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1. Introduction  
 

The correct and useful applications of guided waves for 

non-destructive testing of the structural elements made of 

viscoelastic materials (for instance, made of polymer 

materials) and which are used in many branches of modern 

industries require sufficient knowledge obtained from the 

corresponding theoretical investigations. At the same time, 

this knowledge can also be used under weakening of the 

amplitudes of the propagated waves caused by earthquakes, 

explosions and other similar types of wave sources. As 

follows from the papers by Benjamin et al. (2016), Yasar   

et al. (2013a), and Yasar et al. (2013b) the aforementioned 

knowledge can also be used under nondestructive 

monitoring of the growth of an engineered tissue which can 

be used for the corresponding medical goals. The 

theoretical investigations of wave dispersion in the elements 

of constructions made of viscoelastic materials are also 

required for correct application of ultrasonic guided wave 

(UGW) defect detection methods. Note that the present 

level of these methods is discussed in the papers by Lowe et 

al. (2015), Lowe et al. (2016) and others listed therein. 

However, as noted in these papers, application of the UGW 

for defect inspection has high sensitivity in the cases where 

attenuation of the waves is very low and therefore this 

application also requires the corresponding theoretical  
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investigations on the wave dispersion propagated in the 

elements of constructions made of viscoelastic materials. 

Consequently, it can be concluded that investigations of 

the rule of dispersion of the flexural waves propagating in 

the bi-layered circular hollow cylinder, which is the subject 

of the study of the present paper, have not only theoretical 

but also practical significance. For illustration of the 

significance and contribution of the results of the present 

investigations we consider a brief review of the 

corresponding studies. 

We begin this review with the papers by Weiss (1959) 

and Tamm and Weiss (1961) which study the Lamb wave 

propagation in a viscoelastic layer in the case where the 

elastic constants are complex and frequency independent. 

Coquin (1964) also studies the same problem within the 

scope of the assumption that the plate material has small 

losses, and a frequency dependent complex elastic modulus 

is used. The Lamb wave propagation in a viscoelastic plate 

is also studied in the paper by Chervinko and Senchenkov 

(1986) in which it is assumed that the material of the plate 

is a low-compressible one and its Poisson’s ratio is 

constant, and the frequency dependent complex modulus is 

considered. Moreover, Lamb wave propagation in the bi-

layered viscoelastic + elastic plate is studied in the paper by 

Simonetti (2004), the results of which are also detailed in 

the monograph by Rose (2004). The Lamb wave 

propagation for the viscoelastic plate is also studied in the 

paper by Manconi and Sorokin (2013) in which the non-

dispersive attenuation case is considered and numerical 

results are presented and discussed for illustration of the 

role of the viscoelasticity in the cut-off phenomenon and in 

 
 
 

The influence of the rheological parameters on the dispersion of the flexural 
waves in a viscoelastic bi-layered hollow cylinder 

 

Tarik Kocal1 and Surkay D. Akbarov2,3 
 

1Department of Marine Engineering Operations, Yildiz Campus, 34349 Besiktas, Istanbul, Turkey  
2Department of Mechanical Engineering, Yildiz Technical University, Yildiz Campus, 34349, Besiktas, Istanbul, Turkey  
3Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan, 37041, Baku, Azerbaijan 

 
(Received December 10, 2018, Revised April 4, 2019, Accepted April 18, 2019) 

 
Abstract.  The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term 

values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a 

deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. 

Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The 

dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the 

first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the 

viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder 

under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem 

parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers’ materials on the dispersion curves, are 

established. 
 

Keywords:  flexural waves; rheological materials; viscoelastic material; wave dispersion; fractional-exponential operator; 

bi-layered hollow cylinder 

 



 

Tarik Kocal and Surkay D. Akbarov 

the phenomenon of veering for dispersion curves.   

The paper by Barshinger and Rose (2004) investigates 

axisymmetric longitudinal guided wave dispersion and 

attenuation in a metal elastic hollow cylinder coated with a 

polymer viscoelastic layer. Through attenuation coefficients 

of the bulk and shear waves in the selected viscoelastic 

material, which are determined experimentally for the 

frequencies in the order 1-5 MHz, the viscoelasticity of the 

coated material is taken into consideration. Consequently, 

in this paper the frequency independent complex modulus 

of elasticity is also used and within this assumption, the 

axisymmetric longitudinal wave dispersion and its 

attenuation dispersion are studied. Note that the 

aforementioned approach on the accounting of the 

viscoelasticity of the coatings of the pipes is also used in the 

papers by Kirby et al. (2012, 2013) under investigations of 

the corresponding scattering problem of the longitudinal 

and torsional waves. 

Experimental studies of the attenuation of the torsional 

and longitudinal axisymmetric wave propagation in pipes 

buried in sand are made in the paper by Leonov et al. 

(2015) in which it is assumed that the attenuation appears as 

a result of the energy leakage into the embedded soil. 

Moreover, the paper by Jiangong (2011) studies the 

dispersion of the viscoelastic SH waves in functionally 

graded material and laminated plates within the scope of the 

Kelvin-Voigt model. This model is also used in the papers 

by Bartoli et al. (2006), Mace and Manconi (2008), 

Manconi and Mace (2009), Mazotti et al. (2012), and 

Hernando Quintanilla et al. (2015) for investigation of wave 

dispersion and propagation in plates, roads and pipes made 

of viscoelastic materials. Note that in these works alongside 

the Kelvin-Voigt model, the hysteretic model, i.e. the model 

based on the frequency independent complex modulus, is 

also examined. Moreover, note that in these works the main 

focus is on the development of the numerical solution 

method based on discretization with finite elements. For 

instance, in the papers by Barotti et al. (2006), Mazotti et 

al. (2012) and others listed therein, the semi-analytical 

finite element method is developed and employed, 

according to which, the sought values are presented with 

multiplying exp ( )i kz t−  and in this way the dimension 

of the problem with respect to the spatial coordinates is 

reduced. The other numerical method which is employed in 

these papers is the wave finite element method (see, the 

papers by Mace and Manconi (2008), Manconi and Mace 

(2009) etc.) which is based on the presentation of the sought 

values with multiplying exp i t  and, for obtaining the 

dispersion equations, the periodicity relations between the 

nodal displacements in the wave propagation direction are 

used. Here, we also note the spectral collocation method 

which is employed in the paper by Hernando Quintanilla et 

al. (2015) for investigation of the dispersion of the guided 

waves in an anisotropic viscoelastic layered medium, the 

viscoelasticity of which is modelled through the Kelvin-

Voigt model.  

In the papers by Meral et al. (2009, 2010) an attempt is 

made for the use of the very real and complicated model 

under investigation of the wave propagation and attenuation 

problems related to the viscoelastic materials. For such a 

model, the fractional order Voigt (or Kelvin-Voigt) model 

is selected for investigation of the corresponding 2D 

problems. Note that this model is obtained from the 

classical Voigt model by replacing the derivative ∂/∂t, with 

respect to time, with the fractional order derivative ∂α/∂tα in 

the Weyl sense. Here, α is a new rheological parameter 

through which the description of the related experimental 

data is improved. Moreover, in the paper by Meral et al. 

(2010), by employing the aforementioned fractional order 

Voigt model, the Lamb wave dispersion and attenuation are 

studied theoretically and verified experimentally for a tissue 

mimicking phantom material.   

This completes the review of the investigations on the 

dispersion of guided waves in the plates or cylinders made 

from viscoelastic materials which are carried out mainly 

within the scope of the following assumptions: i) the 

complex modulus of viscoelastic materials is taken as 

frequency independent (the hysteretic model); ii) the 

viscoelasticity of the materials is described by the simplest 

models such as the classical Kelvin-Voigt or simplest 

fractional Kelvin-Voigt models; and iii) the expression for 

the complex elasticity modulus is obtained experimentally 

for concrete polymer materials. It is evident that for a more 

real and sufficiently accurate description of the character of 

the influence of the material’s viscoelasticity on the wave 

dispersion and attenuation propagated in the structural 

elements made of this material it is necessary to use the 

more complicated models for the corresponding constitutive 

relations.  As an example of such a model, the fractional-

exponential operator by Rabotnov (1980) can be taken 

which has many advantages, one of which is the describing, 

with the very high accuracy required, of the initial parts of 

the experimentally constructed creep and relaxation 

functions and their asymptotic values. The other advantage 

of this operator is having many simple rules for complicated 

mathematical transformations, for example, the Fourier and 

Laplace transformations. At the same time, the fractional 

exponential operator by Rabotnov can be employed 

successfully to describe the viscoelasticity of various 

polymer materials and epoxy-based composites with 

continuous fibers and layers.  

One of the first attempts on the application the 

fractional-exponential operator by Rabotnov on the wave 

dispersion in the viscoelastic medium was made by 

Meshkov and Rossikhin (1968) in which the characteristics 

of acoustic waves propagating in an infinite viscoelastic 

medium is studied. More detail review of the related 

investigations was made in the paper by Rossikhin and 

Shitikova (1997). Note that in all these works the shear, 

longitudinal and Rayleigh waves in the viscoelastic medium 

are investigated. The dispersion the mentioned waves in the 

infinite viscoelastic medium the viscoelasticity properties of 

which is described by the fractional operator is studied in 

the paper by Usuki (2013). However, in this paper as the 

operator for differentiation of fractional order, the Caputo 

derivative is used. The discussions of the application of the 

fractional operators in mechanics of solids is made in the 

paper by Rossikhin (2010). 

Apparently, the first attempt on the application of the 

fractional exponential operators for investigations of the 
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guided wave dispersion propagating in elements of 

constructions made of viscoelastic materials was made in 

the paper by Akbarov and Kepceler (2015) for investigation 

of the torsional wave dispersion in the sandwich hollow 

cylinder made of the viscoelastic material. 

At the same time, in the paper by Akbarov (2014) the 

Rabotnov’s operator was employed under investigations of 

the forced vibration of the “viscoelastic layer + viscoelastic 

half-space” system. Note that the results obtained in the 

papers by Akbarov (2014) and Akbarov and Kepceler 

(2015) are also listed and detailed in the monograph by 

Akbarov (2015).  

The further investigations on the wave dispersion and 

attenuation propagated in the layered cylinders made of 

viscoelastic materials with employing the aforementioned 

fractional-exponential operator are developed in the papers 

by Akbarov et al. (2016a, 2016b) and Kocal and Akbarov 

(2017) in which the axisymmetric longitudinal wave 

dispersion in the solid bi-layered (Akbarov et al. (2016a)) 

and in the hollow bi-layered (Akbarov et al. (2016b), Kocal 

and Akbarov (2017)) circular cylinders is studied. Note that 

in the investigations carried out in the papers by Akbarov et 

al. (2016a, 2016b), as in the paper by Akbarov and 

Kepceler (2015), it is assumed that the attenuation of the 

considered waves is given a priori. However, in the paper 

by Kocal and Akbarov (2017) the attenuation of the waves 

is determined under given possible dispersion curves.  
These are the only studies in this field employing the 

fractional-exponential operator. Taking the significance and 
usefulness in the theoretical and application senses of the 
related results, in the present paper we continue the 
aforementioned investigation for flexural waves propagated 
in the bi-layered hollow cylinder made of viscoelastic 
material. Numerical results are presented and discussed for 
the first and second modes under the first harmonic in the 
circumferential direction of the cylinder. As in the papers 
by Akbarov et al. (2016a, 2016b), it is assumed that the 
attenuation of the wave under consideration is given a 
priori. 

 

 

2. Formulation of the problem 
 

We consider the hollow compound cylinder, the sketch 

of which is shown in Fig. 1 and assume that the radius of 

the cross section of the interface cylindrical surface between 

the cylinders is R. The thickness of the outer and inner 

hollow cylinders we denote through h(1) and h(2), 

respectively. We associate the cylindrical system of 

coordinates Orθz (Fig. 1) with the central axis of the 

cylinder. The values related to the inner and outer hollow 

cylinders will be denoted by the upper indices (2) and (1), 

respectively. We assume that the materials of the 

constituents are isotropic, homogeneous and hereditary-

viscoelastic. Moreover, we assume that the cylinders have 

infinite length in the direction of the Oz axis. 

Thus, let us investigate the flexural wave propagation 

along the Oz axis in the considered compound cylinder with 

the use of the equations of motion of the linear theory for 

viscoelastic bodies. For this purpose we write the complete 

system of field equations of this theory in the cylindrical 

coordinate system Orθz. 

 

Fig. 1 The sketch of the bi-layered hollow cylinder 
 

 

Equations of motion: 
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where ( )*n and ( )*n  are the following viscoelastic 

operators 
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In Eq. (3), 𝜆0
(𝑛)

 and 𝜇0
(𝑛)

 are instantaneous values of 

Lame’s constants as t → 0, and 𝜆1
(𝑛)

(𝑡) and 𝜇1
(𝑛)

(𝑡) are 

the corresponding kernel functions describing the hereditary 

properties of the materials of the cylinder’s layers. 

Moreover, in Eqs. (1)-(3) the case where n = 2 (n = 1) 

relates to the inner layer (outer layer). This notation is also 

used below throughout the paper.   

Strain-displacements relations: 
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In (1)-(4) the conventional notation is used.  

According to expressions in (2) the “standard linear 
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solid body” model is used for formulation of the 

constitutive relations.  

Now we formulate the boundary and contact conditions 

which, according to Fig. 1, can be written as follows 
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This completes the formulation of the problem on the 

flexural wave dispersion in the bi-layered hollow cylinder 

made of viscoelastic materials with arbitrary kernel 

functions 𝜆1
(𝑛)

(𝑡)  and 𝜇1
(𝑛)

(𝑡) through which the 

constitutive relations in (2) and (3) are written. 

 

 

3. Method of solution 
 

As we consider the flexural wave dispersion which 

propagates in the direction of the Oz axis, we can represent 

the displacements and strains through multiplying ( )i kz te −  

where k is the wave number and ω is the circular frequency. 

In other words, we can write the following representations. 
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In (6) the following notation is used. 
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Taking into account the approximate equality 
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in the mechanical relations (2) and (3), the meaning of 

which is described in Appendix A, and doing related 

mathematical manipulations as made, for instance, in the 

papers by Akbarov (2014) and Akbarov and Kepceler 

(2015), the following representations for the stresses are 

obtained 
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Thus, according to relations in (9)-(11), it can be 

concluded that for the case under consideration (i.e. for the 

study-state wave propagation problems) the complete 

system of field equations for the viscoelastic medium can 

be obtained from the related complete system of field 

equations for the corresponding elastic medium through 

replacing of the elastic moduli with corresponding complex 

elastic moduli. We recall that this statement is called the 

dynamic correspondence principle (see, for instance, Fung 

(1965)), which is also proved and used in the present 

investigations.  

Thus, as a result of the representations given in Eqs. (6)-

(9), we obtain the equations for the amplitude of the 

displacements from equations of motion in (1) and, 

according to the representation by Guz (1999, 2004), the 

solution of these equations can be represented as follows 
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where the functions ψ(n) and X(n) in (12) are the solutions of 

the equations 
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Note that first, the decompositions (12) and (13) were 

proposed in the paper by Guz (1970) and developed and 

applied under investigations of numerous concrete problems 

detailed in the monographs by Guz (1999, 2004) and in 

many others listed therein.    

Instead of Guz’s foregoing decomposition (12) and (13) 

it can also be used the well-known, classical Lame (or 

Helmholtz) decompositions described, for instance, in the 

monograph by Eringen and Suhubi (1975). It must be 

recalled that the classical Lame (or Helmholtz) 

decomposition is given for the cases where the material of 

the considered body is isotropic. These decompositions 

contains one scalar and one vector potential divergence of 

which is equal to zero and each of them satisfies the well-

known Helmholtz equation. Moreover, an additional 

equation for the components of the vector potential is 

obtained by equating to zero the divergence of this vector 

potential. For instance, if the materials of the cylinders is 

transversally-isotropic with the Oz symmetry axis, then the 

Lame decomposition is not applicable. Namely, for such 

cases and for the cases where the cylinders have 

homogeneous initial stresses such as 𝜎𝑧𝑧
0(𝑛)

= 𝑐𝑜𝑛𝑠𝑡 (here 

the upper index 0 denotes that these quantities regard the 

initial state), then as in the monographs by Guz (1999, 

2004) and other related works listed therein, the 

corresponding decompositions, the simplest  expressions 

of which for the isotropic materials under absent of the 

aforementioned initial stress, are expressions (12) and (13), 

are proposed for the solution to the equations of the three-

dimensional linearized theory of wave propagation in 

transversal isotropic elastic bodies with initial stresses. 

Consequently, the Guz’s decompositions, the expressions of 

which for the cases under considerations, are (12) and (13), 

are more general and available, and as it is planned by the 

authors to continue the present investigations in future to 

the cases where the materials of the cylinders are 

transversely-isotropic and to the cases where the cylinders 

have homogeneous initial stresses, and in order to use the 

unified decomposition in all the listed above cases, in the 

present investigation, it is used the decompositions (12) and 

(13). Note that the Gus’s decompositions have also been 

used under investigations of many dynamical problems, 

examples of which can be found in the monograph by Guz 

(2004), Akbarov (2015) and others listed therein. 

Thus, we turn to the solution procedure and for the case 

under consideration, we select the functions ψ(n) and X(n) as 

follows 
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where p indicates the order of the harmonic of the 

flexural waves in the circumferential direction in the 

cylinder.  

Substituting the expressions (14) into equations (13) we 
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Note that the ratio ω/k in (16) and (17) is the complex 

phase velocity of the wave propagation. 

Thus, we find the following expressions for the 

functions 𝛹𝑝
(𝑛)

 and 𝜒𝑝
(𝑛)

 from Eqs. (15)-(17).  

( ) ( ) ( ) ( )( )
1 1 1 1( ) ( ),

n n n nn
p p pp pA J kr B Y kr  = +  1,2,n =  

( ) ( ) ( ) ( )( )
2 2 3 3( ) ( )
n n n nn

p p pp pA J kr A J kr  = + +

( ) ( ) ( ) ( )
2 2 3 3( ) ( ),
n n n n

p pp pB Y kr B Y kr +  

(18) 

where 𝐴1𝑝
(𝑛)

,
 

𝐴2𝑝
(𝑛)

,
 

𝐴3𝑝
(𝑛)

,
 

𝐵1𝑝
(𝑛)

, 𝐵2𝑝
(𝑛)

 and 𝐵3𝑝
(𝑛)

 are unknown 

constants, and Jp(x) and Yp(x) are Bessel functions of the 

first and second kind of the p-th order.  

Substituting the expressions given in (18) into the 

expressions given in (14) and using the relations (12), (9) 

and (7) we obtain explicit analytical expressions for the 

amplitude of the stresses and displacements which contain 

the unknown constants 𝐴1𝑝
(𝑛)

,
 

𝐴2𝑝
(𝑛)

,
 

𝐴3𝑝
(𝑛)

,
 

𝐵1𝑝
(𝑛)

, 𝐵2𝑝
(𝑛)

 and 

𝐵3𝑝
(𝑛)

. After this determination, we satisfy the boundary and 

contact conditions in (5) rewritten for the amplitudes for the 

corresponding quantities and, according to the usual 

procedure, we obtain the dispersion equation  
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det ( ) 0,lm p = ; 1,2,...,12.l m =  (19) 

The explicit expressions of the components of the 

matrix ( ( ))lm p  are given in Appendix B through 

expressions in (B1) and (B2). In the case where the 

viscosity of the materials of the constituents of the cylinder 

is completely absent, i.e. in the case where 
( ) ( ) ( ) ( )
1 1 1 1 0

n n n n
c s c s   = = = =  in equation (10), the 

foregoing dispersion equation coincides with the 

corresponding one given in the monograph by Akbarov 

(2015).    

Note in the case where p = 0, the equation in (19) can be 

presented as follows 

1 1 2 2
det (0) det det 0,T L

lm l m l m
  = =  

1 1; 1,2,3,4,l m =  2 2; 1,2,...,8.l m =  

(20) 

According to equation (20), under p = 0 we obtain two 

types of dispersion equation: 

1 1
det 0T

l m
 =

 
(21) 

2 2
det 0L

l m
 =

 
(22) 

Note that equation (21) corresponds to the dispersion of 

the axisymmetric torsional waves propagated in the 

compound cylinder under consideration of the related 

problems, which is studied in the paper by Akbarov and 

Kepceler (2015). However, equation (22) relates to the 

dispersion of the axisymmetric longitudinal waves 

propagated in the bi-layered hollow cylinder, which is 

studied in the papers by Akbarov et al. (2016b) and Kocal 

and Akbarov (2017). 

For the cases where p ≥ 1, equation (19) is the 

dispersion equation of the flexural waves of the p-th 

harmonic and in these cases determinant in (19) cannot be 

presented as a product of two corresponding determinants. 

 

 

4. Numerical results and discussions 
 

4.1 Selection of the viscoelastic operators and 
dimensionless rheological parameters 

 

According to the well-known consideration, under 

studying the wave propagation in a viscoelastic medium the 

wave-number k is selected as a complex one which can be 

presented as follows. 

1 2 1(1 ),k k ik k = + = +  2

1

.
k

k
 =  (23) 

Here k2, which is an imaginary part of the complex wave 

number k, defines the attenuation of the wave amplitude 

with the propagating distance and, as usual, β is called the 

coefficient of attenuation. Under phase velocity of the wave 

propagation, we will understand the following ratio 

1

c
k

=


 

(24) 

We also introduce the notation ( ) ( ) ( )
2 0 / .
n n nc  =  Thus, 

according to the foregoing discussions, the expression of 

the dispersion equation in (19) contains the parameters 

(2)
2

,
c

c
 

(2) (1)
0 0/ ,   (2) (1)/ ,   1 ,k R  

(1)h

R
 and

(2)h

R
 (25) 

Apart from these parameters, the expression of the 

dispersion equation (19) contains the parameters 𝜆1𝑐
(𝑛)

, 𝜆1𝑠
(𝑛)

, 

𝜇1𝑐
(𝑛)

and 𝜇1𝑠
(𝑛)

 which are determined through the formula in 

equation (11) by the kernel functions 𝜇1
(𝑛)

(𝑡) and 𝜆1
(𝑛)

(t) 

which enter into the operators in (3). Note that, these 

operators determine the viscoelastic properties of the 

materials of the constituents of the cylinder, and for 

determination of the quantities of the parameters 𝜆1𝑐
(𝑛)

, 𝜆1𝑠
(𝑛)

, 

𝜇1𝑐
(𝑛)

 and 𝜇1𝑠
(𝑛)

 it is necessary to give the explicit 

expressions for the functions 𝜇1
(𝑛)

(𝑡) and 𝜆1
(𝑛)

(t). For this 

purpose, we use the fractional-exponential operators by 

Rabotnov (1980) related to the case where the volumetric 

expansion of the related material is purely elastic, i.e. to the 

case where 

( ) ( )( )* ( )*
0 0

2 2
( ) ( ) ( ) ( )

3 3

n nn n t t     + = +  

Thus, we select Young’s operator as 

 ( )( ) ( ) ( )* ( )( )* ( )
0 0 0( )

( ) ( ) ( )
n n n nn n

n
E t t t


       

= − −


 

and taking the above assumption on the volumetric 

expansion into consideration and employing the algebra of 

the fractional-exponential operators by Rabotnov, it is 

determined the Lame operators (see, Rabotnov (1980), 

Rossikhin and Shitikova (2015), Akbarov (2015) and others 

listed therein). Here we present only the expression for the 

fractional-exponential operator 
( )*n which is determined 

as follows 

( )

( )*

( ) ( )
( ) ( )* ( )0 0
0 ( ) ( )

0 0

( )

3 3
( ) ( )

2(1 ) 2(1 )
n

n

n n
n n n

n n

t

t t


 

 
    

 


=

  
  − −

   + +     

(26) 

where 

( ) ( )

( )* ( )( ) ( )

0

( ) ( ) ( , ( ) ( ) ,
n n

n nn nx t x t d
 

      



= −

( )
( )

( )

( ) (1 )
( ) ( )

( )
0

( )
( , ( ) ,

((1 )(1 ))

n
n

n

n q q
n n

n
q

x t
x t t

q







 

−
−

=

=
+ −



( )
0 1

n
  , 

(27) 

In (27), Γ(x) is the gamma function and α(n), 𝛽0
(𝑛)

 and 

𝛽∞
(𝑛)

 in (26) and (27) are the rheological parameters of the 
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n-th material. 

Note that the expression for the operator ( )*n can be   

easily determined from the condition on the pure     

elasticity of volumetric expansion and from expression (26).   

As in the monograph by Rabotnov (1980) and in the 

papers by Akbarov (2014), Akbarov and Kepceler (2015), 

Akbarov et al. (2016a, 2016b) and Kocal and Akbarov 

(2017) we introduce the following dimensionless 

rheological parameters. 

( )
( )

( )
0

,
n

n

n
d





=  

( )
( ) 20

( ) ( )
01

,
( )

n
n

n n

c
Q

R  

=
+

 (28) 

where 

( ) ( ) ( )
01 0 03 / (2(1 ))
n n n

  = +  

As detailed in the papers by Akbarov (2014), Meshkov 

and Rossikhin (1968) and in others listed therein, the 

dimensionless parameter d(n) characterizes the long-term 

values of the elastic constants, however, the dimensionless 

parameter Q(n) characterizes the creep time. At the same 

time, the dimensionless parameter α(n)
 which enter into the 

foregoing expressions is called as divisibility parameter 

through which the order of the fractional derivatives is 

determined.    

Thus, using notation in (28) and doing the 

corresponding mathematical manipulations we obtain the 

following expressions for the long-term value of the shear 

modulus (denote it by 
( )n ) and for 

( )
1

n
c  and 

( )
1

n
s  

which enter into Eq. (10). 

( ) ( )*

( )
0 ( ) ( ) ( )

0 0

lim ( .1)

3 1
1 ,

2(1 ) (3 / (2(1 )) )

n n

t

n

n n nd

 


 


→

= =

 
 −
 + − + 

 

( )

( )( ) 1
01( )

( ) ( )
0

1 0
( ) ( ) ( )

101

3
1 ( )

2(1 ) ,

( , )
n

nn

n
n n
c

n n n

c

d

k Rc



 

  

−



 
− +  

+ =
 

− − 
 

( )

( ) ( ) ( )( ) 1
1 0 01( )

0

( ) ( ) ( )
101

3
( )

2(1 )

( , ),
n

n n nn
s n

n n n

s

d

k Rc


  


  

−



= + 
+

− −

 

(29) 

where 

( )

( )
( ) 2 ( )

( ) ( ) ( )
101 ( )

( ) 2 ( )

( ) sin
2( , ) ,

( ) 2 sin 1
2

n

n
n n

n n n

nc
n n

k Rc



 

  


 



+

− − =

+ +

 

( )

( )
( )

( ) ( ) ( )
101 ( )

( ) 2 ( )

cos
2( , )

( ) 2 sin 1
2

n

n
n

n n n

ns
n n

k Rc





  


 

− − =

+ +
 

(30) 

( )( ) ( ) 1( ) ,
nn nQ   −=    1 (2)

20

c
k R

c
 =  (31) 

Note that the rheological parameter d(n), determined by 

expression in (28), characterizes the long-term values of the 

mechanical properties, however, the parameter Q(n) also 

determined by the corresponding expression in (28), 

characterizes the creep time of the n-th material. Moreover, 

we note that the rheological parameter α(n)
 which mainly 

characterizes the deformation of the n-th material in its 

initial state and the successful selection of this parameter 

improve with sufficiently high order, the accuracy of the 

mathematical modeling of the experimentally determined 

creep (or relaxation) functions. At the same time, it should 

be noted that for the time-harmonic problems, the fractional 

order operators are distinguished from the ordinary operator 

namely through this parameter.  

So the influence of the viscoelasticity of the n-th 

material on the dispersion curves will be estimated through 

the dimensionless rheological parameters d(n), Q(n)and α(n)
. 

 

4.2 Remarks on the algorithm for numerical 
solution of the dispersion equation 

 

According to the nature of the considered problem, the 

components of the matrix ( )lm , the expressions of which 

are given through the formulae (B1) and (B2) in Appendix 

B, are complex and therefore the values of the determinant 

det ( )lm p  which enter into dispersion equation (19) are 

also complex. In connection with this, the dispersion 

equation can be reduced to the following one 

det ( ) 0lm p =
 

(32) 

where det ( )lm p  is the modulus of the complex 

number det ( )lm p . In this way, the solution of the 

dispersion equation is reduced to the solution of equation 

(32) for which we use the algorithm which is based on 

direct calculation of the values of the moduli of the 

dispersion determinant det ( )lm p . Under the solution 

procedure the sought roots are determined from the criterion 
12det ( ) 10lm p − . Note that this algorithm is also used in 

the previous papers by the authors and in the paper by 

Barshinger and Rose (2004). Moreover, note that while 

employing this algorithm a certain value of one of the 

unknowns c, k1R or β must be given in advance. The 

selection of this “one” parameter depends on the aim of the 

investigation. If the aim of the investigation is the study of 

the wave attenuation dispersion, then the selected parameter 

is the wave propagation velocity c (for instance, such an 

approach is used in the papers by Barshinger and Rose 

(2004), and Kocal and Akbarov (2017)). However, if the 

aim of the investigation is the study of the wave velocity 

dispersion, then the selected parameter is the coefficient of 

the attenuation β (for instance, such an approach is used in 

the papers by Akbarov and Kepceler (2015), and Akbarov 
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et al. (2016a, 2016b)).  Thus, under investigation of the 

dispersion of the wave propagation velocity, the values for 

the attenuation coefficient β are given in advance and for 

each possible value of k1R, equation (32) is solved with 

respect to the unknown c and as a result of this solution the 

wave velocity dispersion curves are constructed. However, 

under investigation of the dispersion of the wave 

attenuation, the roles of the parameters β and c in the 

foregoing solution algorithm are replaced. As in the present 

paper, the aim of the investigations is the study of the wave 

velocity dispersion, therefore the values of the coefficient of 

attenuation are given in advance. According to Ewing et al. 

(1957) and Kolsky (1963), it is assumed that 

(1)
1

(1) (1)
0 1

( )1

2 ( )

s

s

 


  
=

+
or 

(2)
1

(2) (2)
0 1

( )1

2 ( )

s

s

 


  
=

+
 (33) 

 
4.3 Numerical results related to the influence of the 

rheological parameters Q(n) and d(n) on dispersion 
curves 

 

We assume that 𝑣0
(1)

=  𝑣0
(2)

= 0.3 and ρ(1)/ρ(2) = 1, and 

consider only the case where p = 1. We recall that the 

number p enters into the dispersion equation (19) (or 32) 

and into the expressions (B1) and (B2) given in Appendix 

B. Note that in Appendix B instead of p it is used the 

symbol n. Moreover, we recall that the number p shows the 

order of the harmonic of the flexural waves in the 

circumferential direction in the cylinder. Consequently, here 

we consider only the numerical results related to the first 

harmonic of the flexural waves in the circumferential 

direction. 

Note that in the present subsection we assume that α(1) = 

α(2) = 0.5 and consider the cases where 𝜇0
(2)

/𝜇0
(1)

= 0.5 

and 𝜇0
(2)

/𝜇0
(1)

= 2.0. Moreover, we assume that h(1)/ R = 

h(2)/R = 0.1, if otherwise not specified. First, we analyze the 

results obtained in the case where the viscoelasticity 

properties of the cylinder’s layers are the same, i.e. first, we 

consider the case where Q(1)
= Q(2) (=Q) and d(1)= d(2) (= d). 

We denote this case as the “V.V. case” and recall that the 

results discussed below are obtained within the scope of the 

attenuation relation (33). Note that in the present subsection 

we consider the dispersion curves related to the first and 

second lowest modes.  

Thus, we consider the graphs given in Figs. 2-5 which 

illustrate the dispersion curves related to the first 

(fundamental) mode. Note that the graphs given in Figs. 2 

and 3 (in Figs. 4 and 5) relate to the case where 𝜇0
(2)

/𝜇0
(1)

=

0.5 (where 𝜇0
(2)

/𝜇0
(1)

= 2.0). Moreover, note that the 

results given in Figs. 2 and 4 (in Figs. 3 and 5) illustrate the 

influence of the rheological parameter d (parameter Q) 

under fixed Q(=10) (under fixed d(=10)). It follows from 

these results that a decrease in the values of the rheological 

parameters d and Q causes a decrease in the wave 

propagation velocity. However, the dispersion curves in all 

the cases are limited to those obtained for the purely elastic 

cases with the instantaneous values of elastic constants at  

 

Fig. 2 The influence of the rheological parameter d on the 

dispersion curves related to the first (fundamental) mode 

constructed in the case where 𝜇0
(2)

/𝜇0
(1)

=  0.5 

 

 

Fig. 3 The influence of the rheological parameter Q on the 

dispersion curves related to the first (fundamental) mode 

constructed in the case where 𝜇0
(2)

/𝜇0
(1)

= 0.5 

 

0t =  (upper limit) and with the long-term values of the 

elastic constants at t =   (lower limit). 

Now, we analyze the low and high wavenumber limit 

values of the wave propagation velocity regarding the first 

mode. According to Figs. 2-5, it can be concluded that in 

the considered dispersive attenuation case, i.e. in the case 

where 

0 →  as 1 0k R →  (34) 

which follows directly from the relations (29)-(31) and (33), 

we get the following low wavenumber limit value for the 

wave propagation velocity 

0c →  as 1 0k R →  (35) 

Note that the relation (35) occurs for all the values of the 

rheological parameters and does not depend on these 

parameters. Consequently, the relation (35) occurs also for 

the purely elastic cases. However, according to the well- 
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Fig. 4 The influence of the rheological parameter d on the 

dispersion curves related to the first (fundamental) mode 

constructed in the case where 𝜇0
(2)

/𝜇0
(1)

= 2 

 

 

Fig. 5 The influence of the rheological parameter Q on the 

dispersion curves related to the first (fundamental) mode 

constructed in the case where 𝜇0
(2)

/𝜇0
(1)

= 2 

 

 

known physico-mechanical consideration, the high 

wavenumber limit value of the wave propagation velocity in 

the first mode can be determined through the following 

relation. 

 (1) (2)
min ; ; SR Rc c c c→  as 1 ,k R →  (36) 

where 𝑐𝑅
(1)

 (𝑐𝑅
(2)

)  is the Rayleigh wave propagation 

velocity in the outer (inner) layer material and cS is the 

Stoneley wave propagation velocity for the pair of materials 

of the cylinder’s layers. It is known that, the Stoneley waves 

exist for the pair of materials with close acoustic properties 

and under the “close acoustic properties” it is understood 

that the ratio 𝑐2
(1)

/𝑐2
(2)

is very near to one, such |𝑐2
(1)

/

𝑐2
(2)

− 1| = O(10−2). Note that this statement is indicated 

almost in all the references related to elastdynamics (see, 

for instance, the monographs by Eringen and Suhubi 

(1975), Guz (2004) and other listed therein). As in the 

numerical investigations considered here it is assumed that 
(1) (2)
0 0 = , 

(1) (2)/ 1  =  and 
(2) (1)
0 0/ 0.5  = and 2.0 

for which  |𝑐2
(1)

/𝑐2
(2)

− 1| ≫ O(10−2), and as the Rayleigh 

wave propagation velocity of the n th−  material depends 

only on the Poisson ratio, therefore in the cases under 

consideration the Stoneley waves do not exist and we 

therefore obtain that 
(1) (2)
R Rc c=  ( )Rc=  and 

Rc c→  as 1k R →  (37) 

It is evident that the limit cases indicated through the 

relations (35)-(37) cannot be taken as the flexural wave 

propagation velocity, however these limits agree with the 

well-known physico-mechanical considerations and it can 

also be taken as one of the factors which proves the 

trustiness of the calculation algorithms and PC programs 

used in the present investigations. Consequently, the 

velocities obtained in the cases where 10 k R    relate to 

the flexural (bending) waves in the bi-layered hollow 

cylinder under consideration. It should be also noted that, as 

it follows from the foregoing numerical results, the flexural 

character of the waves is observed for the relatively low 

wavenumber cases under which the influence of the 

viscoelasticity of the cylinders’ materials on the dispersion 

curves becomes significantly.   

At the same, it follows from the foregoing discussions 

that the limit velocities (35) and (37) do not depend not 

only on the ratio the shear modulus 𝜇0
(2)

/𝜇0
(1)

 but also on 

the ratios h(1)/R and h(2)/R. However, in the cases where 

|𝑐2
(1)

/𝑐2
(2)

− 1| = O ( 10−2 ), i.e. in the cases where the 

Stoneley waves in the system exists the limit velocity cSalso 

does not depend on the ratios h(1)/R and h(2)/R, however 

depends on the ratio of the shear modulus 𝜇0
(2)

/𝜇0
(1)

. Thus, 

we obtain that not only the low wavenumber limit values 

but also the high wavenumber limit values of the flexural 

wave propagation velocity in the first mode do not depend 

on the rheological parameters. The low wavenumber limit 

relation (35) can be explained with the character of the 

flexural waves. We recall that for the axisymmetric 

torsional (see, the paper by Akbarov and Kepceler (2015)) 

and longitudinal (see the paper by Akbarov et al. (2016b)) 

waves in the hollow layered cylinders, the low wavenumber 

limit values of the wave propagation velocity depend 

significantly on the rheological parameter d and the main 

effects of the rheological parameters d and Q on the wave 

propagation velocities appear under k1R ≤ 1.5.  However, 

as follows from Figs. 2-5, the influence of the rheological 

parameters on the wave propagation velocity of the flexural 

waves in the first mode disappears as k1R→0 and this effect 

is immediately observed for the cases where k1R ≥ 0.5. The 

numerical results also show that the effect for the flexural 

waves is considerable for the cases where 0.5 ≤ k1R ≤ 10. 
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Nonetheless, the maximal effect of the influence of the 

rheological parameters d and Q on the flexural wave 

propagation velocity appears in relatively small values of 

the dimensionless wavenumber k1R. This statement can be 

explained with the well-known fact, according to which, the 

influence of the material viscosity on the vibration of the 

elements of construction made of this material increases 

(decreases) with decreasing (increasing) of the frequency of 

this vibration. Consequently, the explanation of the relation 

(37) (or (36)) is also based on this fact.     

The analyses of the results given in Figs. 2-5 also show 

that the influence of the rheological parameter d on the 

dispersion curves of the flexural waves is more considerable 

than that of the rheological parameter Q.  

We remind that the foregoing results are obtained only 

for the case where h(1)/ R = h(2)/R = 0.1. For illustration of 

the effect of the ratios h(1)/ R = h(2)/R on the magnitude of 

the influence of the rheological parameters on the 

dispersion curves we consider the graphs given in Figs. 6 

and 7 and constructed in the cases where 𝜇0
(2)

/𝜇0
(1)

= 0.5 

and 2.0, respectively. Note that in these figures the 

dispersion curves obtained for various values of h(1)/ R = 

h(2)/R and for the same values of the rheological parameter d 

under fixed Q (=10) (Figs. 6a and 7a) and for the same 

values of the rheological parameter Q under fixed d (=10) 

(Figs. 6b and 7b), are given together. It follows from these  

 

 

graphs that the influence of the ratio h(1)/ R = h(2)/R on the 

magnitude of the influence of the rheological parameters d 

and Q on the propagation velocities of the flexural waves is 

insignificant. However, an increase in the values of the ratio 

h(1)/ R = h(2)/R causes the character of the dispersion curves 

to change. 

Now we consider the numerical results related to the 

influence of the rheological parameters d and Q on the 

dispersion curves of the second mode and for a clearer 

illustration this influence we consider the graphs of the 

dependencies between 
(2)
2( ) /

t
c c c

=
−  and k1R instead of 

the graphs of the dependencies between 
(2)
2/c c  and k1R. 

These graphs are given in Figs. 8-9 which are constructed in 

the cases for 𝜇0
(2)

/𝜇0
(1)

= 0.5 (Figs. 8a and 8b) and 2.0 

(Figs. 9a and 9b) for various values of the parameter d 

under fixed Q (=10) (Figs. 8a and 9a) and for various values 

of the parameter Q under fixed d (=10) (Figs. 8b and 9b).  

Thus, it follows from the foregoing graphs that a 

decrease in the values of the rheological parameters d and Q 

also causes a decrease in the values of the wave propagation 

velocity of the second mode. Moreover, these results show 

that the considerable effect of the influence of the 

rheological parameters d and Q on the wave propagation 

velocity in the second mode appears in the cases where k1R 

≤ 0.2. 

a b 

Fig. 6 The effect of the cylinder’s thickness on the magnitude of the influence of the rheological parameters d (a) and Q (b)  

on the dispersion curves in the case where 𝜇0
(2)

/𝜇0
(1)

= 0.5 

a b 

Fig. 7 The effect of the cylinder’s thickness on the magnitude of the influence of the rheological parameters d (a) and Q (b) 

on the dispersion curves in the case where 𝜇0
(2)

/𝜇0
(1)

= 2 
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a b 

Fig. 8  The influence of the rheological parameters  d (a) and Q  (b) on the dispersion curves related to the second mode 

constructed in the case where 𝜇0
(2)

/𝜇0
(1)

= 0.5 

a b 

Fig. 9 The influence of the rheological parameters d (a) and Q (b) on the dispersion curves related to the second mode 

constructed in the case where 𝜇0
(2)

/𝜇0
(1)

= 2 

  

a b 

Fig. 10 The graphs illustrated the attenuation dispersion or various values of the rheological parameters Q(a) and d(b); the  

Ω is determined through the expression given in equation (31) 
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At the same time, comparison of the results obtained for 

various values of the ratios 𝜇0
(2)

/𝜇0
(1)

 with each other, 

shows that the effect of this ratio on the magnitude of the 

influence of the rheological parameters d and Q on the wave 

propagation velocity in the second mode is insignificant. 

Moreover, the comparison of the results obtained for 

various h(1)/ R (= h(2)/R) (these results are not given here) 

shows that the effect of the change of h(1)/ R on the 

aforementioned magnitude is also insignificant. 

Note that all the foregoing numerical results are 

obtained for the dispersion attenuation determined by the 

relations given in equation (33). The graphs of these 

dispersion curves are given in Fig. 10 which are constructed 

for various values of the rheological parameter Q under 

fixed d (=10) (Fig. 10a) and for various values of the 

rheological parameter d under fixed Q (=10) (Fig. 10b). 

 
 

Note that the selected attenuation curves agree in the 

quantitative sense with the corresponding ones determined 

in the papers by Barshinger and Rose (2004), Hernando 

Quintanilla et al. (2015), Mazoti et al. (2012) and others 

listed therein. 

We recall that the results analyzed above relate to the 

case where the layers’ materials of the cylinder have the 

same rheological properties. Now we consider the 

numerical results related to the case where the material of 

the inner layer is viscoelastic, however the material of the 

outer layer is purely elastic and denote this case as the 

“E.V. case”, and examine the first mode only. The 

dispersion curves regarding the E.V. case are given in Figs. 

11-12 which are constructed in the cases where 𝜇0
(2)

/𝜇0
(1)

=

0.5 (Figs. 11a and 11b) and 𝜇0
(2)

/𝜇0
(1)

= 2.0 (Figs. 12a 

and 12b) for various values of the parameter d(2) under fixed 

a b 

Fig. 11 The influence of the rheological parameters d (a) and Q (b) in the dispersion curves related to the first (fundamental) 

mode constructed in the case where 𝜇0
(2)

/𝜇0
(1)

= 0.5 in the E.V. case 

  

a b 

Fig. 12 The influence of the rheological parameter d (a) and Q (b) on the dispersion curves related to the first (fundamental) 

mode constructed in the case where 𝜇0
(2)

/𝜇0
(1)

= 2 in the E.V. case 
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Q(2)  (=10) (Figs. 11a and 12a) and for various values of 

the parameter Q(2) under fixed d(2) (=10) (Figs. 11b and 

12b).  

Analysis of the graphs given in Figs. 11-12 shows that 

the character and properties of the dispersion curves 

obtained in the E.V. case are the same as those obtained in 

the V.V. case which are detailed and analyzed above. 

However, comparison of the results obtained in the E.V. 

case with the corresponding ones obtained for the V.V. case 

shows that the magnitude of the influence of the rheological 

parameters d(2) and Q(2) on the wave propagation velocity in 

the E.V. case is greater than that in the V.V. case. For a 

clearer illustration of this conclusion, the dispersion curves 

obtained in the V.V. and E.V. cases are given together in 

Fig. 13 and these curves are constructed for 𝜇0
(2)

/𝜇0
(1)

=
0.5  (Figs. 13a and 13b) and 2.0 (Figs. 13c and 13d). Note 

that in Fig. 13 the dispersion curves constructed in the V.V. 

case for d=1 and 5 under fixed Q (=10) are compared with 

the dispersion curves constructed in the E.V. case for d(2) =1 

and 5 under fixed Q(2) (=10) (Figs. 13a and 13c). The 

dispersion curves constructed in the V.V. case for Q = 1 and 

10 under fixed d (=10) are also compared with the 

dispersion curves constructed in the E.V. case for Q(2) 1 and 

10 under fixed d(2) = 10 (Figs. 13b and 13d). It follows from  

 

 

the results given in Fig. 13 that the wave propagation 

velocity obtained for the E.V. case is less than the 

corresponding one obtained for the V.V. case. The 

difference between the wave propagation velocities 

obtained in the E.V. and V.V. cases decreases with 

increasing of the rheological parameters and has zeroth 

limit. This is because the upper limits for the dispersion 

curves in the E.V. and V.V. cases are the same. However, 

the lower limits for the dispersion curves obtained for the 

E.V. and V.V. cases differ from each other and the limit 

wave propagation velocities obtained for the E.V. cases are 

less than the corresponding ones obtained for the V.V. 

cases.  

This statement can be explained with the fact that in the 

cases where the materials of the layers are purely elastic 

ones and the Poisson’s ratios of the layers’ materials are 

equal to each other, an increase in the ratio of the shear 

modulus of the inner layer material to that of the outer layer 

material causes an increase in the values of the 

dimensionless wave propagation velocity 𝑐/𝑐2
(2)

. This fact 

is proven with a comparison of the results obtained for the 

case where 𝜇0
(2)

/𝜇0
(1)

= 2.0 with those obtained for the 

case where 𝜇0
(2)

/𝜇0
(1)

= 0.5. Moreover, this fact is proven 

with the other similar results obtained for the purely elastic 

a b 

c d 

Fig. 13  Comparison of the results obtained in the V.V. case with the corresponding ones obtained in the E.V. case for 

various values of rheological parameters d (a, c) and Q(b, d) in the cases where 𝜇0
(2)

/𝜇0
(1)

= 0.5 (a, b) and 2 (c, d) 
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cases under other values of the ratio 𝜇0
(2)

/𝜇0
(1)

 and detailed 

in the monograph by Akbarov (2015) and in the papers 

listed therein. Moreover, the wave propagation velocity in 

the bi-layered cylinder in the purely elastic cases depends 

also on the ratios of the Lame constants, i.e. on λ(m)/μ(m) 

(m=1,2) and an increase in the values of these ratios causes 

a decrease in the wave propagation velocity under purely 

elastic cases. In the V.V. case, the equality 𝜇0
(2)

/𝜇0
(1)

=

𝜇∞
(2)

/𝜇∞
(1)

 takes place and the lower limit dispersion curves 

appear as a result of the differences 𝜆0
(1)

/𝜇0
(1)

≠ 𝜆∞
(1)

/𝜇∞
(1)

 

and 𝜆0
(2)

/𝜇0
(2)

≠ 𝜆∞
(2)

/𝜇∞
(2)

. However, in the E.V. case, the 

lower limit dispersion curves are obtained for the cases 

where the ratio of the shear modulus of the constituents is 

𝜇∞
(2)

/𝜇0
(1)

 which is less than 𝜇0
(2)

/𝜇0
(1)

= 𝜇∞
(2)

/𝜇∞
(1)

and 

therefore the lower limit wave propagation velocities 

obtained for the E.V. case are less than those obtained for 

the V.V. case. Thus, the results illustrated in Fig. 13, 

according to which, the magnitude of the influence of the 

rheological parameters on the wave propagation velocity in 

the E.V. case is greater than that in the V.V. case, are 

explained.  

We do not present here the results regarding the case 

where the outer layer material is viscoelastic but the 

material of the inner layer is purely elastic (denote this case 

as the “V.E. case”). This is because for the range change of 

the problem parameters considered here in the V.E. case the 

influence of the rheological parameters on the wave 

propagation dispersions is insignificant. The reason for this 

is the fact that the lower limit wave propagation velocities 

obtained for the V.E. case are greater than those obtained 

for the V.V. case. According to the foregoing discussions, 

this statement can be also explained with the inequality 𝜇0
(2)

/

𝜇∞
(1)

>  𝜇∞
(2)

/𝜇∞
(1)

= 𝜇0
(2)

/𝜇0
(1)

. Consequently, the increment 

of the lower limit wave propagation velocities in the V.E. 

case causes the lower limit dispersion curve to become 

closer to the upper limit dispersion curve and as a result of 

this ‘closing’, the effect of the rheological parameters on the 

dispersion curves decreases.  

We recall that under consideration of the axisymmetric 

longitudinal waves in the bi-layered hollow cylinder made 

of viscoelastic material the results of which are detailed in 

the paper by Akbarov et al. (2016b), it is established that in 

the corresponding purely elastic case an increase in the ratio 

of the shear modulus of the inner layer material to that of 

the outer layer material causes a decrease of the wave 

propagation velocities. Consequently, the effect of the ratio 

of the shear modulus on the wave propagation velocities of 

the flexural waves in the first mode is the reverse of that on 

the axisymmetric longitudinal wave propagation velocities. 

Therefore, analyses obtained for the axisymmetric 

longitudinal waves in the bi-layered hollow cylinder and 

given in the paper by Akbarov et al. (2016b) show that the 

influence of the rheological parameters of the outer cylinder 

material in the V.E. case is more significant than those 

obtained in the V.V. case and the effect of the 

viscoelasticity in the E.V. cases is insignificant. In other 

words, the effect of the viscoelasticity in the V.E. and E.V. 

cases on the wave propagation velocities obtained for the 

first mode of the flexural waves is the reverse of that for the 

axisymmetric longitudinal waves. It is evident that the 

aforementioned ‘reverse’ statements can be explained with 

the difference of the particularities of the flexural and 

axisymmetric longitudinal waves.     

With this we restrict ourselves to consideration of the 

rheological parameters d(m) and Q(m) on the dispersion 

curves.   

 
4.4 Numerical results related to the influence of the 

rheological parameter α(m) on the dispersion curves 
 

As noted above, the parameter α(m)
 is the main 

rheological parameter which distinguishes the fractional 

exponential operators from the ordinary ones. Sometimes 

the parameter α(m)
 is called the fractional order or the order 

of the singularity of the operators. We again recall that in 

the case where α(m)= 0, the operators given through the 

expressions in equations (26) and (27) become the operators 

which relate to the “standard liner solid body model” with 

ordinary derivatives.  

Thus, we consider the numerical results illustrating the 

influence of the parameter α(m)
 on the dispersion curves. We 

consider here only the V.V. case under which α(1) = α(2) (= 

α) and analyze the dispersion curves regarding the first 

mode. These curves are given in Fig. 14a (Fig. 14b) which 

are constructed in the case where 𝜇0
(2)

/𝜇0
(1)

= 0.5 (in the 

case where 𝜇0
(2)

/𝜇0
(1)

= 2.0) for various values of the 

parameter α under  1;  10d Q= = .  

It follows from the foregoing graphs that an increase in 

the values of the rheological parameter α causes a decrease 

in the values of the wave propagation velocity and a change 

in the values of α does not influence the character of the 

dispersion curves.  

This completes the analyses of the numerical results. 

This completes the analyses of the numerical results. We 

recall that these results are obtained within the scope of the 

exact three-dimensional equations and relations of 

viscoelastodynamics. It is evident that these investigations 

can be also made within the scope of the various 

approximate shell theories (for instance, within the scope of 

the Kirchhoff– Love shell theory), according to which, the 

radial coordinate r and the derivatives with respect to this 

coordinate disappear in the governing field equations. 

Moreover, under consideration within the scope of the 

approximate shell theories the boundary conditions with 

respect to coordinate r at r = R−h(1) and at r = R−h(2), and the 

contact conditions at r =R  formulated in equation (5), 

disappear also. However, these conditions are entered into 

the field equations of the mentioned approximate shell 

theories.  

  It follows from the physico-mechanical 

considerations that the results obtained within the scope of 

the approximate shell theories acceptable for the low 

wavenumber, i.e. for the cases where 1/(k1R) ≫
 max{h(1)/R;h(2)/R}. Consequently, the difference between 

the results obtained within the scope of the approximate and 

exact approaches increases with increasing the 

dimensionless wavenumber k1R (or with decreasing of the  
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length of the flexural (bending) waves) and after a certain 

value of the wavenumber becomes more considerable not 

only in the quantitative sense but also in the qualitative 

sense. Such conclusions are made in the many references 

(see, for instance, the monograph by Eringen and Suhubi 

(1975) and others listed therein) for the purely elastic cases. 

As the results obtained for the viscoelastic cases are limited 

with the corresponding results obtained for the purely 

elastic cases with the instantaneous and long-term values of 

the elastic constants, therefore the mentioned conclusion 

remain also valid for the problems considered in the present 

paper. Consequently, the results obtained and discussed in 

the present paper can be taken as the benchmark ones for 

the results and discussions obtained within the scope of the 

various approximate shell theories for the layered 

cylindrical shells. 
 

 

4.5 The difference between the present results 
from those obtained for the corresponding 
axisymmetric waves 

 

According to the comparison of the present results with 

corresponding results obtained earlier in the papers by 

Akbarov and Kepceler (2015) and Akbarov et al. (2016a, 

2016b) for the corresponding axisymmetric waves, it can be 

made the following main difference between them in the 

qualitative sense. 
1. In the present case the low wavenumber limit 

values of the wave propagation velocity in the first mode do 

not depend on the rheological parameters, however, in the 

axisymmetric wave propagation case (see, the paper by 

Akbarov and Kepceler (2015) for tortional waves and the 

papers by Akbarov et al. (2016a, 2016b) for longitudinal 

waves) the low wavenumber limit values of the wave 

propagation velocity depends significantly on the 

rheological parameter d.  

 

 

2. In the axisymmetric wave propagation case the 

main effects (in the quantitative sense) of the rheological d 

and Q on the wave propagation velocities appear under k1R 

≤ 1.5, however, in the present case this effect is 

immediately observed for the cases where 0.5 ≤ k1R ≤ 10. 

3. In the axisymmetric wave propagation case the 

influence of the rheological parameters on wave 

propagation velocity in the second mode is more significant 

in the quantitative sense than that in the present case. 

4. In the present case, the effect of the geometrical 

parameter h(1)/R (= h(2)/R) on the wave propagation velocity 

in the first mode is more considerable not only in the 

quantitative sense but also in the qualitative sense than that 

in the axisymmetric wave propagation cases.  

5. Besides all these, in the present paper, it is also 

studied the influence of the dimensionless parameter  

6. α(=α(1)=α(2)) on the dispersion curves, however, in 

the previous works this influence does not study.   

Namely, the foregoing differences determine the 

originality and significance of the present results. 

 

4.6 On the influence of the viscoelasticity on the 
wave dispersion in the higher order of the harmonic of 
the flexural waves in the circumferential direction 
 

We recall that above it has been considered dispersion 

curves related to the so-called modes F(1,1) and F(1,2), i.e. 

the first two modes of the first harmonic in the 

circumferential direction of the cylinder.  

It is also evident that the consideration of the influence 

of the rheological parameters of the cylinders materials on 

the dispersion curves in the higher harmonics in the 

circumferential direction of the cylinder, i.e. the modes 

F(n,1), F(n,2), ...,where 2n   also represents a great 

significance. However, within the scope of the one paper, it 

is impossible to consider and analyze all these dispersion  

a b 

Fig. 14 The influence of the rheological parameter 
(1) (2)( )  = = on the dispersion curves of the first mode in the cases 

where 𝜇0
(2)

/𝜇0
(1)

= 0.5 (a) and 2 (b) 
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Fig. 15 The influence of the rheological parameter d on 

the dispersion curves obtained for the mode F(2,1) in the 

case where (1) (2) 0.5 = =  

 

 

curves related all these modes. Nevertheless, as an example 

of the illustration of the mentioned significance, we 

consider the graphs given in Fig. 15 which show the 

dispersion curves for the mode F(2,1) in the V.V. case 

under d = 1, 5, 10, 15, 25, 50 and 75. Note that under 

construction of these graphs it is assumed that h(1)/ R = 

h(2)/R = 0.1, Q = 10 and 𝜇0
(2)

/𝜇0
(1)

= 0.5 In this figure, it is 

also shown the dispersion curve related to mode F(2,1) the 

case where the materials of the layers of the cylinder are the 

purely elastic (in Fig. 15 this curve is indicated by the t=0) 

and the dispersion curve related to the mode F(1,1).  

It follows from the comparison the dispersion curve of 

the mode F(1,1) with the dispersion curve of the mode 

F(2,1) constructed for the purely elastic case that there is a 

certain change interval of the k1R under which the wave 

propagation velocity in the mode F(2,1) is less than that in 

the mode F(1,1). Note that such situation is characteristic 

one for the F(2,1) mode in the hollow cylinder and it is also 

observed from the corresponding results obtained by the 

other authors (see, for instance, the paper by Nishido et al. 

(2001)). Moreover, it follows from the graphs given in Fig. 

15 that the influence of the rheological parameter d on the 

dispersion curves obtained for the F(2,1) modes is 

considerable with the quantitative sense and causes to 

decrease the wave propagation velocity in this mode. At the 

same time, Fig. 15 shows that the magnitude of the 

mentioned influence increases with the decreasing of the 

k1R.  

The foregoing results show that the study of the 

influence of the rheological parameters of the cylinder's 

layers materials on the wave dispersion in the modes F(n,1) 

F(n,2)..., where n ≥ 2 may have considerable significance 

not only in the theoretical but also in the application sense. 

Therefore, the study of dispersion curves in these cases will 

be made in further works by the authors. 

5. Conclusions 
 

Thus, in the present paper the flexural wave dispersion 

in the bi-layered circular hollow cylinder made of 

viscoelastic materials is investigated by utilizing the exact 

3D equations and relations of elastodynamics. It is assumed 

that the materials of the layers of the cylinder are 

homogeneous and isotropic. The viscoelasticity of the 

layers’ materials of the cylinder is described through the 

fractional exponential operators by Rabotnov (1980), 

according to which, the rheological parameters d(m), Q(m) 

and α(m)\ are introduced, through which the long term values 

of the mechanical properties, the characteristic creep times 

and the improving of the mathematical approximation of the 

experimental creep or relaxation functions in the initial state 

of the deformations of the m-th material, respectively, are 

estimated.  

Numerical results are presented for the first harmonic of 

the flexural waves in the circumferential direction and 

dispersion curves related to the lowest first and second 

modes are presented and analyzed. The following cases are 

considered: the V.V. case for which the viscoelasticity 

properties of the layers’ materials are the same (i.e. the 

equalities d(1)=d(2)=d, Q(1)=Q(2)=Q, α(1)=α(2)=α take place) 

and the E.V. case for which the outer layer material is 

purely elastic but the material of the inner layer is 

viscoelastic. The particularities of the influence of the 

viscoelasticity of the cylinder’s layers’ materials on the 

flexural wave dispersion are established. 

Analysis of the numerical results allows us to draw the 

following concrete conclusions:  

- Dispersion curves obtained for all the viscoelastic 

cases are limited with the corresponding ones obtained for 

the purely elastic cases with the instantaneous values of the 

elastic constant at t = 0 (upper limit) and with the long-term 

values of the elastic constants at t = ∞ and the “distance” 

between these limit cases increase with decreasing of the 

parameter d(m); 

- All the dispersion curves “shift” up with 

increasing of the ratio of the shear modulus of the inner 

layer to that of the outer layer and as a result of this shifting 

the “distance” between the upper and lower limit dispersion 

curves obtained for the V.V. case is less (is more) than that 

obtained for the E.V. case (for the V.E. case); 

- As a result of the foregoing statement, the 

magnitude of the influence of the rheological parameters 

d(2) and Q(2) on the dispersion curves in the E.V. case is 

more significant than that of the rheological parameters d 

and Q in the V.V. case; 

- In the V.E. case, the influence of the 

viscoelasticity of the outer layer material on the dispersion 

curves of the first mode is insignificant for the problem 

parameters considered in the present investigation; 

- An increase in the values of the rheological 

parameter α in the V.V. case causes a decrease in the values 

of the wave propagation velocities in the first mode; 

- The change in the values of the ratio h(1)/ R = 

h(2)/R causes the character of the dispersion curves to 

change; 

Besides all the foregoing conclusions, more detailed 
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ones can be made from the numerical results discussed, 

some of which can be found in the text of the paper. 
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Appendix A 
 

In the present appendix we attempt to justify the 

approximate equality (8). For this purpose, first, we note that in 

the theoretical sense the operator for the linear theory of 

viscoelasticity of the non-aging materials is selected as 

( ) ( ) ( ) ( )

t

y t x t K t x d  

−

= + −
 

(A1) 

where the function x(t) is named the “action” to the system, 

however the function y(t) is named the “reaction” of this 

system to this action. 

However, as all the pfysico-mechanical processes take place 

within the finite interval of time and the beginning of each 

process can be taken as t =0, therefore, as usual, it is assumed 

that the functions x(t)  and y(t)  are the Heaviside type 

functions, i.e. it is supposed that x(t) = y(t) = 0 for ( ,0]t − . 

This mathematical formalism based on the fact that in the real 

cases the first term in the right side of the expression 

0

0

( ) ( ) ( ) ( ) ( ) ( )

t t

K t x d K t x d K t x d        

− −

− = − + −  
 

(A2) 

is so small that it can be neglected with very high accuracy. In 

other words, it is assumed that 

0

( ) ( ) ( ) ( )

t

y t x t K t x d  = + −
 

(A3) 

In this way, the relation (A1) is transformed into the 

following one 

0

( ) ( ) ( ) ( )

t T

y t T x t T K t T x d  

+

+ = + + + −
 

(A4) 

which, as in many references, is also used under writing the 

expressions in equation (3).  

However, the relation (A4) does not satisfy the “closed 

cycle conditions”, i.e. the (A4) type relation doesn’t maintain 

the periodicity of the function y(t) in the cases where the 

function x(t) is periodic one, i.e. ( ) ( )x t T x t+ = where T is a 

period. This fact can be proven as follows. 

We rewrite the relation (A4) by replacing t with t T+  

( ) ( ) ( ) ( )

t

T

y t T x t T K t T T x T d  

−

+ = + + + − − +
 

(A5) 

Doing the transform ' T = +  in equation (A5) and 

omitting the upper prime over the ' , we obtain that 

( ) ( ) ( ) ( )

t

T

y t T x t T K t T T x T d  

−

+ = + + + − − +
 

(A6) 

Using the equality ( ) ( )x t T x t+ =  and 

0

0
( ) ( ) ( )

t t

T T
d d d  

− −
• = • + •    we can write 

0

0

( ) ( ) ( ) ( ) ( ) ( )

t

T

y t T x t K t x d K t x d     

−

+ = + − + − 
from (A6), 

In other words we obtain that  

0

( ) ( ) ( ) ( )

T

y t T y t K t x d  

−

+ = + −
 

(A7) 

which proves the non-periodicity of the function y(t) if this 

function is determined through the relation (A4). 

However, if we remake the foregoing mathematical 

manipulations for the relation (A1), we obtain  

( ) ( ) ( ) ( )

t T

y t T x t T K t T x d  

+

−

+ = + + + − =

( ) ( ) ( )

t

x t T K t T T x T d  

−

+ + + − − + =
 

( ) ( ) ( ) ( ),

t

x t K t x d y t  

−

+ − =  ( ) ( ),y t T y t + =  

(A8) 

from which follows that y(t) is periodic with the period T if the 

function x(t) is periodic with the same period and if the 

function y(t) is determined through the relation (A1).  

As the nature of the problem considered in the present 

paper requires the periodicity of the stresses under periodicity 

of the displacements therefore we return to (A1) type relations 

assuming the satisfaction of the relation (8), the acceptability of 

which is discussed above. 

 

 

Appendix B 
 

In the present appendix we give the explicit expressions for 

the components of the matrix ( )( )lm p  under p=1. These 

expressions are 

( ) ( ) ( ) ( )

( ) ( )

(2) (2) (2)

(2) (2)

(2)
(2) (2) (2) (2)(2) (2) 1

11 1 11 22 2 21 1

(2)
(2) (2) (2)

1 11 2 21 1

1
, 2

1
,

I

h h h

I

h h

M J J

J J

 
 =  + − +
 
 

 
− + 
 


    

 

  
 

 

( ) ( ) ( ) ( )

( ) ( )

(2) (2) (2)

(2) (2)

(2)
(2) (2) (2) (2)(2) (2) 1

12 1 11 22 2 21 1

(2)
(2) (2) (2)

1 11 2 21 1

1
, 2

1
,

I

h h h

I

h h

M Y Y

Y Y

 
 =  + −
 
 

 
+ − + 

 


    

 

  
 

 

( )
( ) ( )
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(2)

(2)

(2) (2)

2
(2) (2)

11 2
(2) (2) (2)

21 (2)1 2
(2) (2)1

1 12 2 211

, ,
1

II

h

h
I

h h

J

M

J J
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