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1. Introduction 
 

The porous materials are combined of two elements as 

solid (body) and liquid or gas in which wood, stone, sponge 

and bone are example of these materials in the nature. 

Studies on the vibration response of porous FG structures, 

especially for beams and plates, are still limited in number. 

In recent decades, the use of piezoelectric materials 

combined with composites and functionally graded 

materials have been increased. One of the applications of 

these materials is vibration control and smart structures and 

systems (Chen et al. 2002). Static behavior of a FGM shell 

with a piezoelectric layer was investigated using higher-

order shear deformation theories by Wu et al. (2002). 

Fakhari et al. (2011) investigated nonlinear vibration of FG 

plate with two piezoelectric layers under mechanical, 

electric and thermal loads using non-linear strain-

displacement relations of von Karman and finite element 

method. Arefi and Zenkour (2017) studied the nonlocal 

thermo-magneto-electro-mechanical bending behaviors of 

nano sheet with two piezo-magnetic layers by using 

sinusoidal shear deformation plate theory.  

Porous materials, such as metal foams, are an important 

category of lightweight materials with application to 

aerospace engineering. Usually, the variation of porosity 

through the thickness of porous plates causes a smooth 

change in mechanical properties. Abbas et al. (2015) 

studied two-dimensional problem of a porous material 

within the context of the fractional order generalized 

thermo-elasticity theory with one relaxation time. Ait 

Atmane et al. (2017) studied the use of an efficient beam 

theory for bending, free vibration and buckling analysis of 

functionally graded material (FGM) beams resting on two-

parameter elastic foundation. Barati and Zenkour (2017)  
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investigated analysis of post-buckling behavior of porous 

metal foam nanobeams based on a nonlocal nonlinear 

refined shear deformation beam model with geometric 

nonlinearity and imperfection that in the metal foam 

nanobeam, porosities were simulated by uniform, 

symmetric and asymmetric models. Some important works 

on the application of higher-order shear deformation theory 

were published by various researchers (Reddy 2004, 

Benahmed et al. 2017, Elmeiche et al. 2011, Hebali et al. 

2014). Some important relations of porous materials can be 

observed in literature (Galeban et al. 2016, Mirjavadi et al. 

2017, Ebrahimi and Habibi, 2016).  

According to strain gradient theory, the strain energy is a 

function of strain, strain gradients and material length scale 

parameters. Nonlocal strain gradient calibration of 

nanostructures via experiments and molecular dynamic 

simulation shows that their mechanical characteristics can 

be described using two scale parameters (Li et al. 2016, 

Mehralian et al. 2017, Lim et al. 2015). In fact, these two 

scale parameters consider the stiffness-softening and 

stiffness-hardening effects due to nonlocal stress field and 

strain gradients on mechanical behavior of nanostructures. 

Based on the nonlocal strain gradient theory, Li et al. (2015) 

studied the size-scaled effect on the wave propagation in 

functionally graded beams via the nonlocal strain gradient 

theory. Khorshidi et al. (2015) studied free vibration 

analysis of functionally graded rectangular nanoplates based 

on nonlocal exponential shear deformation theory. They 

indicated that some significant parameters such as nonlocal 

parameter, the ratio of the thickness to the length, the power 

law indexes and the aspect ratio have significant influence 

on the frequency values of a FG nano-plate. It’s shown that 

the frequency ratio decreases with increasing the mode 

number and the value of the nonlocal parameter, and also 

increasing the power law index causes the non-dimensional 

frequencies to decrease. Mechab et al. (2016) presented free 
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Fig. 1 The schematic figure of a sandwich porous plate 
 
 

vibration analysis of FGM nanoplate with porosity resting 

on Winkler Pasternak elastic foundations based on 

two‑variable refined plate theories. They mentioned that the 

frequencies of the plates increase dramatically within the 

range of spring constant factors around 100 to 10. 

Additionally, the porosity within functionally graded plates 

is one of the important aspects that lead to considerable 

changes in frequencies. It has been indicated that the 

frequencies decrease as the porosity volume fraction 

increases for every value of the volume fraction index.  

The literature review was completed above. This review 

indicates that free vibration analysis of sandwich plate 

including a porous core and two integrated piezoelectric 

layers has not been studied. In this paper, higher-order 

hyperbolic shear and normal deformation theory is used to 

derive governing equations of motion of a sandwich porous 

plate integrated with piezoelectric layers. Higher order 

shear deformation theory has sufficient capability with 

respect to lower order one for prediction the elastic 

deformations of sandwich structures. The higher order shear 

and normal deformation theory is used for more accurate 

variation of shear strains along the thickness direction. In 

addition to above advantage, this theory does not need to 

shear stress correction factor rather than first order shear 

deformation theory. The present paper and corresponding 

formulations are used for simulation of a sandwich thick 

porous plates including a FG porous core and two 

piezoelectric layers as sensor and actuator. The results of 

this paper can be used for measurement and control of 

vibration responses of porous structures. The porous 

materials are used in various structures due to high stiffness 

and low density that leads to highernatural frequencies. A 

parametric study is performed to obtain numerical results in 

terms of significant parameters such as porosity distribution 

and some dimensionless geometric parameters.     

 

 

2. Fundamental equations 
  

In the research, hyperbolic shear deformation theory is 

used. This theory is expressed (Benahmed et al. 2017) 
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Where u, v, w are the displacement components along x, y 

and z direction (Figure 1), respectively and wb, ws are the 

bending and shear portions of the transvers displacement. 

In addition, φ is displacement of the effect of normal 

stress and f(z), g(z) are shape functions that are expressed 

as: (Benahmed et al. 2017) 
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Strain-displacement relations are expressed 
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(3) 

Electric-displacement relations for piezoelectric layers 

are defined (Arefi and Rahimi 2012, Arefi 2016, Arefi and 

Zenkour 2017a, b) 

15

26

13 32

11

22

33

0 0 0 0

0 0 0 0

0 0 0

0 0

0 0

0 0

x

yx

y xy

z xz

yz

x

y

z

D e

D e

e eD

E

E

E











 
 

     
    

=     
        
 
 

  
  

+    
       

(4) 

Where eij are the piezoelectric coefficients, Ei are the 

electric field components and ∈ij are the dielectric 

coefficients. The electric field components are defined 
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In which 𝛹̂ is electric potential that is defined as follows: 

( )0

2
, , cos

,
2 2

p p

p p

z z
x y t

h h

h h
z z z z


  

 


 

  
  = − −
  

 

 = − = +
  

(6) 

460



 

Application of hyperbolic shear deformation theory to free vibration analysis… 

In Eq. (6), 𝛹0  is initial electric potential at top of 

piezoelectric layers. Electric fields are derived by 

substitution of Eq. 6 into Eq. 5 as follows: 
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Different types of porosity distributions for the porous 

material is expressed (Rezaei and Saidi 2016, Barati and 

Zenkour 2017, Li et al. 2018, Chen et al. 2019) 
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2- Non-uniform distribution1 
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3- Non-uniform distribution 2

( )

( )

( )

1 0

1 0

1

1 cos
2 4

1 cos
2 4

1 cos
2 4

m

z
E z E e

h

z
G z G e

h

z
z e

h

 

 

 
 

   
= − − +   

  


    
= − − +    

   


    = − − +   
      

(8c) 

where E, G, ρ are elasticity moduli, shear moduli and 

density; e0, em are the coefficients of porosity and mass 

density and coefficient of uniform porosity distribution χ 

are defined as (Zhao et al. 2018) 
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Stress-strain relations for core (porous material) are 

defined 
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Stress-strain relation for piezoelectric layers are defined 

(Arefi and Zenkour 2017) 
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Also, Hamilton’s principle expresses that (Demirhan and 

Taskin 2018) 
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Where U is the strain energy, T is the kinetic energy of the 

plate and W is the work of external force. Variation of strain 

energy is defined 

( )ij ij i i

v

x x x x xy xy xz xz yz yz

x x y y z zv

U D E dV

dV
D E D E D E

   

         

  

= −

+ + + + 
=   − − − 




 

(13) 

Variation of kinetic energy is defined as (Kim et al. 

2019) 

.
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The variation of U, T are presented in Appendix1 and 2. 

With substitution of variation of strain energy and kinetic 

energy to Hamilton’s principle, equations of motion are 

obtained as 
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In which the resultant components Ni, 𝑀𝑖
𝑏, 𝑀𝑖

𝑆, Sij, Pi, Ri 

are given by 
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The integration constant expressed in Eq. (15) are 

defined as follows: 
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The governing equations of motion for piezoelectric-

porous plate are obtained by introducing Eqs. (16), (12), 

(11) into Eq. (15) as follow: 
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3.  Solution Procedure 
 

To study the influence of significant parameters such as 

porosity characteristics and dimensionless geometric 

parameters on the free vibration characteristics, the 

numerical results are presented based on analytical method. 

For this purpose, the Navier’s solution is expressed as 

0

0

0    0,

0    0,

b ss
b s x x x

b ss
b s y y y

w
v w w N M M at x a

y

w
u w w N M M at y b

x






= = = = = = = = =




= = = = = = = = =

  

(19) 
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The Navier’s solution procedure is expressed for 

simply-supported boundary condition as follows (Arefi and 

Zenkour 2017a, b, Arefi and Zenkour 2018, Arefi et al 

2018, Arefi 2018a, b): 

0
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      

(20) 

Where U, V, Wb, Ws, φ, Ψ are unknown amplitudes and 

m, n denote the number of axial and transverse waves in the 

mode shapes and ω is the natural frequency of vibration. 

By introducing equation (20) Into equation (18), two 6 

×6 displacement coefficient matrix can be expressed 

   2

6 66 6
0K M 

− =
 

(21) 

The component of [K], [M] are presented in appendix 3. 
 

 

4.  Numerical results and discussions 
 

In this section the obtained results of free vibration for a 

porous sandwich plate with simply support boundary 

conditions are presented. The core is considered porous 

material and three properties of the material are considered 

as 
9 2 3200 10 ( / ), 0.3, 7850( / )E N m kg m =  = = . 

Furthermore, the properties of piezoelectric layers are 

considered as follows: 

11 22 12

44 55 66

2 2
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26 15
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11 22
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Before presentation of full numerical results, the  

 
 

governing equations and corresponding numerical results 

should be validated. A comparison with existing reference is 

presented for validation of numerical results (Benachour et 

al. 2011). Table 1 lists variation of non-dimensional natural 

frequencies of sandwich porous plate in terms of various 

thickness to side length ratio h/a based on the present and 

previous results (Benachour et al. 2011). This comparison 

indicates that the present numerical results are in good 

agreement with literature results. 

Table 2 lists variation of natural frequencies in terms of 

side length ratio a/b for various porosities. It is noted that 

with change of side length ratio a/b, the area of plate is 

assumed constant (a × b = Const). It is observed that the 

second distribution (Nonuniform1) yields highest natural 

frequency and lowest one is reached for first distribution 

(Uniform). In addition, the lowest natural frequency is 

obtained for a/b=1 and for the side length ratios greater than 

a/b=1, the natural frequencies are increased significantly. 

Shown in Figure 2 is variation of first, second and third 

natural frequencies of sandwich porous plate in terms of 

various values of side length ratio a/b. The numerical results 

show that the lowest values of natural frequencies are 

obtained for a/b=1. To study the influence of thickness of 

core and piezoelectric layers on the vibration characteristics 

of sandwich porous plate, the ratio of core thickness to 

piezoelectric thickness he/hp is selected. Table 3 lists 

variation of natural frequencies in terms of various values 

of he/hp for different porosities. The results of Table 3 are 

obtained for the case that total thickness of plate is assumed 

constant (he + 2hp = Const). The numerical results indicate 

that with increase of he/hp, the natural frequencies are 

decreased significantly. One can conclude that with increase 

of he/hp the stiffness of sandwich plate is decreased and 

consequently the natural frequencies are decreased.  

Shown in Figure 3 is variation of first, second and third 

natural frequencies of sandwich porous plate in terms of 

he/hp ratio. The numerical results indicate that with increase 

of he/hp ratio, the natural frequencies for various modes are 

decrease smoothly. To investigate the influence of side 

length to thickness ratio a/h, Table 4 lists variation of 

fundamental natural frequencies of sandwich porous plate 

in terms of various a/h for different porosity distributions.  

Table 1 variation of non-dimensional natural frequencies of sandwich porous plate in terms of various thickness to side length 

ratio h/a 

h
a

 P (power-law exponent) 

 0 0.5 1 4 10 

0.05 
Present 0.016 0.0136 0.0122 0.0105 0.01002 

Ref (Benachour et al. 2011) 0.0148 0.0125 0.0113 0.0098 0.0094 

0.1 
Present 0.062 0.053 0.047 0.040 0.038 

Ref (Benachour et al. 2011) 0.0576 0.049 0.044 0.038 0.036 

0.2 
Present 0.228 0.196 0.176 0.147 0.138 

Ref (Benachour et al. 2011) 0.211 0.180 0.162 0.137 0.130 
 

Table 2 Variation of natural frequencies in terms of side length ratio a/b for various porosities 

5 4 3 2 1 0.5 0.25 0.1 ratio 

36445.568 29879.552 23498.537 17650.306 14069.140 17448.533 29400.317 68465.405 Uniform 

36800.016 30171.601 23728.888 17822.666 14201.908 17604.994 29654.244 69026.851 Nonuniform1 

36520.912 29941.216 23546.859 17686.253 14096.757 17481.252 29454.195 68590.000 Nonuniform2 

463



 

M. Arefi and M. Meskini 

 

 
Fig. 2 Variation of first, second and third natural 

frequencies of sandwich porous plate in terms of 

variousvalues of side length ratio a/b 

 

 

 

 

Fig. 4 Variation of first, second and third natural 

frequencies of sandwich porous plate in terms of various 

values of side length to thickness ratio a/h 

 

 
Fig. 3 Variation of first, second and third natural 

frequencies of sandwich porous plate in terms of he/hp 

ratio 

 

 

 

 

One can conclude that with increase of side length to 

thickness ratio a/h, the fundamental natural frequencies are 

decreased significantly. One can conclude that with increase 

of a/h, the stiffness of plate is decreased that leads to 

decrease of natural frequencies. 

Shown in Figure 4 is variation of first, second and third 

natural frequencies of sandwich porous plate in terms of 

various values of side length to thickness ratio a/h. it is 

observed that with increase of a/h ratio, the stiffness of 

sandwich plate is decreased and consequently the natural 

frequencies are decreased significantly.  

Table 5 lists variation of fundamental natural 

frequencies of sandwich porous plate in terms of various 

coefficients of porosity e0 for various porosity distributions. 

The numerical results indicate that with increase of 

coefficients of porosity e0, the natural frequencies are 

increased significantly. One can conclude that with increase 

of coefficients of porosity e0, the stiffness of porous 

material is increased. 

Table 3 Variation of natural frequencies in terms of various values of he/hp for different porosities 

4 2 1 0.5 0.25 ratio 

13521.955 14069.140 14578.553 15002.423 15290.323 Uniform 

13811.385 14201.908 14631.042 15012.884 15292.383 Nonuniform 

13576.943 14096.757 14597.439 15005.076 15290.971 Nonuniform2 

Table 4 Variation of fundamental natural frequencies of sandwich porous plate in terms of various a/h for different porosity 

distributions 

40 30 25 20 10 a/h 

8831.616 11749.857 14069.140 17516.584 33941.440 Uniform 

8915.735 11861.255 14201.908 17680.493 34238.513 Nonuniform1 

8848.952 11772.922 14096.757 17550.969 34008.111 Nonuniform2 
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Table 5 Variation of fundamental natural frequencies of 

sandwich porous plate in terms of various coefficients of 

porosity e0 for various porosity distributions 

0.95 0.8 0.6 0.4 0.2 0 Ratio 

16494 15345 14651 14229 13931 13705 Uniform 

17611 15959 14997 14420 14014 13705 Nonuniform1 

16833 15503 14730 14270 13948 13507 Nonuniform2 

 

 
Fig. 5 Variation of first, second and third natural 

frequencies of sandwich porous plate in terms of various 

coefficients of porosity e0 
 

 

Figure 5 shows variation of first, second and third 

natural frequencies of sandwich porous plate in terms of 

various coefficients of porosity e0. It is observed that with 

increase of coefficients of porosity e0, the stiffness of 

material is increased and then the natural frequencies are 

increased.  

In Figure 6 influence of the electric potentials and axial 

wave number on the frequency parameter (𝜔/𝜔𝛹=0) of 

sandwich micro plate is presented. Also,  ω𝛹=0  is the 

natural frequency of the of sandwich porous plate when 

𝛹 = 0. That with increase of the n the frequency parameter 

𝜔/𝜔𝛹=0 increased. Also, with increase of the electric 

potentials the fundamental frequency parameter decreased. 
 
 

5.  Conclusion 
 

Free vibration analysis of a sandwich porous plate was 

studied in this paper using the hyperbolic shear deformation 

theory. The total transverse displacement of sandwich pate 

was assumed as summation of two portions; one related to 

bending deformation and another to shear deformation. 

Hamilton’s principle and piezo elasticity relations were 

used to derive governing equations of motion. The 

numerical results were presented based on analytical 

solution of the governing equations of motion. The 

numerical results indicate that some significant parameters 

of the problem play an important role on the change of 

outputs. Some important conclusions of this study is 

presented as follows:  

The influence of coefficients of porosity e0 was studied 

on the free vibration characteristics of sandwich porous  

 

Fig. 6 Effect of the axial wave number and electric 

potentials on the frequency of sandwich micro plate 
 

 

plate. One can conclude that with increase of 

coefficients of porosity e0, the stiffness of material is 

increased and then the natural frequencies are increased. In 

addition, the influence of type of porosity distribution was 

studied on the responses. It is observed that the second 

distribution (Nonuniform1) yields highest natural frequency 

and lowest one is obtained for first distribution (Uniform). 

The influence of dimensionless geometric parameters 

was studied on the responses of system. One can conclude 

that with increase of side length to thickness ratio a/h and 

core thickness to piezoelectric thickness ratio he / hp, the 

stiffness of structure is decreased that leads to decrease of 

natural frequencies. In addition, the influence of side 

lengths ratio a/b was studied on the responses. It is 

concluded that minimum natural frequency is obtained for 

square plate (a/b=1). For other ratios of a/b, the natural 

frequencies are increased significantly. 
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Appendix 1 
  

In this appendix the variation of strain energy ( U ) is 

defined as follows: 
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Appendix 2 
 

 In this appendix the variation of kinetic energy (T ) is 

defined as follows:  
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Appendix 3 
 

 In this appendix the component of ,K M  is defines as 

follows. 
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