the FE formulation are written as follows (Chakraborty et 
al. 2002) 
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Eq. (25) has twelve constants and only eight boundary 
conditions (four degrees of freedom at each node of the 
element). The four additional dependent constants can be 
expressed in terms of eight other independent constants by 
substituting Eqs. (25) into the governing equations of 
motion, so we have 
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By substituting Eq. (26) into Eq. (25), the displacement 
fields are derived as the following form 
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The equations of FEM displacements for an element of 
micro-composite beam reinforced by various distributions 
of BNNTs can be expressed as follows (Chakraborty et al. 
2002, Alimirzaei 2017) 
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Finally, we have 
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Finally, explicit form of shape functions is given in 

Appendix A.  

Using Eq. (24) and δu(x) = Nui(x), δw(x) = Nwi(x), δψ 

(x) = Nψi(x), and δφ (x) = Nφi(x) (Reddy 2004) into the 

weak form equations of micro-composite beam (i.e., (22-a)- 

(22-d)), respectively, the finite element formulations for the 

bending, buckling and free vibration analysis can be 

obtained. Using Eqs. (22) and (28) and separation of 

variables, the following governing equations of motion for 

micro-composite beam reinforced by FG-SWBNNTs based 

on MSGT are obtained as follows 

[M ]{q} [C ]{q} [k ]{q} [G ]{q} {f }
ij ij ij ij i

+ + + =
 

(31) 

In Eq. (31), [Kij], [Mij], [Cij] and [Gij] are the stiffness, 

mass and damping matrices, respectively which are defined 

in Appendix B. 
 

5.1 Equation of motion 
 

The equation of motion of the whole structure system is 

represented by 

0 0
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{qd} is generalized displacements coordinates vector, 

{qφ} is the generalized electric coordinate’s vector 

describing the applied voltages at the actuators, which Eq. 

(32) can be expressed as follows: 

        

      

dd d dd d dd d

d dd d d

M q D q K q

K q G q F
 

+ +

+   + = 
 (33) 

     
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d d

d d

K q K q f

q K f K q

   

  

−

  +   =   

  = −    

 (34) 

Substituting Eq. (34) into Eq. (33), the equations of 

motion can be derived as follows 

             dd d dd d m d dd d m
M q D q K q G q F+ + + =

 
(35) 

where 

   
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(36) 

➢ For static analysis, the formulation of micro 

composite Timoshenko beams can be obtained as 

    m d m
K q F=

 
(37) 

where [Km] and {Fm} are stiffness matrix and external 

distributed load vector, respectively. {qd} denotes 

displacement vector which is demonstrated as 

   
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1 1
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− −
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 (38) 

➢ Also the critical buckling load is obtained as the 

following form 

 ( )  0g

m M d
K P K q − = 

 
(39) 

➢ And, for vibration analysis, it can be rewritten as 
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d d
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(40) 

For solving the Eq. (40) and reducing it to the standard 

form of eigenvalue problem, it is convenient to rewrite Eq. 

(40) as the following first order variable as 
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(41) 

where [A], [0] and [I] are the state, zero and unitary 

matrices, respectively. The results are containing two real 

and imaginary parts. The imaginary part is corresponding to 

the system damping and the real part representing natural 

frequencies of the system. 
 

5.2 Linearization procedure 
 

The linearization process can be accomplished with two 

type techniques, namely the Picard (direct iteration 

procedure) or the Newton-Raphson's method. For checking 

the convergence behaviour of both the methods of 

linearization’s with hp-spectral methods, these methods 

were implemented. Some of the advantages of the Newton-

Raphson method are a faster convergence rate. The 

linearized problem with the Newton's method is represented 

as follows (Reddy 2004) 

          ( )
(r 1)(r 1) (r 1)

1
( ) R( )

r e ek F k
−− −     = −  = −     

(42) 

where the tangent stiffness matrix [k1] associated with the 

micro-composite beam element is calculated as follows 

 
 

 
(r 1)

1

R
k −

 
= − 

     

(43) 

The solution at the rth iteration is then given by: {∆} r= 

{∆} (r−1) + {δ∆}. 

For the check of the convergence criterion, it can be 

computed by using the increment of the solutions vector, 

i.e., {ΔU}, as follows (Reddy 2004) 

2

1

(r) 2

1

( U )

(U )

N

I

I

N

I

I

=

=







 

(44) 

Alternatively, the objective of the iteration process is to 

reduce this residual to a very small, negligible value,  

2

1

N

I

I

R
=


 

(45) 

The flow chart for nonlinear bending of micro-

composite beams is shown in Fig. 2.  
 

 

6. Numerical results and discussion 
 

The numerical results of nonlinear vibration, buckling 

and bending of micro-composite beam reinforced by FG-

SWBNNTs under the distributed load q = 10 μN/μm using 

FEM are presented. Mechanical properties of micro-

composite beam are given in Table 1(Mohammadimehr et 

al. 2016). Also ηi coefficients for different SWBNNTs 

volume fractions are shown in Table 2 (Moradi et al. 2013). 

All material length scale parameters and the height of 

micro composite beam (h) are considered to be equal to 

each other as l0= l1= l2=h=17.6 μm. Moreover, the width of 

micro composite beam (b) and the length of micro 

composite beam (L) are considered 2h and 20h, 

respectively.  
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Fig. 2 A computer flowchart of Matlab software for the nonlinear finite element analysis of micro composite Timoshenko 

beams 
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The obtained results for beam are compared with the 

obtained results by Yas and Samadi (2002). These results 

are listed in Tables 3-5. A good agreement is observed 

between FEM results (present work) and the obtained 

results by the other researchers. 

 

6.1 Bending and buckling of the micro-composite 
beam reinforced by FG-SWBNNTs 
 

Figs. 3(a) and (b) show the convergence of the non-

dimensional nonlinear deflection and critical buckling load 

with the number of elements for micro-composite beam. 

The obtained results prove the convergence of the predicted 

results of the present finite element model. It is observed 

from these figures that the number of elements required for 

convergence of the micro composite beam is equal to 10 

and 40 elements, respectively. 

Figs. 4(a) and (b) indicate the number of repeat 

procedures and error to achieve the convergence of micro-

composite beams. As can be seen from this curve, two 

different methods are used to examine the convergence of 

systems and both methods eventually converge to a point.  

 
 

According to this figure with increasing distribution 

transverse load of micro-composite beam, the number of 

iterations for convergence system increases. 
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Table 1 Material properties of SWBNNTs as reinforcement (Mohammadimehr et al. 2016) 

BNNT
V 

 11
(TPa)BNNTE

 
(GPa)

m
E

 3
( )

BNNT

kg

m


 
3

( )
m

kg

m


 
BNNT


 m


 2

( )
C

e
m  

11
 

0.17 1.8 3.59 2300 1220 0.34 0.34 0.95 1.1068e-8 

 

Table 2 ηi Coefficients of SWBNNTs (Moradi et al. 2013) 

BNNT
V 

 
1


 2


 3


 

0.12 0.137 1.022 0.7154 

0.17 0.142 1.626 1.1382 

0.28 0.141 1.585 1.1095 

 

Table 3 Dimensionless natural frequency of composite beam using TBT (L/h=15) 

*

CNT
v

 

Boundary 

condition 

 UD   FG-  

(USFG) 
  

FG-X 

(SFG) 
 

 
Yas and 

Samadi 

Present 

work 
 

Yas and 

Samadi 

 

 

Present 

work 
 

Yas and 

Samadi 
 

Present 

work 

0.12  
C-C  1.5085 1.506  1.4068  1.4060  1.6000  1.5956 

C-F  0.3764 0.376  0.3193  0.3199  0.4416  0.4415 

 

Table 4 Dimensionless critical buckling load of composite beam using TBT (L/h=15) 

*

CNT
v

 

Boundary 

condition 

 UD   FG-  

(USFG) 
  

FG-X 

(SFG) 
 

 
Yas and 

Samadi 

Present 

work 
 

Yas and 

Samadi 

 

 

Present 

work 
 

Yas and 

Samadi 
 

Present 

work 

0.12  
C-C  0.21395 0.21153  0.1819  0.1848  0.24593  0.24106 

C-F  0.03124 0.03522  0.0220  0.0203  0.04435  0.04913 

Table 5 Deflections of beam using (EBT) with L/h=100 and q = 1N / m 

Boundary condition Exact solution Present work 

C-C 0.10417 0.10420 

S-S 0.52083 0.52080 
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(b) 

Fig. 3 Number of elements for smart micro composite 

beam for a) Dimensionless nonlinear deflection b) 

Dimensionless critical buckling load 
 

 
(a) 

 

(b) 

Fig. 4 Error norm of FEM solution for nonlinear micro 

composite beam under distributed transverse load for  

a) 𝑞 =  100
𝜇𝑁

𝜇𝑚
 , b) 𝑞 =  10

𝜇𝑁

𝜇𝑚
 

 
(a) 

 

(b) 

Fig. 5 Effects of material length scale parameters on (a) 

dimensionless nonlinear deflection (b) dimensionless 

critical buckling load 
 
 

Fig. 5(a) and (b) show the effects of material length 

scale parameters on the dimensionless nonlinear deflection 

and the critical buckling load of the micro-composite beam 

reinforced by FG-SWBNNTs based on MSGT, MCST and 

CT. It is observed from this figure that considering material 

length scale parameters lead to increase stiffness of the 

micro-composite Timoshenko beam, therefore the 

dimensionless deflection reduces absolute. 

The effect of aspect ratio (L/h) on the nonlinear 

deflection ratio for different amplitudes of the waviness UD 

micro composite beam for C-C boundary condition by 

MSGT is shown in Fig. 6. According to Fig. 6, the 

deflection ratio decreases with an increase in the aspect 

ratio. Also, with increasing amplitude of the waviness, the 
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Fig. 6 The effect amplitudes of the waviness on the 

nonlinear maximum displacement for C-C boundary 

condition Timoshenko beam 

 

 

Fig. 7 Effects of various nanotubes on the dimensionless 

nonlinear deflection 
 

 

nonlinear deflection ratio decreases. Since the effect of 

geometrical imperfection parameter on the system is 

nonlinear, with increasing of this parameter, the nonlinear 

stiffness of system increases and rigidity linear system does 

not change. Under these conditions, the nonlinear deflection 

of system reduces. In addition, as the amplitude of waviness 

μ increases, the nonlinear are more sensitive to the von 

Kármán type nonlinearity 
2( )





w

x in Eq. (5). 

Figure 7 shows the effect of various nanotubes including 

BNNT and CNT for micro-composite beam on the 

dimensionless nonlinear deflection. It can be seen from this 

figure that the dimensionless nonlinear deflection for  

 

Fig. 8 Effects of FG-SWBNNT distribution types on the 

dimensionless critical buckling load 
 

 

Fig. 9 Influence of various boundary conditions on the 

dimensionless critical buckling load 
 
 

BNNT with considering the electric field is higher than that 

of for CNT with employing magnetic field. On the other 

hands, the micro-composite beam with considering BNNT 

becomes softer with respect to CNT.  

Fig. 8 displays the effects of various distribution types 

of FG-SWBNNT on the dimensionless critical buckling 

load of the micro-composite beam based on MSGT. 

According to this Figure, the critical buckling load 

decreases for all types of distribution with increasing the 

aspect ratio. It is obvious that the micro-composite beam is 

stiffer as reinforced by FG-X (SFG) distribution type rather 

than other distribution types (UD and FG-V (USFG)). Also 

it is observed that the value of dimensionless material 

length scale parameter plays more important role in the 

stiffness behavior of FG-SWBNNT micro-composite beam. 
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Fig. 10 The frequency ratio of micro composite beam for 

MSGT, MCST and CT 

 

 

Fig. 9 depicts the effects of various boundary conditions 

on the dimensionless critical buckling load of the micro-

composite beam reinforced by FG-SWBNNTs. In this 

figure, letter C, S, and F denote clamped, simply supported, 

and free boundary conditions in the edge of the micro-

composite beam. As it is observed from Fig. 9 that the 

dimensionless critical buckling load for C-C and C-F have 

the lowest and highest values, respectively. Because of the 

clamped boundary condition with respect to simply 

supported and free boundary conditions leads to increase 

stiffer of the micro-composite beam. 

 

6.2 Vibration of the micro-composite beam 
reinforced by FG-SWBNNTs 
 

Based on various theories such as MSGT, MCST and 

CT, frequency ratio of the micro-composite beam are 

depicted for C-C boundary condition beam in Fig. 10. It can 

be seen that the model based on MSGT predicts the 

maximum value of nonlinear frequency ratio among various 

types of size-dependent effect. Also with increasing of 

aspect ratio for L/h>8, the difference of frequency ratio 

between two cases increases and it cannot be ignored, while 

for L/h<8, this results is not noticeable. 

The effect of the elastic medium on the nonlinear 

frequency ratio is shown in Fig. 11. It is seen that for lower 

aspect ratio, a change of the elastic medium leads to 

increase the nonlinear frequency ratio of FG-SWBNNT 

micro-composite beam. It is noted that the elastic medium 

makes the FG-SWBNNT micro-composite beam model to 

be stiffer than without considering the elastic medium. Also 

in this figure, the slope of curves is not constant. These 

increases in the nonlinear frequency ratio versus the aspect 

ratio are found to be almost dependent on the change of the 

value of the elastic layer stiffness especially at higher 

values. At lower values of the elastic layer stiffness, this 

effect is not significant. 

 

Fig. 11 The influence of elastic medium coefficient on the 

nonlinear frequency ratio 

 

 
Fig. 12 The non-dimensional natural frequency versus the 

different structural damping coefficient for different 

theory 

 

 
In Fig. 12, the variation of normalized nonlinear 

frequency with structural damping coefficient of visco-

elastic micro-composite beam for classical and non-

classical theories is depicted. It can be seen that the 

obtained dimensionless frequency by non-classical theories 

tends to have a greater reduction than with respect to the 

classical theory for structural damping coefficient. Also It 

can be observed in this figure that the difference between 

various theories is more obvious in g < 4.  

Figs. 13 shows the first mode shape of buckling for 

various theories such as classical theory (CT), modified 

couple stress theory (MCST), and modified strain gradient 

theory (MSGT). 
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Fig. 13 The first mode shape of buckling for various 

theories 
 

 

Fig. 14 The second mode shape of vibration for various 

theories 
 

 

Also, Fig. 14 presents the second mode shape of 

vibration for various theories such as classical theory (CT), 

modified couple stress theory (MCST), and modified strain 

gradient theory (MSGT). 
 

 

7. Conclusions 
 

In this study, the nonlinear bending, buckling and 

vibration analysis of viscoelastic micro-composite beam 

reinforced by various distributions of BNNT with initial 

geometrical imperfection on elastic foundation is 

demonstrated. Then strain-displacement relations 

(kinematic equations) are calculated using the obtained 

displacement fields. MSGT is used to implement the size 

dependent effect at micro scale. Finally, the governing 

equations of motion for micro-composite beam are obtained 

using energy method and Hamilton’s principle. Nonlinear 

bending, critical buckling load and natural frequencies of 

micro-composite beam are calculated by employing FEM. 

Also, the effects of variation values of UD, FG-V and FG-X 

distributions of BNNT, amplitudes of the waviness, various 

boundary conditions, material length scale parameter, 

damping coefficient, piezoelectric constant and elastic 

foundation on nonlinear maximum deflections, critical 

buckling load and natural frequency are illustrated. The 

results of this research can be listed as follows: 

1. Number of elements required for convergence of 

the nonlinear bending and buckling micro-composite beam 

is equal to 30 and 40 elements, respectively. 

2. With increasing dimensionless material length 

scale parameter, the nonlinear non-dimensional natural 

frequency and critical buckling load increases. Also, the 

nonlinear natural frequency and critical buckling load for 

MSGT is more than two other theories including MCST and 

CT. Increasing dimensionless material length scale 

parameter leads to increase in stiffness of system, so the 

natural frequency increases.  

3. With increasing amplitude of the waviness, the 

nonlinear deflection decreases. So with increasing this 

parameter, the nonlinear stiffness of system increases and 

rigidity linear system does not change. 

4. Increasing of the elastic foundation coefficients 

leads to increase in non-dimensional natural frequency. 

5. With an increase in the BNNT volume fraction 

increases the nonlinear dimensionless natural frequency. 

Moreover, increasing BNNT volume fraction leads to 

increase in stiffness of micro composite beam model. 

6. The clamped boundary condition with respect to 

simply supported and free boundary conditions leads to 

increase stiffer of the micro composite beam. Thus the 

dimensionless critical buckling load increases and vice 

versa for dimensionless deflection of micro-composite 

beam. 

7. The nonlinear natural frequency and critical 

buckling load of micro-composite beam increases with an 

increase in the electrical field. Also, by increasing the 

imposed electrical field significantly increases the stability 

of the system that can behave as an actuator. 

8. Micro-composite beam becomes stiffer with 

decreasing aspect ratio and the non-dimensional 

displacement of micro-composite beam reduces. 

9. At specified value of aspect ratio, the 

dimensionless natural frequency and critical buckling load 

for FG-X micro-composite beam is more than the other 

state. 

10. Imposed external voltage is an effective 

controlling parameter for dynamic stability of system. 

11. The results revealed that the frequency was 

significantly influenced by the structural damping of the 

micro-composite beam, damping coefficient of elastic 

foundation. 
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➢ Element mass matrices 
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➢ The coefficient of stability matrix can be written as 
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➢ Element damping matrix 
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