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1. Introduction 
 

A sandwich-structured composite provides high bending 

stiffness as compared to the conventional material, that 

makes it more favourable in lightweight structure. Due to 

the large jump of material properties at the layer interfaces, 

the problem of delamination is generally observed in 

conventional sandwich structures. The concept of FGM is 

also employed in such sandwich structures to overcome this 

problem. The FGM is an inhomogeneous material, 

composed of two (or more) materials, organized with a 

view to having a smooth gradation in the desired direction. 

Koizumi (1997) used FGM in advance engineering 

structures experiencing elevated temperatures. Eslami et al. 

(2005) developed a general solution for the 1-D steady-state 

mechanical and thermal stresses in an FGM hollow thick 

sphere. Zenkour and Alghamdi (2008) analysed the 

functionally graded sandwich plate subjected to a thermal 

load. Static response of functionally graded cylindrical 

shells using the element-free kp-Ritz method was analysed 

by Zhao et al. (2009). An elastic solution for a sandwich 

panel with isotropic skins is presented by Kashtalyan and 

Menshykova (2009). A numerical 3D thermo-elastic 

solution for the functionally graded hollow cylindrical shell 

having piezoelectric layers subjected to asymmetric thermo-

electro-mechanical loads has been exhibited by Alashti and 

khorsand (2011). Higher order shear deformation model 

having four unknowns is studied for static analysis of 

functionally graded sandwich plate by Abdelaziz et al. 
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(2011). Merdaci et al. (2011) proposed two shear 

deformation theories for the analysis of the static behaviour 

of FGM sandwich plate. Their theories demonstrated the 

parabolic distribution of the transverse shear strains. 

Natarajan and Manickam (2012) considered a realistic 

variation in displacement along thickness direction in 

higher order model for the bending and flexure vibration 

b eh aviour  o f  FGM sand wich  p la te .  A ref in ed 

trigonometrical higher-order theory accounting transverse 

shear and the normal strain were used to discuss the 

bending behaviour of FGM sandwich plate by Zenkour 

(2013). Taj et al. (2014) have used Reddy’s higher order 

theory by incorporating a C0 FE formulation to study the 

behaviour of FGM skew shell panel. Bessaim et al. (2013) 

developed five unknown based shear deformation theory for 

the static analysis of FGM sandwich plate. The stresses in 

functionally graded doubly curved shells were calculated by 

incorporating differential quadrature method in the first 

order shear deformation theory by Tornabene and Viola 

(2013). An analytical solution is developed by Sayyad and 

Ghugal (2014) to account the effect of transverse shear and 

transverse normal for the bending analysis of isotropic, 

laminated composite and sandwich plates. Viola et al. 

(2014) used unconstrained third-order shear deformation 

theory for the static analysis of moderately thick 

functionally graded conical shells. Asemi et al. (2014) used 

classical theory for linear thermoelastic analysis of thick 

cone. Dai and Dai (2014) developed an analytical solution 

based upon classical shell theory for FGM cylindrical shell 

under thermomechanical loading. Ghannad and Gharooni 

(2014) used FSDT model to calculate stresses and 

displacement in thick FGM cylinders. Xiang and Liu (2016) 

used meshless global collocation method with nth-order 
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shear deformation theory for the static analysis of FGM 

sandwich plate. Hadji et al. (2016) proposed a new 

mathematical model based on FSDT for the static and 

dynamic analysis of FGM plate. Alipour and Shariyat 

(2017) investigated the free vibration analysis of sandwich 

plates with isotropic/orthotropic face sheet and different 

combinations of boundary conditions. Daouadji and Adim 

(2017) explored the behaviour of FGM sandwich plate 

using hyperbolic shear and normal deformation theory. 

Since casting and fabrication of conoids possessing 

singly ruled surface is quite easy, hence it is favoured in the 

construction industry. The advancements in composite 

technology have made it possible to design a strong and 

stiff composite has blossomed a new inspiration for 

researchers to study about conoidal shells. Conoids shells 

are esthetically appealing, structurally stiff and are used to 

cover the column-free large area in aircraft hangars, 

exhibition hall and industrial structures. A comprehensive 

study of bending response under various types of 

mechanical load is essential to access the optimal use of 

rhombic conoids. A combined variational approach was 

used by Hadid (1964) for the bending response of both 

simply supported and clamped elastic conoids. In his 

formulation, he modifies the shell equations (expressed in 

terms of displacement) in the ordinary differential equation 

using Kantorovich method. Ghosh and Bandyopadhyay 

(1990) and Dey et al. (1992) used finite element (FE) 

technique for the bending analysis of doubly curved 

isotropic shell and analysis of composite conoidal shell 

structure respectively. Finite difference method was carried 

out on the conoidal shell by Das and Bandyopadhyay 

(1993) for both experimental as well as theoretical 

investigation. Ghosh and Bandyopadhyay (1994) engaged 

their own formulation to examine the influence of cutouts 

on static analysis of conoidal shells. The bending analysis 

of stiffened conoids is studied by Das and Chakravorty 

(2009) using three noded beam element. Kumari and 

Chakravorty (2010) used FSDT for the study of bending 

response of delaminated conoids. The FE method was used 

by Bakshi and Chakravorty (2014) for the analysis of first 

ply failure occurs in laminated composite conoidal shell 

subjected to uniformly distributed loading. The free 

vibration analysis of rotating CNTRC truncated conical 

shell are studied by Heydarpour et al. (2014) using FSDT. 

Civalek (2017b, 2017a) is studied the free vibration and 

buckling behaviour of conical and cylindrical shell 

composites reinforced with CNT. Malekzadeh Fard and 

Baghestani (2017) explored the free vibration behavior of 

moderately thick doubly curved shell based on FSDT with 

classic boundary conditions. Jooybar et al. (2016) presented 

the vibration analysis of FG-CNTRC truncated conical 

panel with elastically restraint edges subjected to the 

thermal environment. Demirbas (2017) developed an elastic 

theory whereas Demirbas and Apalak (2017) used finite 

element method for thermal analysis of FGM plate 

subjected to in-plane constant heat flux.  
The literature review reveals that there has not been 

substantial work regarding the bending analysis of doubly 
curved FGM sandwich rhombic conoids. Therefore, an 
attempt has been made in the present paper to study the  
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Fig. 1 Geometry and surface equation of conoidal shell 
 
 

bending behaviour of FGM sandwich rhombic conoidal 
shell with the help of a proposed new mathematical model. 
The FE coding for the present new mathematical model is 
done by using a C0 nine noded FE with seven nodal 
unknowns at each node developed by authors. C1 continuity 
requirement associated with the present model is suitably 
circumvented. The present study facilitates the ease of 
bending analysis by finite element (FE) modelling, keeping 
in mind the processing time in computer and simplicity of 
approach. This study is the first step toward enhancing our 
understanding of bending problem of FGM sandwich 
rhombic conoidal shell, hence the present results may serve 
as a benchmark for future research in this field. 

 
 

2. Modelling and effective material properties 
 

2.1 Modelling of FGM rhombic conoidal shell 
 

A single layered FGM conoidal shell of sides a, b and 

thickness h are depicted in Fig. 1. The upper layer 
(x3 =  +ℎ/2) of the shell surface is ceramic rich; while the 

bottom portion (x3 =  −ℎ/2) of the shell surface is metal 

rich as shown in Fig. 2(a), with a gradation zone having a 

smooth variation of material properties in between the two 

surfaces.  

Using the power law, the effective properties of the 

FGM rhombic conoidal shell at any point in thickness 

coordinate can be stated as 

( ) ( ) ( )3 3 3x x xc c m mP PV P V= +
 

(1) 

where 𝑉𝑐(x3) = (
1

2
+

x3

ℎ
)

𝑛
, (0 ≤ 𝑛 ≤  ∞)  

and ( ) ( )3 3x x 1c mV V+ =  

(2) 

Once the volume fraction index of material constituents 
is known, the Young’s modulus of the FGM shell at any 
point ‘x3’ can be calculated as per the rule of mixture. 

3 3 3(x ) (x ) (x )c c m mE E V E V= +
 (3) 
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(a) FGM conoidal shell 

 

b) FGM Type-I sandwich conoidal shell having 

homogenous core 

 

(c) FGM Type-II sandwich conoidal shell having FGM core 

Fig. 2 Thickness scheme of FGM conoidal shell and 

sandwich conoidal shell 
 

 

Where, Em and Ec are the material properties of metal and 

ceramic respectively, Vc and Vm are the volume fraction of 

ceramic and metallic component respectively and n is the 

volume-fraction index. 
 

2.2 Modelling of FGM sandwich rhombic conoidal 
shell Type-I 

 

Fig. 2(b) shows the thickness of the FGM sandwich 

shell having ceramic rich core portion while the top portion 

and bottom portion is occupied by FGM. Since the material 

properties of the rhombic sandwich conoidal shell are 

different in each layer, the effective material properties as 

Young’s modulus of any layer can be calculated as 

3 3 3(x ) (x ) (x )i i

c c m mE E V E V= +
 (4) 

where 𝑉𝑐
𝑖 and 𝑉𝑚

𝑖  is the volume fraction of ceramic and 

metallic constituents of the ith layer, respectively. 

The volume fraction of each layer from top to bottom is 

defined by the following expressions 

 1 3 3

3 2 3

2 3

x
,   x ,

n

c

h
V h h

h h

 −
=  

−   

(5) 

 2

3 1 21,   x ,cV h h= 
 

(6) 

 3 3 0

3 0 1

1 0

x
,   x ,

n

c

h
V h h

h h

 −
=  

−   

(7) 

The thickness ratio taken for the present study of each 
layer is 1-0-1, 1-1-1, 1-2-1, 2-1-2 and 2-2-1. For the 1-2-1 
FGM conoidal shell, the core layer is made of twice the 
thickness of the top and bottom layer, i.e. h2 = h/4 and h1 = 
-h/4. For the thickness ratio 1-1-1, the thickness of the core 
is same as the top layer and bottom layer, h2 = h/6 and h1 = 
-h/6. For other thickness ratios, the value of h1 and h2 can be 
calculated same as the above. 

 

2.3 Modelling of FGM sandwich rhombic conoidal 
shell Type-II 

 

In the second type of FGM sandwich shell shown in Fig. 
2 (c), the top and bottom layer of the shell is occupied by 
ceramic and metal respectively. By using this a sandwich 
shell with FGM core and isotropic skin having smooth 
variation across the thickness can be modelled. This type of 
arrangement of layer gives the minimum stress 
concentration at the layer interface. The volume fraction of 
each layer can be expressed by the following expression. 

 1

3 2 30,   x ,cV h h= 
 

(8) 

 2 3

3 1 2

2 1

x
0.5 ,   x ,

n

cV h h
h h

 
= +  

−   

(9) 

 3

3 0 11,   x ,cV h h= 
 

(10) 

The thickness ratio taken for the present study of each 
layer from top to bottom is 1-8-1. For the thickness ratio 1-
8-1, the thickness of core (layer 2) is 8 times the thickness 
of the top layer, h2 = h/16 and h1 = -h/16.  
 
 

3. Mathematical formulation of the problem 
 

3.1 Assumed displacement field and strains 
 

To derive the mathematical model, the displacement 
fields for FGM shell is considered on the basis of the third 
order shell theory and are as follows: 

1

1

1 1

2

2

2 2

3

1 2 3 0 1 2 3 x 1 2

x

2 3

3 x 1 2 3 x 1 2

3

1 2 3 0 1 2 3 x 1 2

x

2 3

3 x 1 2 3 x 1 2

1 2 3 0 1 2

x
u(x , x , x ) 1 (x , x ) x (x , x )

x (x , x ) x (x , x )

x
v(x , x , x ) 1 (x , x ) x (x , x )

x (x , x ) x (x , x )

w(x , x , x ) (x , x )

u
R

v
R

w



 



 

 
= + + 
 
 

+ +

 
= + + 
 
 

+ +

=
 

(11) 
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where the middle section is taken as reference for 

material coordinates (x1, x2, x3). u, v, w denoted as the 

displacements of a point along the (x1, x2, x3) coordinates, 

u0, v0, w0 are corresponding displacements on the mid-

plane. 𝜃x1
 and 𝜃x2

 are the bending rotations normal to the 

mid-plane about the x2 axis and x1 axis, respectively. The 

functions 𝜉x1
, 𝜉x2

, 𝜁x1  and 𝜁x2
 are higher order terms of 

Taylor’s series expansion at the mid-plane of the conoidal 

shell. By imposing the boundary condition (transverse shear 

strain at top and bottom = 0) in Eq. (11), the function 

𝜉x1
, 𝜉x2

, 𝜁x1 and 𝜁x2
 will be calculated as 

1 2

1 1

1 2

2 1

1 2

x x

0
x 2

1 x x

0
x 2

2 x x

0,  

4
,  

x3

4

x3

x

x

vw

Rh

uw

Rh

 

 

 

= =

 
 = − + −
 
 

 
 = − + −
 
   

(12) 

Replacing the unknown in Eq. (11), we obtain 

1

1

1 2

2

2

1 2

3

3 3

1 2 3 0 x 3 2

x

3 3

0 3 3

02 2

1 x x

3

3 3

1 2 3 0 x 3 2

x

3 3

0 3 3

02 2

2 x x
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x 4 x
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3

4 x 4 x

x 3 3

x 4 x
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3
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u
R h

w
v

h h R

v
R h

w
u

h h R

w





   
= + + −    

  

  
− +         

   
= + + −    

  

  
− +         

=
 

(13) 

For omitting C1 continuity problem associated with 

TSDT, the out of plane derivatives are replaced by the 

following relations 

1 2

0 0
x x

1 2

,  
x x

w w
 

 
= =
 

 

(14) 

The final form of displacement filed expression owning 

C0 continuity is written as 

1

1
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2
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(15) 

Hence, the field variables per node taken in the present 

investigation are u0, v0, w0, 𝜃x1
, 𝜃x2

, 𝛹x1
and 𝛹x2. 

Mathematically, it may be expressed as 

   
1 2 1 20 0 x x x0 x, , , , , ,

T
u v w    =

 
(16) 

where {𝛿} is termed as displacement vector. 

The strain can be written as  

   
1 2 1 2 1 3 2 3x x x x x x x x, , , ,

T
     =

 
(17) 

Further, the strain vector {ε} can be correlated with 

global displacement vector {X} by means of the following 

relationship. 

    B X =
 (18) 

Here [B] is termed as strain-displacement matrix which 

contains the derivatives of shape functions. 

The in-plane and transverse shear strains are 

1

1

2
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1 1 2
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x

1 x

x

2 x
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1 2 x x
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R

v w
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v u w
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v uv w
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= +



= +


 
= + +
 

 
= + − −
 

 
= + − −
 

 

(19) 

The strain relationship can be written as: 

11

2 2

1 2 1 2

0 1 3
x 1 1x

3
0 1 33

x x 3 2 22

1 30
x x 3 2x x

4x
x

3

k k

k k
h

k k



 

 

      
             

= + −       
       
               

(20) 

1 3 1 3

2 3 2 3

0 22
x x x x 43

2 20
x x 5x x

4x k

h k

 

 

         
= −     

           

(21) 

where  

1 2

1 2

1 2

1 2

0 00 0 0 0
x x

1 x 2 x

0 0 0 0
x x

1 2 x x

, ,
x x

2

x x

u w v w

R R

v u w

R

 



 
= + = +
 

 
= + +
 

 

(22) 

1 3 1

1 2

2 3 2

1 2

0 0 0
x x x

1 x x

0 0 0
x x x

2 x x

,
x

x

w v

R

w u
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(23) 
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1 2

1 2

2 1
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( ) ( )
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(27) 

 

 

3.2 Constitutive relationship 
 

The linear stress-strain constitutive relationship for the 

FGM conoidal shell are 

    Q =
 

(28) 

where the constitutive matrix 

 

 

11 12

21 22

33

44

55

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Q Q

Q Q

Q Q

Q

Q

 
 
 
 =
 
 
 
   

(29) 

where the term Qij can be obtained with the help of the 

Poisson’s ratio (ν) and Young’s modulus (E) which is a 

function of thickness coordinate.  

( ) ( )

( )
( )

3 3
11 22 12 212 2

3
33 44 55

x x
,  ,  

1 1

x

2 1

E E
Q Q Q Q

E
Q Q Q



 



= = = =
− −

= = =
+

 

(30) 

 

 

4. Finite element modelling 
 

4.1 Introduction 
 

For the present C0 finite element (FE) model, nine noded 

isoparametric Lagrangian element with seven degrees of 

freedom at each node is utilized in the present investigation. 

The shape function (interpolation function) is used to 

express the generalized displacement vector and element 

geometry at any point within an element as 

  ( ) 
9

1

,i i
i

N   

=

=
 

(31) 

  ( ) 
9

1 1

1

x , xi i
i

N  

=

=
 

(32) 

  ( ) 
9

2 2

1

x , xi i
i

N  

=

=
 

(33) 

The shape functions Ni of nine noded isoprametric 

Lagrangian element are described below. 

For corner nodes: 

( )( ) ( )( )1 3

1 1
1 1 ,  1 1

4 4
N N     = − − = + −

 

( )( ) ( )( )7 9

1 1
1 1 ,  1 1

4 4
N N     = − + = + +

 

For mid nodes: 

( )( ) ( )( )2 2 2 2
2 4

1 1
1 ,  1

2 2
N N     = − − = − −

 

( )( ) ( )( )2 2 2 2
6 8

1 1
1 ,  1

2 2
N N     = + − = − +

 

For centre node: 

( )( )2 2
5 1 1N  = − −

 

 

4.2 Skew boundary transformation of shell 
 

For rhombic shell (the plan is shown in Fig. 3), it is 

necessary to transform the element matrices from global to 

local axes because the edges of boundary elements are not 

parallel to the global axes of the conoidal shell. Therefore, a 

transformation matrix [T] is required to transform the 

element matrices from global to local axes.  

Transformation matrix 

 

 

c s 0 0 0 0 0

s c 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 c s 0 0

0 0 0 s c 0 0

0 0 0 0 0 c s

0 0 0 0 0 s c

T

− 
 
 
 
 

= − 
 
 

− 
 
   

(34) 

where c = cosα, s = sinα and α is known as skew angle. 
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Fig. 3 Plan view of rhombic shell 

 

 

4.3 Governing equation 
 

The strain energy may be expressed as 

    1 2 3

1
dx dx dx

2

T
U  = 

 
(35) 

By using the Eq. (28), the above expression can be 

represented as 

     1 2

1
dx dx

2

T
U D = 

 
(36) 

where, [D] = ∫[𝐻]𝑇[𝑄][𝐻]𝑑𝑥3  in which [H] is the 

matrix that contains the terms involving x3 and h. 

By utilizing Eq. (18) the stiffness matrix [K] is written 

as 

       1 2dx dx
T

K B D B=   
(37) 

 

 

5. Results and discussion 
 

In this section, the bending analysis of FGM sandwich 

rhombic conoidal shells are analysed under various type of 

mechanical loading. Parameters like thickness ratio, aspect 

ratio, hl/hh ratio, volume fraction index, skew angle and 

boundary conditions are also accomplished for numerical 

results. Unless otherwise stated, the following non-

dimensional quantities are considered in the forthcoming 

examples. 

The loading pattern used in the present analysis are 

written below: 

1 2
0 0

1 2
0

1 2
0

x x
,  sin sin ,  

x x
cos sin

x x
cos cos

q q q q
a b

q q
a b

q q
a b

 

 

 

   
= =    

   

   
=    

   

   
=    

     

Non-dimensional quantities used for FGM rhombic 

conoidal shell and FGM sandwich conoidal shell with 

homogenous core are: 

1 1

2 2

1 2 1 2

2
0

x x2 2
0 0

2

x x 2
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x x x x
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10 10
,  , , ,  
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w w

q a q a

a b h h
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= =  

 

 
=  

 

 
= − 

   

Non-dimensional quantities used for FGM sandwich 

conoidal shell with isotropic skins are: 

1 1

2 2

1 2 1 2

3

x x4
00

x x
0

x x x x
0

10
, , , ,  

2 2 2

, , ,  
2 2 2

0,0,
2

ch E a b h h
w w

q aq a

a b h h

q a

h h
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= =  

 

 
=  

 

 
= − 

                                                                   

The details of some of the boundary conditions used the 

present analysis: 

1. Clamped (CCCC): 

1 2 1 2x x x x 0u v w    = = = = = = =
, 

at x1 = 0, a and x2 = 0, b 

2. Simply supported (SSSS): 

𝑣 = 𝑤 =  𝜃x2
= 𝛹x2

= 0, at x1 = 0, a 

𝑢 = 𝑤 =  𝜃x1
= 𝛹x1

= 0, at x2 = 0, b 

3. Clamped and simply supported (CCSS): 

𝑢 = 𝑣 = 𝑤 =  𝜃x1
= 𝜃x2

= 𝛹x1
= 𝛹x2

= 0, at x1 = 0, a 

𝑢 = 𝑤 =  𝜃x1
= 𝛹x1

= 0, at x2 = 0, b 

 

5.1 Convergence and validation study 
 

In order to check the consistency and the stability of 

present FE results, three appropriate examples have been 

solved. No results are available for FGM sandwich conoidal 

shell in literature, hence the consistency of the present 

model has been checked by comparing dimensionless 

deflection for FGM sandwich plate and isotropic conoidal 

shell with available results in the literature. The following 

material properties of the FGM components used in present 

study are:  

FGM- 1 (Al/ZrO2): Ec = 151 GPa, Em = 70 GPa, νc = νm = 

0.3, ρc = 3000 kg/m3, ρm = 2707 kg/m3 

FGM- 2 (Al/Al2O3): Ec = 380 GPa, Em = 70 GPa, νc = νm = 

0.3, ρc = 3800 kg/m3, ρm = 3000 kg/m3 
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Example 1. In the present example, the convergence 

behaviour of the dimensionless maximum deflection of 

FGM-1 (Al/ZrO2) plate is examined for four power law 

indices (n = 0, 0.5, 1, ∞) and presented in Table 1. For this 

particular example, we used hl = 0 and hh = 0 in the present 

FE code of the FGM conoidal shell for converting it into 

FGM plate. Based on convergence study, it is found that at 

16 × 16 mesh size, the results are converging for the present 

nine noded isoparametric elements. From Table 1, it is 

noted that our numerical results are consistent with Ferreira 

et al. (2007). 

Example 2. Tables 2-3 represents the comparison of 

dimensionless transverse displacement and dimensionless 

axial stress of simply supported FGM sandwich plate. The 

results are calculated for FGM sandwich plate having an 

isotropic core. The value of the thickness ratio (a/h) is taken  

 

 

 

as 10. Different values of volume fraction index (n = 0, 1, 2, 
5 and 10) are taken for the comparison. The non-
dimensional deflection for various type of thickness scheme 
is compared with available results of different theories. This 
concurs well with the available results in the literature. 

Example 3. No results available in literature for FGM 

conoidal shell, hence present FE result of FGM conoidal 

shell are validated with isotropic conoidal shell results. The 

Poisson’s ratio ν = 0.15, hl/hh = 0.5, side-to-thickness ratio 

a/h = 19 and simply supported boundary condition is used 

to validate present result. Table 4 shows the validation of 

present FE formulation with Hadid (1964) and Bakshi and 

Chakravorty (2014).  

The validation study confirms the betterment of present 

FE result over Bakshi and Chakravorty (2014) as the 

present results are more close to elasticity results given by 

Hadid (1964). 

Table 1 The convergence study for non-dimensional maximum deflection of simply supported FGM-1 plate 

Mesh 
Volume fraction index 

Ceramic 0.5 1 Metal 

6x6 0.02480 0.03329 0.03680 0.05350 

8x8 0.02481 0.03331 0.03685 0.05352 

12x12 0.02482 0.03333 0.03688 0.05353 

16x16 0.02482 0.03333 0.03688 0.05353 

Ferreira et al. (2007) 0.0248 0.0330 0.0368 0.0536 

Table 2 Comparison of the dimensionless transverse central displacements of the FGM sandwich plate 

n 
Thickness 

scheme 

Abdelaziz 

et al. (2011) 

RPT 

Zenkour 

(2013) 

FSDPT 

Zenkour 

(2013) 

TSDPT 

Zenkour 

(2013) 

SSDPT 

Present 

0 1-0-1 0.19606 0.19607 0.19606 0.19605 0.19606 

 1-1-1 0.19606 0.19607 0.19606 0.19605 0.19606 

 1-2-1 0.19606 0.19607 0.19606 0.19605 0.19606 

 2-1-2 0.19606 0.19607 0.19606 0.19605 0.19606 

 2-2-1 0.19606 0.19607 0.19606 0.19605 0.19606 

1 1-0-1 0.32358 0.32484 0.32358 0.32349 0.33354 

 1-1-1 0.29199 0.29301 0.29199 0.29194 0.29686 

 1-2-1 0.27094 0.27167 0.27094 0.27093 0.27353 

 2-1-2 0.30631 0.30750 0.30632 0.30624 0.31316 

 2-2-1 0.28025 0.28168 0.28085 0.28082 0.28391 

5 1-0-1 0.40927 0.41120 0.40927 0.40905 0.40580 

 1-1-1 0.37144 0.37356 0.37145 0.37128 0.36403 

 1-2-1 0.33480 0.33631 0.33480 0.33474 0.32704 

 2-1-2 0.39182 0.39418 0.39183 0.39160 0.38582 

 2-2-1 0.34960 0.35123 0.34960 0.34950 0.34032 

10 1-0-1 0.41772 0.41919 0.41772 0.41750 0.41464 

 1-1-1 0.38551 0.38787 0.38551 0.38490 0.37778 

 1-2-1 0.34823 0.34996 0.34824 0.34119 0.33953 

 2-1-2 0.40407 0.40657 0.40407 0.40376 0.3984 

 2-2-1 0.36212 0.36395 0.34916 0.35577 0.35202 

RPT: refined plate theory; FSDPT: first order shear deformation plate theory; TSDPT: third order shear deformation plate 

theory; SSDPT: sinusoidal shear deformation plate theory 
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Table 4 Comparison of deflection (x10-2) of isotropic 

conoid under uniformly distributed load along x2/b = 0.50 

x1/a 

Bakshi and 

Chakravorty 

(2014) 

Hadid 

(1964) 
Present 

0.10 2.3680 2.5231 2.5621 

0.40 5.1557 4.6333 4.7609 

0.60 4.0510 3.5448 3.8575 

0.70 3.4129 3.3149 3.2970 

0.80 2.4809 2.5544 2.5949 
 

Table 5 Comparison of non-dimensional stress at the 

centroid of the top and bottom surface of simply supported 

FGM-2 plate 

Skew 

angle 

Maximum deflection Stress at top 

Kulkarni et 

al. (2015) 
Present 

Kulkarni et al. 

(2015) 
Present 

15 4.1890 4.1881 0.2694 0.2695 

30 2.9687 2.9658 0.2147 0.2147 

45 1.5337 1.5327 0.1397 0.1386 
 

 

Example 4. In this example, comparison of non-

dimensional deflection and stress of simply supported 

FGM-2 rhombic plate is presented in Table 5. The skew 

plate is ceramic. For different skew angle the maximum 

deflection and normal stress of skew plate were compared 

and it shows present results are again in good agreement 

with the published results with Kulkarni et al. (2015). 

 
 

5.2 Results and discussion 
 

To analyze FGM conoidal shells under various type of 

transverse loading, different composition of material 

constituents, different combination of boundary condition, 

numerous value of volume fraction index, side-to-thickness 

ratio, aspect ratio and hl/hh ratio are considered. 

Table 6 represent the dimensionless maximum 

deflection and their location of FGM-1 rhombic conoidal 

shell subjected to uniform loading. The results were 

computed for a/b = 1 and hl/hh = 0.25 (hl = 0.05 and hh = 

0.2). These numerical values revealed that as we move from 

n = 0 to n = 10, the deflection of the conoidal shell is 

increased and it may be attributed to the higher value of 

volume fraction index of the shell which lead to lesser 

ceramic content and thus reducing its stiffness. It is 

anticipated that there is nearly 32% increase in the 

maximum deflection of the FGM-1 rhombic shell for all 

skew angle as the volume fraction index changed from n = 

0 to n = 1. The maximum dimensionless deflection 

increased along with the thickness of rhombic shell while 

with an increase in skew angle, a decrease in dimensionless 

deflection is noticed. Due to the fact that the length of 

shorter diagonal is reduced when skew angle increases and 

shortening of diagonal leads to enhancement in stiffness of 

the rhombic shell thus the deflection reduces. Numerical 

results of non-dimensional stresses of FGM-1 rhombic 

conoidal shell subjected to uniform loading is presented in 

Table 7. 

Table 3 Comparison of the dimensionless axial stress (a/2, b/2, h/2) of the FGM square sandwich plate 

n Thickness scheme 
Zenkour (2013) 

FSDPT 

Zenkour (2013) 

TSDPT 

Zenkour (2013) 

SSDPT 
Present 

0 1-0-1 1.97576 2.04985 2.05452 1.99789 

 1-1-1 1.97576 2.04985 2.05452 1.99789 

 1-2-1 1.97576 2.04985 2.05452 1.99789 

 2-1-2 1.97576 2.04985 2.05452 1.99789 

 2-2-1 1.97576 2.04985 2.05452 1.99789 

1 1-0-1 1.53245 1.57923 1.58204 1.59447 

 1-1-1 1.38303 1.42617 1.42892 1.41904 

 1-2-1 1.28096 1.32309 1.32590 1.30662 

 2-1-2 1.45167 1.49587 1.49859 1.49777 

 2-2-1 1.27749 1.32062 1.32342 1.38722 

2 1-0-1 1.77085 1.82167 1.82450 1.79421 

 1-1-1 1.58242 1.62748 1.63025 1.58602 

 1-2-1 1.43580 1.47988 1.48283 1.43611 

 2-1-2 1.67496 1.72144 1.72412 1.68520 

 2-2-1 1.42528 1.47095 1.47387 1.54003 

10 1-0-1 1.96780 2.03036 2.03360 1.97430 

 1-1-1 1.83754 1.88376 1.88147 1.80937 

 1-2-1 1.65844 1.70417 1.64851 1.62762 

 2-1-2 1.92165 1.97126 1.97313 1.90572 

 2-2-1 1.61645 1.66660 1.61979 1.75485 

FSDPT: first order shear deformation plate theory; TSDPT: third order shear deformation plate theory; SSDPT: sinusoidal 

shear deformation plate theory 
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Fig. 4 Effect of skew angle on dimensionless axial stress 

of FGM-1 rhombic conoidal shell under uniform loading 

 

 

The dimensionless value of normal stress decreases with 

increase in skew angle of the conoidal shell. Value of 𝜎x1
 

approximately decreases by 95% when the skew angle 

changed from 15° to 45° for FGM rhombic conoidal shell. 

It can be seen from Fig. 4; the maximum dimensionless 

stress occurs at top of the rhombic conoidal shell. Sharply 

reduction in stress is noticed for smaller skew angle, as 

skew angle increases, very small reduction in stresses in the 

thickness direction was noticed.  

The non-dimensional deflection of the FGM-1 Type-I 

sandwich rhombic conoidal shell is presented in Table 8. 

Five cases of thickness scheme and volume fraction index 

(n = 0, 0.2, 0.5, 1 and 10) are used. The aspect ratio a/b = 1 

and minimum rise to maximum rise ratio hl/hh = 0.25 are 

selected. Similar to the rhombic conoidal shell, the 

dimensionless deflection of sandwich rhombic conoidal 

shell decreases with increase in skew angle and increases 

with increases in volume fraction index for all type of 

thickness scheme. 

 

 

It can be observed from Fig. 5 that the maximum 

deflection of the sandwich conoidal shell occurs at a 

different location, unlike plate structure where maximum 

deflection occurs at the midpoint. The negative value of 

deflection is noticed for skew angle more than 30° under 

sin-sin loading. 

The dimensionless stresses of FGM-1 Type-I sandwich 

rhombic conoidal shell for various value of thickness 

scheme are presented in Table 9. Fig. 6 shows the variation 

of normal stresses in thickness coordinate for various value 

of skew angles. It can be seen that when skew angle 

increases the stress variation along the thickness is reduced 

due to higher stiffness provided by skew angle. Effect of 

boundary condition on Type-I (1-2-1) sandwich rhombic 

conoidal shell made of FGM-1 is presented in Table 10. 

CCCC has the lowest deflection due to the stiffness of 

the boundary condition while CFCF has the highest 

dimensionless deflection. For all type of boundary support, 

the deflection decreases with increase in skew angle. The 

correlation between hl/hh ratio and dimensionless deflection 

of FGM-1 Type-I sandwich rhombic conoidal shell was 

tested in Table 11. Interestingly, for higher value of hl/hh 

ratio, lower value of dimensionless deflection is noticed 

irrespective of skew angle and loading pattern. The 

decrease in hl/hh ratio reduces the curvature of the lower 

end (hl) of the conoidal shell, due to this the stiffness of 

shell reduces, thus deflection increases. Also, maximum 

deflection is spotted in uniform loading while minimum 

deflection occurs when the Type-1 sandwich conoidal shell 

is subjected to cos-cos loading same as the rhombic 

conoidal shell. 

The variation of dimensionless deflection of Type-II (1-

8-1) sandwich rhombic conoidal shell made of FGM-2 is 

shown in Fig. 7 subjected to sin-sin loading, respectively. hl 

= 0.05, hh = 0.2 (hl/hh = 0.25) and a/h = 10 was used. A 

negative value of defection is noticed for skew angle more 

than 30° and more, due to nature of sin-sin loading. It can 

be noted here the dimensionless deflection is decreased 

when skew angle increases, due to the fact that skewness of 

shell offers high stiffness. 

Table 6 Non-dimensional maximum deflection of simply supported FGM-1 rhombic conoidal shell under uniform loading 

a/h   
Non-dimensional maximum deflection 

Ceramic 0.2 0.5 1 10 

10 15° 
0.09141 

(0.52,0.46) 

0.10268 

(0.52,0.46) 

0.11116 

(0.52,0.46) 

0.12224 

(0.52,0.46) 

0.15470 

(0.49,0.46) 

 30° 
0.05090 

(0.60,0.39) 

0.05717 

(0.60,0.39) 

0.06196 

(0.60,0.39 

0.06823 

(0.60,0.39) 

0.09666 

(0.60,0.39 

 45° 
0.02014 

(0.63,0.28) 

0.02263 

(0.63,0.28) 

0.02458 

(0.63,0.28) 

0.02615 

(0.63,0.28) 

0.04019 

(0.63,0.28) 

 60° 
0.00547 

(0.63,0.175) 

0.00615 

(0.63,0.175) 

0.00653 

(0.63,0.175) 

0.00716 

(0.63,0.175 

0.01047 

(0.63,0.175) 

20 15° 
0.03146 

(0.41,0.41) 

0.03506 

(0.42,0.44) 

0.04030 

(0.42,0.44) 

0.0424 

(0.42,0.44) 

0.05900 

(0.41,0.41) 

 30° 
0.01676 

(0.48,0.32) 

0.02025 

(0.487,0.32) 

0.02105 

(0.487,0.32) 

0.02335 

(0.487,0.32) 

0.03328 

(0.46,0.32) 

 45° 
0.00801 

(0.50,0.23) 

0.00874 

(0.50,0.23) 

0.00946 

(0.52,0.25) 

0.01061 

(0.52,0.25) 

0.00150 

(0.50,0.23) 

 60° 
0.00179 

(0.51,0.137) 

0.00224 

(0.53,0.15) 

0.00217 

(0.53,0.15) 

0.00240 

(0.53,0.15) 

0.00370 

(0.51,0.137) 

477



 

Md I. Ansari, Ajay Kumar and Ranja Bandyopadhyaya 

 

 

Table 7 Non-dimensional stress variation of simply supported FGM-1 rhombic conoidal shell under uniform loading 

n   a/h = 10 a/h = 20 

  �̅�x1
 �̅�x2

 �̅�x1x2
 �̅�x1

 �̅�x2
 �̅�x1x2

 

Ceramic 15° -0.62727 -1.0353 -0.18408 -0.3397 -0.9169 -0.2299 

 30° -0.34064 -0.7515 -0.01314 -0.1409 -0.65016 -0.0121 

 45° -0.12794 -0.4576 0.00825 -0.0326 -0.38461 0.0227 

 60° -0.03091 -0.2094 0.01289 -0.0016 -0.16578 0.0231 

0.2 15° -0.33042 -0.5707 -0.20008 -0.1780 -0.52779 -0.2601 

 30° -0.17806 -0.4143 -0.01635 -0.0767 -0.37899 -0.0270 

 45° -0.06760 -0.2532 0.00803 -0.0217 -0.22749 0.0181 

 60° -0.01786 -0.1181 0.01343 -0.0042 -0.10073 0.0236 

0.5 15° -0.36062 -0.6293 -0.20076 -0.1958 -0.59045 -0.2625 

 30° -0.19483 -0.4573 -0.06909 -0.0859 -0.42532 -0.0275 

 45° -0.07471 -0.2800 0.00986 -0.0259 -0.25629 0.0203 

 60° -0.02029 -0.1312 0.01520 -0.0059 -0.11436 0.0263 

1 15° -0.39854 -0.7003 -0.19513 -0.2173 -0.66301 -0.2562 

 30° -0.21570 -0.5092 -0.01320 -0.0966 -0.47854 -0.0249 

 45° -0.08330 -0.3122 0.01226 -0.0303 -0.28905 0.0235 

 60° -0.02303 -0.1467 0.01698 -0.0075 -0.1296 0.0289 

10 15° -0.53702 -0.9140 -0.16253 -0.2785 -0.81602 -0.2057 

 30° -0.28613 -0.6595 -0.00836 -0.1151 -0.5819 -0.0073 

 45° -0.10568 -0.3999 0.01058 -0.0283 -0.34607 0.0253 

 60° -0.02620 -0.1832 0.01335 -0.0028 -0.14999 0.0240 

Table 8 Maximum non-dimensional deflection of FGM-1 Type-I sandwich rhombic conoidal shell under sin-sin load 

n   
Non-dimensional maximum deflection 

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

0 15° 
0.04488 

(0.50,0.46) 
0.04488 

(0.50,0.46) 
0.04488 

(0.50,0.46) 
0.04488 

(0.50,0.46) 
0.04488 

(0.50,0.46) 

 30° 
0.02640 

(0.55,0.39) 
0.02640 

(0.55,0.39) 
0.02640 

(0.55,0.39) 
0.02640 

(0.55,0.39) 
0.02640 

(0.55,0.39) 

 45° 
0.01182 

(0.58,0.28) 
0.01182 

(0.58,0.28) 
0.01182 

(0.58,0.28) 
0.01182 

(0.58,0.28) 
0.01182 

(0.58,0.28) 

 60° 
0.00327 

(0.62,0.19) 
0.00327 

(0.62,0.19) 
0.00327 

(0.62,0.19) 
0.00327 

(0.62,0.19) 
0.00327 

(0.62,0.19) 

0.2 15° 
0.05371 

(0.50,0.46) 
0.05086 

(0.50,0.46) 
0.04941 

(0.50,0.46) 
0.05201 

(0.50,0.46) 
0.05067 

(0.50,0.46) 

 30° 
0.03170 

(0.55,0.39) 
0.03000 

(0.55,0.39) 
0.02913 

(0.55,0.39) 
0.03069 

(0.55,0.39) 
0.02987 

(0.55,0.39) 

 45° 
0.01417 

(0.58,0.28) 
0.01342 

(0.58,0.28) 
0.01303 

(0.58,0.28) 
0.01372 

(0.58,0.28) 
0.01338 

(0.58,0.28) 

 60° 
0.00386 

(0.62,0.19) 
0.00367 

(0.62,0.20) 
0.00357 

(0.62,0.20) 
0.00375 

(0.62,0.20) 
0.00367 

(0.62,0.19) 

0.5 15° 
0.05943 

(0.50,0.46) 
0.05468 

(0.50,0.46) 
0.05227 

(0.50,0.46) 
0.05659 

(0.50,0.46) 
0.05432 

(0.50,0.46) 

 30° 
0.03511 

(0.55,0.39) 
0.03230 

(0.55,0.39) 
0.03085 

(0.55,0.39) 
0.03343 

(0.55,0.39) 
0.03205 

(0.55,0.39) 

 45° 
0.01569 

(0.58,0.28) 
0.01444 

(0.58,0.28) 
0.01380 

(0.58,0.28) 
0.01494 

(0.58,0.28) 
0.01437 

(0.58,0.28) 

 60° 
0.00425 

(0.62,0.19) 
0.00392 

(0.62,0.20) 
0.00376 

(0.62,0.20) 
0.00405 

(0.60,0.19) 
0.00392 

(0.60,0.19) 

1 15° 
0.06637 

(0.50,0.46) 
0.05913 

(0.50,0.46) 
0.05553 

(0.50,0.46) 
0.06202 

(0.50,0.46) 
0.05855 

(0.50,0.46) 

 30° 
0.03925 

(0.55,0.39) 
0.03498 

(0.55,0.39) 
0.03282 

(0.55,0.39) 
0.03669 

(0.55,0.39) 
0.03458 

(0.55,0.39) 

 45° 
0.01753 

(0.58,0.28) 
0.01563 

(0.58,0.28) 
0.01467 

(0.58,0.28) 
0.01639 

(0.58,0.28) 
0.01551 

(0.58,0.28) 

 60° 
0.00473 

(0.62,0.19) 
0.00422 

(0.60,0.19) 
0.00398 

(0.62,0.20) 
0.00442 

(0.60,0.19) 
0.00422 

(0.60,0.19) 

10 15° 
0.08682 

(0.50,0.46) 
0.07163 

(0.50,0.46) 
0.06453 

(0.50,0.46) 
0.07745 

(0.50,0.46) 
0.07017 

(0.50,0.46) 

 30° 
0.05121 

(0.55,0.39) 
0.04245 

(0.55,0.39) 
0.03825 

(0.55,0.39) 
0.04584 

(0.55,0.39) 
0.04156 

(0.54,0.37) 

 45° 
0.02287 

(0.58,0.28) 
0.01895 

(0.58,0.28) 
0.01708 

(0.58,0.28) 
0.02046 

(0.58,0.28) 
0.01866 

(0.58,0.28) 

 60° 
0.00622 

(0.62,0.19) 
0.00508 

(0.60,0.19) 
0.00458 

(0.60,0.19) 
0.00550 

(0.60,0.19) 
0.00506 

(0.60,0.19) 
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Fig. 6 Effect of skew angle on dimensionless axial stress 

of FGM-1 Type-I sandwich rhombic conoidal shell under 

sin-sin loading. 

  

(a) 15° (b) 30° 

  

(c) 45° (d) 60° 

Fig. 5 Variation of non-dimensional deflection along center line of FGM-1 Type-I (1-2-1) sandwich rhombic conoidal shell 

for four skew angles subjected to sin-sin loading 

Table 9 Dimensionless normal stress of FGM-1 Type-I 

sandwich rhombic conoidal shell under sin-sin load (n = 1) 

Stresses   
Non-dimensional stress 

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 

�̅�x1
 15° -0.3971 -0.3540 -0.3329 -0.3711 -0.3410 

 30° -0.2135 -0.1904 -0.1796 -0.1993 -0.1835 

 45° -0.0768 -0.0685 -0.0650 -0.0716 -0.0664 

 60° -0.0173 -0.0155 -0.0148 -0.0162 -0.0150 

�̅�x2
 15° -0.6268 -0.5587 -0.5235 -0.5862 -0.5321 

 30° -0.4041 -0.3604 -0.3381 -0.3780 -0.3429 

 45° -0.1924 -0.1718 -0.1615 -0.1800 -0.1634 

 60° -0.0620 -0.0555 -0.0524 -0.0580 -0.0527 

�̅�x1x2
 15° -0.3562 -0.0516 -0.0460 -0.0430 -0.0483 

 30° -0.1923 0.0025 0.0022 0.0020 0.0023 

 45° -0.0697 0.0113 0.0101 0.0095 0.0106 

 60° -0.0158 0.0129 0.0115 0.0109 0.0120 
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Table 10 Deflection of FGM-1 Type-I (1-2-1) sandwich rhombic conoidal shell for different type of boundary constraints 

a/h α 
Non-dimensional maximum deflection 

CCCC CCSS CSCS CCFF CFCF 

10 15° 
0.04275 

(0.55,0.48) 
0.04520 

(0.55,0.46) 
0.04422 

(0.55,0.48) 
0.08945 

(0.56,0.41) 
0.23283 

(0.98,0.97) 

 30° 
0.02388 

(0.61,0.41) 
0.02530 

(0.60,0.39) 
0.02416 

(0.61,0.41) 
0.06049 

(0.525,0.0) 
0.02835 

(0.61,0.41) 

 45° 
0.00965 

(0.65,0.30) 
0.01043 

(0.63,0.28) 
0.00981 

(0.65,0.30) 
0.03961 

(0.55,0.0) 
0.01186 

(0.11,0.71) 

 60° 
0.00249 

(0.67,0.20) 
0.00268 

(0.65,0.19) 
0.00253 

(0.67,0.20) 
0.01677 

(0.575,0.0) 
0.10069 

(0.19,0.50) 

20 15° 
0.07395 

(0.50,0.46) 
0.07440 

(0.50,0.46) 
0.07438 

(0.50,0.48) 
0.16743 

(0.53,0.38) 
0.55580 

(0.10,0.96) 

 30° 
0.04072 

(0.57,0.39) 
0.04141 

(0.575,0.39) 
0.04140 

(0.575,0.39) 
0.13425 

(0.475,0.0) 
0.05045 

(0.11,0.19) 

 45° 
0.01572 

(0.62,0.30) 
0.01611 

(0.61,0.28) 
0.01607 

(0.62,0.30) 
0.09330 

(0.50,0.0) 
0.08469 

(0.11,0.14) 

 60° 
0.00364 

(0.65,0.20) 
0.00372 

(0.62,0.19) 
0.00369 

(0.64,0.20) 
0.04290 

(0.55,0.0) 
0.07944 

(0.11,0.10) 

Table 11 Deflection of FGM-1 Type-I (1-2-1) sandwich rhombic conoidal shell subjected to different type of loading 

hl/hh Load 
Non-dimensional maximum deflection 

15° 30° 45° 60° 

0.25 uniform 
0.07523 

(0.50,0.46) 
0.04243 

(0.56.0.37) 
0.01778 

(0.61,0.28) 
0.00452 

(0.63,0.175) 

 sin-sin 
0.05553 

(0.50,0.46) 
0.03282 

(0.55,0.39) 
0.01467 

(0.58,0.28) 
0.00398 

(0.62,0.20) 

 cos-sin 
0.01410 

(0.29,0.34) 
0.00600 

(0.325,0.22) 
0.00229 

(0.36,0.16) 
0.00062 

(0.37,0.11) 

 cos-cos 
0.02010 

(0.87,0.75) 
0.01723 

(0.94,0.67) 
0.00943 

(0.950.56) 
0.00359 

(1.0,0.39) 

0.20 uniform 
0.07895 

(0.50,0.46) 
0.04405 

(0.56.0.37) 
0.01836 

(0.61,0.28) 
0.00467 

(0.63,0.175) 

 sin-sin 
0.05796 

(0.50,0.46) 
0.03388 

(0.55,0.39) 
0.01505 

(0.58,0.28) 
0.00408 

(0.62,0.19) 

 cos-sin 
0.01423 

(0.29,0.34) 
0.00594 

(0.325,0.22) 
0.00226 

(0.36,0.16) 
0.00062 

(0.37,0.11) 

 cos-cos 
0.02004 

(0.87,0.75) 
0.01716 

(0.94,0.67) 
0.00939 

(0.950.56) 
0.00358 

(1.0,0.39) 

0.15 uniform 
0.08283 

(0.50,0.46) 
0.04572 

(0.56.0.37) 
0.01895 

(0.61,0.28) 
0.00483 

(0.63,0.175) 

 sin-sin 
0.06050 

(0.50,0.46) 
0.03498 

(0.55,0.39) 
0.01544 

(0.58,0.28) 
0.00419 

(0.62,0.19) 

 cos-sin 
0.01433 

(0.29,0.34) 
0.00586 

(0.325,0.22) 
0.00223 

(0.36,0.16) 
0.00062 

(0.37,0.11) 

 cos-cos 
0.01999 

(0.87,0.75) 
0.01709 

(0.94,0.67) 
0.00936 

(0.950.56) 
0.00357 

(1.0,0.39) 

0.10 uniform 
0.08686 

(0.50,0.46) 
0.04744 

(0.56.0.37) 
0.01956 

(0.61,0.28) 
0.00499 

(0.60,0.175) 

 sin-sin 
0.06312 

(0.50,0.46) 
0.03610 

(0.55,0.39) 
0.01584 

(0.58,0.28) 
0.00429 

(0.62,0.19) 

 cos-sin 
0.01440 

(0.29,0.34) 
0.00578 

(0.325,0.22) 
0.00220 

(0.36,0.16) 
0.00062 

(0.37,0.11) 

 cos-cos 
0.01992 

(0.87,0.75) 
0.01701 

(0.94,0.67) 
0.00933 

(0.950.56) 
0.00356 

(1.0,0.39) 

0.05 uniform 
0.09102 

(0.50,0.46) 
0.04921 

(0.56.0.37) 
0.02018 

(0.61,0.28) 
0.00516 

(0.60,0.175) 

 sin-sin 
0.06584 

(0.50,0.46) 
0.03725 

(0.55,0.39) 
0.01624 

(0.58,0.28) 
0.00441 

(0.62,0.19) 

 cos-sin 
0.01445 

(0.29,0.34) 
0.00568 

(0.325,0.22) 
0.00216 

(0.36,0.16) 
0.00062 

(0.37,0.11) 

 cos-cos 
0.01986 

(0.87,0.75) 
0.01693 

(0.94,0.67) 
0.00929 

(0.950.56) 
0.00356 

(1.0,0.39) 

0.00 uniform 
0.09531 

(0.50,0.46) 
0.05103 

(0.56.0.37) 
0.02082 

(0.61,0.28) 
0.00533 

(0.60,0.175) 

 sin-sin 
0.06862 

(0.50,0.46) 
0.03843 

(0.55,0.39) 
0.01665 

(0.58,0.28) 
0.00452 

(0.62,0.19) 

 cos-sin 
0.01446 

(0.29,0.34) 
0.00557 

(0.325,0.22) 
0.00213 

(0.36,0.16) 
0.00061 

(0.37,0.11) 

 cos-cos 
0.01979 

(0.87,0.75) 
0.01685 

(0.94,0.67) 
0.00925 

(0.950.56) 
0.00355 

(1.0,0.39) 
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6. Conclusion 
 

The bending analysis of FGM sandwich rhombic 

conoidal shell based on TSDT subjected to the various type 

of loads using an efficient C0 FE model is presented. The 

subsequent outcomes of the present study are written below 

for the volume fraction indices, skew angles, thickness 

ratios, hl/hh ratios and various types of end support. 

• The dimensionless deflection decreases with 

increase in skew angle. 

• Effect of volume fraction on deflection and 

stresses is more for Type-I (1-0-1) sandwich shell 

than Type-I (1-2-1) sandwich shell when subjected 

to a sin-sin load.  

• Negative displacement is noticed for skew angle 

more than 30° subjected to sin-sin loading for both 

types of sandwich conoidal shell. 

• Among the various type of boundary constraints, 

clamped boundary condition yields the minimum 

value of dimensionless deflection. 

• The dimensionless deflection and dimensionless 

stresses increase when the thickness of shell 

increases. 

 

 

• The non-dimensional deflection and normal 

stresses at the top of the rhombic shell increase 

with reduction in hl/hh ratio subjected to uniform 

and sin-sin loading. 

• The location of maximum transverse deflection of 

FGM/FGSM conoidal shell depends on the 

boundary condition and loading pattern. 
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