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1. Introduction 
 

Structural Health Monitoring (SHM) has been 
developed over a long time and SHM systems have been 
installed on many bridges (Lynch 2004; Lynch 2007; Deng 
and Cai. 2007; Brownjohn et al. 2010; Soyoz and Feng 
2010; Catbas et al. 2013; Adewuyi and Wu 2015; Liu et al. 
2017; Sabato et al. 2017). The vibration-based SHM 
technology has progressively become a commonly used 
approach for structure safety evaluation. For instance, the 
ambient vibration test has been extensively applied for 
modal identification of several kinds of bridges (Bayraktar 
et al. 2009; Zhang et al. 2013; Fujino et al.2015; Rahbari et 
al. 2015; Sevim et al. 2016; Toydemir et al. 2017). 
However, due to limited budgets for short-span bridges, 
especially for those in rural areas, an economical, efficient 
and effective testing method is necessary for evaluation of 
their safety. Some attempts have been made to develop 
testing methods using mobile vehicles. 

Pioneering work by Yang and Lin (2005) led to the 

identification of basic modal parameters from a moving 

vehicle’s acceleration. A modified vehicle capable of  
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producing an impact upon a bridge whilst simultaneously 
scanning for structural damage based on its reactions was 
developed by Xiang et al. (2005). Guo et al. (2009) 
evaluated bridge performance by establishing the 
relationship between a passing vehicle’s reactions and 
structural damage. Though these methods were efficient, 
they were limited to the identification of basic modal 
parameters and preliminary damage.  

As a kind of forced vibration test, the impact test, by 

measuring both input forces and output responses, has the 

merit to extract the Frequency Response Function (FRF) 

consistent with analytic solutions, including its shape and 

amplitude, while ambient vibration testing data is restricted 

to the shape of the structural FRF (i.e. it does not include 

amplitude). As a result, the impact test can be used to 

successfully identify not only basic modal parameters 

(frequencies, damping ratios and mode shapes) but also 

deep-level parameters, such as the scaling factor and 

flexibility matrix (Zhang et al. 2014).  

Although impact tests have long been studied, they have 

not been widely used in engineering practices for the 

following reasons. First, it is not easy to excite a bridge 

because the energy generated by the available impacting 

equipment is limited. For example, a sledge hammer cannot 

fully excite the dynamic characteristics of a bridge because 

of its low impact force (less than 20kN). Despite Zhang and 

Moon (2012) and De Vitis et al. (2013) developed a drop-
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weight exciter which could generate a 100kN impact force 

with a wide frequency band (0–200Hz), this excitation 

device was inefficient because it needed to be stopped when 

exciting the bridge. Second, the lack of a structural 

identification theory to impact testing discourages use of the 

method; such a theory must be based upon impact test data, 

and this work is still in progress. Brownjohn et al. (2007) 

performed bridge vibration tests using an exciter, but the 

impact force was not used in the data processing stage. 

Catbas et al. (2004) and Brown and Witter (2011) 

developed a flexibility identification theory by using 

impacting forces and structural responses, from which the 

structural deflection under any static load can be accurately 

predicted, and researchers applied it to several short-

/middle-span bridges and proved that predicted deflections 

from the impact testing data were comparable with those 

from static truck load tests (Zhang and Moon 2012; Tian et 

al. 2017). A drawback to the traditional impact testing 

method is that it requires a large number of sensors 

deployed across the entire structure. To overcome this 

problem, the idea of subdividing the structure to be 

analyzed into smaller sub-structures was proposed: the test 

data from all sub-structures could then be integrated to 

allow the flexibility matrix of the entire structure to be 

identified. These proposals led to a series of algorithms 

including the multiple reference method (Zhang and Moon 

2012), the single reference method (Zhang et al. 2014; 

Zhang et al. 2015) and the reference-free method (Guo et 

al. 2018). In order to improve the testing efficiency, Tian et 

al. (2019) proposed a mobile impact testing method with 

noncontact vision-based measurement to identify mode 

shapes and flexibility matrix of the entire structure. 

However, these test methods were not convenient because 

they all required an impact test to be performed on each 

sub-structure independently. 
In order to make more improvement for the impact tests 

described above, we have developed a bridge testing 
method using continuous wheel forces excitation, and we 
put forward a corresponding structural flexibility 
identification theory. Our method utilizes a moving vehicle 
to continuously excite a bridge under conditions in which 
the wheel forces are measurable. By continuously instead of 
intermittently exciting the bridge, the proposed test is more 
efficient than a sledge-hammer test or a drop-weight test. 
However, current test data processing methods are no 
longer applicable because the vehicle–bridge interaction 
forces act on the continuous bridge space, whereas the 
traditional impacting forces from a hammer or a drop-
weight exciter act on discrete bridge nodes. Thus, it is 
necessary to develop a new structural identification theory 
for our proposed test.  

The article is set out as follows. In Section 2, we present 

the idea of bridge dynamic test excited by the continuous 

wheel forces. In Section 3, we derive the structural 

flexibility identification theory, which includes equivalent 

load distribution, the eFRFs construction and modal scaling 

factor identification. In Sections 4 to 6, we validate the 

effectiveness of our proposed method via experimental and 

numerical examples and a parametric analysis is further 

performed to investigate the robustness of the proposed 

method. Finally, in Section 7 we present our conclusions. 

2. Bridge dynamic test using continuous force 
excitation  

 

To improve the performance of conventional bridge 

SHM by a drop-weight impact test, here we propose a 

continuous wheel forces excited bridge dynamic test in 

which we regard a moving vehicle as a continuous hammer 

exciter that causes the vibration of a bridge. Apart from 

retaining the advantage of an impact test, i.e. both the input 

force and structural reactions are measurable, the proposed 

test is much easier to perform than the traditional impact 

test because a moving vehicle can excite the whole bridge 

without stopping while a traditional point-impact test has to 

be repeatedly stopped and exciters prepared. For detecting 

the wheel forces acting on a bridge in real time, the Wheel 

Force Transducer (Six Axis Wheel Force Transducer) 

designed by Michigan Scientific Corporation was installed 

on the vehicle; for detecting the response of the bridge, 

accelerometers were installed on the bridge. As shown in 

Fig. 1, the wheel forces and the acceleration of the bridge 

should enable the estimation of FRF of the bridge, because 

both input forces and output responses are measured. The 

FRF estimated from the force-controlled vibration test data 

will be exactly the same as the analytical data calculated 

from structural intrinsic parameters (mass, stiffness, etc.), 

from which structural dynamic characteristics (modal 

parameters) and static characteristics (flexibility) can be 

accurately identified; in comparison, data from ambient 

vibration tests can only generate the shape of the structural 

FRF (not the amplitude), from which only structural 

dynamic characteristics (modal parameters) can be 

identified (Zhang et al. 2014). The specific analysis is as 

follows. 

The analytical form of a displacement FRF 𝐻𝑜𝑖(𝜔) of a 

multiple Degree-of-Freedom (DOF) system is as follows 

when the Dirac force acting on the ith DOF and the 

displacement of the oth DOF are known: 

𝐻𝑜𝑖(𝜔) =∑
𝜙𝑜𝑟𝜙𝑖𝑟
𝑀𝑟𝜔𝑑𝑟

∫ 𝑒𝑥𝑝⁡(−𝜉𝑟𝜔𝑟𝑡
+∞

−∞

𝑛

𝑟=1

− 𝑗𝜔𝑡)𝑠𝑖𝑛⁡(𝜔𝑑𝑟𝑡)𝑑𝑡 

(1) 

where 𝑡  is time; 𝜔  is frequency; 𝜔𝑑𝑟  is the damped 

modal frequency of the rth modal order; 𝜔𝑟 is the modal 

frequency of the rth modal order; 𝜙𝑜𝑟 and 𝜙𝑖𝑟  are the rth 

mode shape at the oth and the ith node, respectively; 𝑀𝑟 is 

the modal mass of the rth modal order; 𝜉𝑟  is the damping 

ratio of the rth modal order; and⁡𝑗 = √−1. 

The displacement FRF 𝐻𝑖𝑚𝑝,𝑜𝑖(𝜔)  from the force-

controlled vibration test, where both the force 𝑓𝑖(𝑡) and 

the structural response 𝑥𝑜(𝑡) are measurable, is as follows: 

𝐻𝑖𝑚𝑝,𝑜𝑖(𝜔) =
∑ 𝑋𝑜
𝑁𝑎𝑣𝑔
1

(𝜔)𝐹𝑖
∗(𝜔)

∑ 𝐹𝑖
𝑁𝑎𝑣𝑔
1

(𝜔)𝐹𝑖
∗(𝜔)

=∑
𝜙𝑜𝑟𝜙𝑖𝑟
𝑀𝑟𝜔𝑑𝑟

∫ 𝑒𝑥𝑝⁡(−𝜉𝑟𝜔𝑟𝑡
+∞

−∞

𝑛

𝑟=1

− 𝑗𝜔𝑡)𝑠𝑖𝑛⁡(𝜔𝑑𝑟𝑡)𝑑𝑡 

(2) 
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where 𝐹𝑖(𝜔) is the Fourier Transform (FT) of the force 

𝑓𝑖(𝑡); 𝐹𝑖
∗(𝜔) is the complex conjugate of 𝐹𝑖(𝜔); 𝑋𝑜(𝜔) 

is the FT of the structural response 𝑥𝑜(𝑡); and 𝑁𝑎𝑣𝑔 is the 

number of the spectrum average ( 𝑁𝑎𝑣𝑔 = 1  in this 

derivation). 

The displacement FRF 𝐻𝑎𝑚𝑏,𝑜𝑖(𝜔) from an ambient 

test, where white-noise excitations 𝑓𝑘(𝑡)(𝑘 = 1,2, … ,𝑚) 
on the kth DOF are assumed and only structural responses 

are measurable, is as follows using the Natural Excitation 

Technique (Zhang et al. 2014): 

𝐻𝑎𝑚𝑏,𝑜𝑖(𝜔) = ∫ 𝐶𝑜𝑖(𝜏)𝑒𝑥𝑝⁡(−𝑗𝜔𝜏)
+∞

−∞

𝑑𝜏

=∑ℶ̃𝑜𝑖
𝑟 ∫ 𝑒𝑥𝑝⁡(−𝜉𝑟𝜔𝑟𝜏

∞

−∞

𝑛

𝑟=1

− 𝑗𝜔𝜏)𝑠𝑖𝑛⁡(𝜔𝑑𝑟𝜏 + 𝜃𝑟)𝑑𝜏 

(3) 

where 𝐶𝑜𝑖(𝜏) = ∑ ℶ̃𝑜𝑖
𝑟 𝑒𝑥𝑝⁡(−𝜉𝑟𝜔𝑟𝜏)𝑠𝑖𝑛⁡(𝜔𝑑𝑟𝜏 + 𝜃𝑟)

𝑛
𝑟=1  is 

the cross correlation of structural responses under all the 

white-noise excitations; 𝜏  is the cross correlation lag, 

ℶ̃𝑜𝑖
𝑟 =

𝜙𝑜𝑟

𝑀𝑟𝜔𝑑𝑟
∑ ∑

𝑘

2

𝜙𝑘𝑟𝜙𝑖𝑠𝜙𝑘𝑠

𝑀𝑠

𝑚
𝑘=1

𝑛
𝑠=1 [𝐽𝑟𝑠

2 + 𝐼𝑟𝑠
2 ]−

1

2; 𝑘 is the 

intensity of a white-noise excitation; 𝜙𝑘𝑟 is the value of 

the rth mode shape at the kth DOF; 𝜙𝑖𝑠 and 𝜙𝑘𝑠 are the 

values of the sth mode shape at the ith DOF and the kth 

DOF, respectively; 𝑀𝑠 is the modal mass of the sth modal 

order;⁡𝜔𝑑𝑠 is the damped modal frequency of the sth modal 

order;⁡𝜔𝑠 is the modal frequency of the sth modal order; 𝜉𝑠 
is the damping ratio of the sth modal order; 𝐽𝑟𝑠 =
(𝜔𝑑𝑠

2 − 𝜔𝑑𝑟
2 ) + (𝜉𝑟𝜔𝑟 + 𝜉𝑠𝜔𝑠)

2 ; 𝐼𝑟𝑠 = 2𝜔𝑑𝑟(𝜉𝑟𝜔𝑟 +

𝜉𝑠𝜔𝑠); and 𝜃𝑟 = 𝑎𝑟𝑐𝑡𝑎𝑛⁡(
𝐼𝑟𝑠

𝐽𝑟𝑠
). 

It should be noted that Eqs. (1)-(2) are equivalent, 

meaning that the force-controlled vibration test has the 

merit of extracting the analytical displacement FRF. In 

contrast, an ambient test can only extract a displacement 

FRF having a similar shape to the analytical FRF but with 

different amplitude as shown in Eqs. (1)-(3). The difference 

between FRFs from an impact test and an ambient test is 

more clearly illustrated in Fig. 1. Thus, the ambient test can 

only identify basic modal parameters such as frequencies, 

damping ratios and mode shapes. On the other hand, the  

 

 

force-controlled vibration test identifies not only the 

structural modal parameters but also more detailed 

structural parameters, in particular flexibility, which 

indicates the distribution of structural stiffness and which is 

very sensitive to structural damages. Furthermore, the 

structural flexibility can be used as an index for damage 

identification (Nobahari and Seyedpoor. 2013), 

performance evaluation and life-cycle prognosis. 

Though the proposed test method shown in Fig. 1 is 

more convenient and efficient than the traditional impact 

tests, the structural identification theories accompanying to 

the latter cannot be directly applied to the proposed method, 

because a hammer or a drop weight has an impact across 

discrete structural nodes, whereas wheel forces (as proposed 

in our method) act on a continuous bridge space. We 

therefore have developed in this paper a novel structural 

identification theory to process the continuous wheel forces 

and extract structural dynamic characteristics (modal 

parameters) and static characteristics (flexibility). 

 
 
3. The corresponding structural flexibility 
identification theory 

 

The bridge excited by continuous wheel force is actually 

a time-variant vehicle–bridge coupling system, in which 

vehicle and bridge excite each other; because we mainly 

concentrate on the in-service conditions of bridges, we need 

to decouple the coupled system in order to obtain bridge 

parameters. In the coupling system, it is well known that 

vehicle and bridge are connected by wheels and they are 

excited to each other through vehicle–bridge interaction 

forces. Therefore, by measuring all wheel forces, the 

coupled system can be divided into two systems, i.e. the 

vehicle system and the bridge system, which have the 

common excitation source that is the interaction force. A 

Wheel Force Transducer, which can accurately measure all 

wheel forces of the vehicle, is commercially available and 

recommended.  
 

3.1 Equivalent load distribution 
 

Although the bridge dynamic test under continuous 

force is more convenient to perform than the sledge- 

 
Fig. 1 Idea of bridge dynamic test induced by continuous wheel force excitation 
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hammer test or the drop-weight test, the theories supporting 
the latter only deal with excitation force acting on discrete 
nodes, and they are unsuitable in the case of wheel forces 
acting on a continuous space. Here, we transform 
continuous wheel forces into nodal forces using the 
equivalent load distribution.  

The first step is to consider the accelerometer layout 

scheme. Experience of previous impact testing indicates 

that, in general, accelerometers can be uniformly distributed 

along two sides of a bridge deck. The distribution of the 

elements can also be made in accordance with the sensor 

distribution, an element being defined as the space between 

two adjacent sensors on the same side of the bridge deck. 

For the testing method proposed in this paper, sensors can 

be deployed non-uniformly as well. The position and length 

of elements are determined according to the location of 

sensors. 

For a plane beam element, consisting of two nodes (i 

and j) and four DOFs {𝑑} = [𝑣𝑖 ⁡⁡𝜑𝑖 ⁡𝑣𝑗 ⁡𝜑𝑗 ⁡]
𝑇, where 𝑣𝑖 and 

𝑣𝑗  are the vertical displacements of the ith and the jth 

nodes, respectively; and 𝜑𝑖 and 𝜑𝑗 are the rotation angles 
 

 

 

of the ith and the jth nodes, respectively, as shown in Fig. 2. 

Assuming that the displacement distribution 𝑣(𝑥) of the 

element is a Hermite interpolation function:  

𝑁𝑣
𝑒(𝑥) = [1 −

3𝑥2

𝑙2
+
2𝑥3

𝑙3
−𝑥 +

2𝑥2

𝑙
−
𝑥3

𝑙2
3𝑥2

𝑙2
−
2𝑥3

𝑙3
𝑥2

𝑙
−
𝑥3

𝑙2
] (4) 

where 𝑙 is the length of element. 

The equivalent nodal loads ⁡𝐹𝐸
𝑒 can be described using 

the distributed force⁡𝑓𝑒(𝑥) as follows: 

𝐹𝐸
𝑒𝑇 =

{
 

 
𝐹𝑖
𝑀𝑖

𝐹𝑗
𝑀𝑗}
 

 
= ∫ 𝑓𝑒(𝑥)𝑁𝑣

𝑒𝑇(𝑥)d𝑥
𝑙

0

 (5) 

where 𝐹𝑖 , ⁡𝐹𝑗 , 𝑀𝑖 , 𝑀𝑗  are equivalent nodal forces and 

moments. It is worth noting that the displacement 

distribution function 𝑁𝑣
𝑒(𝑥) plays an important role for 

deriving the equivalent load distribution. 

The second step is to extend the equivalent load 

distribution from an element to the whole bridge structure 

and taking the influence of time 𝑡 into consideration. The 

equivalent nodal loads of a bridge having n nodes are: 
 

 
Fig. 2 Illustration of equivalent load distribution 

𝐹𝐸
𝑏𝑇(𝑡) =

{
 
 
 
 

 
 
 
 
𝐹1(𝑡)

𝑀1(𝑡)

𝐹2(𝑡)

𝑀2(𝑡)
⋮

𝐹𝑛−1(𝑡)

𝑀𝑛−1(𝑡)

𝐹𝑛(𝑡)

𝑀𝑛(𝑡) }
 
 
 
 

 
 
 
 

= 𝑁𝑣
𝑏(𝑥){𝑓𝑏(𝑥, 𝑡)}∆𝑥 

=

[
 
 
 
 
 
 
 
 
 
 
𝑁1(𝑥1

𝑒1) ⋯ 𝑁1(𝑥𝑚
𝑒1) 0 ⋯ 0 ⋯ 0 ⋯ 0 0 ⋯ 0

𝑁2(𝑥1
𝑒1) ⋯ 𝑁2(𝑥𝑚

𝑒1) 0 ⋯ 0 ⋯ 0 ⋯ 0 0 ⋯ 0

𝑁3(𝑥1
𝑒1) ⋯ 𝑁3(𝑥𝑚

𝑒1) 𝑁1(𝑥1
𝑒2) ⋯ 𝑁1(𝑥𝑚

𝑒2) ⋯ 0 ⋯ 0 0 ⋯ 0

𝑁4(𝑥1
𝑒1) ⋯ 𝑁4(𝑥𝑚

𝑒1) 𝑁2(𝑥1
𝑒2) ⋯ 𝑁2(𝑥𝑚

𝑒2) ⋯ 0 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ 0 0 ⋯ 0 ⋯ 𝑁3(𝑥1
𝑒(𝑛−1)

) ⋯ 𝑁3(𝑥𝑚
𝑒(𝑛−1)

) 𝑁1(𝑥1
𝑒𝑛) ⋯ 𝑁1(𝑥𝑚

𝑒𝑛)

0 ⋯ 0 0 ⋯ 0 ⋯ 𝑁4(𝑥1
𝑒(𝑛−1)

) ⋯ 𝑁4(𝑥𝑚
𝑒(𝑛−1)

) 𝑁2(𝑥1
𝑒𝑛) ⋯ 𝑁2(𝑥𝑚

𝑒𝑛)

0 ⋯ 0 0 ⋯ 0 ⋯ 0 ⋯ 0 𝑁3(𝑥1
𝑒𝑛) ⋯ 𝑁3(𝑥𝑚

𝑒𝑛)

0 ⋯ 0 0 ⋯ 0 ⋯ 0 ⋯ 0 𝑁4(𝑥1
𝑒𝑛) ⋯ 𝑁4(𝑥1

𝑒𝑛)]
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑓(𝑥1
𝑒1, 𝑡)∆𝑥
⋮

𝑓(𝑥𝑚
𝑒1, 𝑡)∆𝑥

𝑓(𝑥1
𝑒2, 𝑡)∆𝑥
⋮

𝑓(𝑥𝑚
𝑒2, 𝑡)∆𝑥
⋮

𝑓(𝑥1
𝑒(𝑛−1)

, 𝑡)∆𝑥
⋮

𝑓(𝑥𝑚
𝑒(𝑛−1)

, 𝑡)∆𝑥

𝑓(𝑥1
𝑒𝑛, 𝑡)∆𝑥
⋮

𝑓(𝑥𝑚
𝑒𝑛, 𝑡)∆𝑥 }

 
 
 
 
 
 

 
 
 
 
 
 

 

(6) 
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where 

𝑥1
𝑒1 ⁡⋯⁡𝑥𝑚

𝑒1, 𝑥1
𝑒2 ⁡⋯⁡𝑥𝑚

𝑒2, 𝑥1
𝑒(𝑛−1) ⁡⋯⁡𝑥𝑚

𝑒(𝑛−1), 𝑥1
𝑒𝑛 ⁡⋯⁡𝑥𝑚

𝑒𝑛  

are coordinates of the distributed force, the superscript 

representing the element and the subscript representing a 

specific position in the element; ∆𝑥  is the distance 

between two continuous coordinates, assuming that all 

coordinates are uniformly distributed (though it is not 

necessary); and where 𝐹𝐸
𝑏(𝑡) , 𝑁𝑣

𝑏(𝑥) , {𝑓𝑏(𝑥, 𝑡)}  are 

equivalent nodal loads, the distribution function and the 

distributed force of the bridge, respectively. Obviously, the 

velocity of vehicle is feasible for either constant or variable 

cases. Note that for the proposed method, temporal and 

spatial information on various wheel forces is necessary 

when the vehicle runs over the bridge. Generally, the front 

axle and rear axle of the vehicle successively pass the same 

element. Thus, the force applied to this element is a 

superposition of front and rear axle wheel forces within 

temporal and spatial domains. 

Now taking the simply supported beam in Fig. 2 as an 

example and considering the in-plane motion only. Though 

only the wheel forces {𝑓𝑤(𝑡)} are measured directly in the 

rapid test, the vehicle speed is also recorded to help 

determining the distributed force ⁡{𝑓𝑏(𝑥, 𝑡)} . The whole 

beam is divided into nine elements labeled E1 to E9 and the 

nodes labeled N1 to N10. The first and the second rows in 

Fig. 2 illustrate the distribution functions of elements E5 

and E6 respectively and the third row illustrates the 

distribution function of node N6. The fourth row displays 

the nodal loads of N6. Evidently, each node has two kinds 

of input: the equivalent vertical nodal force and equivalent 

nodal moment. 

 

3.2 Scaling factor and flexibility identification 
 

Once the continuous wheel forces are transformed into 

equivalent nodal loads, bridge is considered as a Multi-

Input Multi-Output (MIMO) system, its acceleration FRFs 

can be estimated using equivalent nodal loads and structural 

accelerations. Next, the acceleration FRFs are converted 

into displacement FRFs, and they are used to identify 

structural basic modal parameters. It should be noted that 

each node has two inputs (the vertical force and the 

moment) and a single output signal (the acceleration). That 

is to say, if the bridge has 𝑁𝑖𝑛 inputs and 𝑁𝑜𝑢𝑡 outputs 

after load distribution, accordingly, the dimension of the 

FRF matrix will be ⁡𝑁𝑜𝑢𝑡 × 𝑁𝑖𝑛 . However, only the 

relationship between the vertical force and the acceleration 

is of interest here. Thus, the new FRF matrix [𝐻∗] that 

excludes the coefficients associated with nodal moment 

from the whole FRF matrix can be achieved by introducing 

a transformation matrix [𝑅]: 

[𝐻∗]𝑁𝑜𝑢𝑡×𝑁𝑜𝑢𝑡 = [𝐻]𝑁𝑜𝑢𝑡×𝑁𝑖𝑛[𝑅]𝑁𝑖𝑛×𝑁𝑜𝑢𝑡  (7) 

where  

[𝑅]𝑁𝑖𝑛×𝑁𝑜𝑢𝑡 =

[
 
 
 
𝑅1,1 𝑅1,2
𝑅2,1 𝑅2,2

⋯ 𝑅1,𝑁𝑜𝑢𝑡
⋯ 𝑅2,𝑁𝑜𝑢𝑡

⋮ ⋮
𝑅𝑁𝑖𝑛,1 𝑅𝑁𝑖𝑛,2

⋱ ⋮
⋯ 𝑅𝑁𝑖𝑛,𝑁𝑜𝑢𝑡]

 
 
 

, 

𝑅𝑖,𝑗 = {
1, 𝑖 = 2𝑗 − 1
0, 𝑖 ≠ 2𝑗 − 1

 

By performing the Singular Value Decomposition 

(SVD) on the new FRF matrix, the left singular matrix 

[𝑈(𝜔)], the right singular matrix [𝑉(𝜔)], and the singular 

value matrix [𝑆(𝜔)], can be obtained. The FRF matrix can 

also be represented in terms of modal expansion through the 

superposition of individual modes. Both representations are 

described in Eq. (8). It can be seen that the matrix [𝑈(𝜔)] 
corresponds to [𝛷] , the matrix [𝑆(𝜔)]  corresponds to 

⁡[
1

𝑗𝜔−𝜆𝑟
], and the matrix [𝑉(𝜔)] corresponds to [𝐿]:  

[𝐻∗] = [𝑈(𝜔)][𝑆(𝜔)][𝑉(𝜔)]𝐻 = [𝛷][
1

𝑗𝜔 − 𝜆𝑟
][𝐿]𝑇 (8) 

where the superscript H denotes conjugate transposition, 
[𝛷] = [{𝜙1},⋯ , {𝜙𝑁}, {𝜙1

∗},⋯ , {𝜙𝑁
∗ }] ; {𝜙𝑟}  is the r th 

mode shape; {𝜙𝑟
∗} is the conjugate complex of ⁡{𝜙𝑟}; 𝜆𝑟 

is the system pole; [𝐿] is modal participation matrix in 

which {𝐿𝑟} = 𝑄𝑟{𝜙𝑟}; 𝑄𝑟  is the modal scaling factor; and 

⁡{𝜙𝑟} is the displacement mode shape. Natural frequencies 

and mode shapes are then identified by the Complex Mode 

Indicator Function (CMIF) method (Catbas et al. 2004). 

Subsequently, eFRFs are constructed to improve the 

accuracy of the structural identification. The FRF is a 

superposition of modal parameters in frequency domain, in 

which the modal parameter identification of a single FRF 

will be affected by the coupling between different modes. 

Even if advanced algorithms can solve the modal coupling 

problem, a new problem is likely to appear, which is that 

modal parameters identified by different single mode FRFs 

cannot be identical due to the noise and the modal node. 

Therefore, in order to identify modal parameters more 

stably (such as system poles, damping ratios and modal 

scaling factors), it is necessary to reduce the multi-mode 

FRF to single mode FRFs in the frequency domain. The 

complex problem of the multi-dimensional modal coupling 

is transformed into a simple problem having only a single 

mode FRF, i.e. the eFRF: 

𝑒𝐻(𝜔)𝑟 = {𝑢𝑟}
𝑇{𝜙𝑟}

𝑄𝑟
𝑗𝜔 − 𝜆𝑟

{𝜙𝑟}
𝑇{𝑢𝑟} (9) 

where r represents the rth modal order; 𝑒𝐻(𝜔)𝑟  is the 

eFRF; and ⁡{𝑢𝑟} is the first left singular vector. 

The key issue in identifying the flexibility matrix is to 

identify the modal scaling factors. By using a polynomial 

fitting algorithm to fit the eFRF, the modal scaling factor 

𝑄𝑟  can be calculated as 

1

𝑄𝑟
= {𝑢𝑟}

𝑇{𝜙𝑟}{𝜙𝑟}
𝑇{𝑢𝑟}{

𝑒𝐻(𝜔1)𝑟
𝑒𝐻(𝜔2)𝑟

⋮
𝑒𝐻(𝜔𝑘)𝑟

}

+

{

1/(𝑗𝜔1 − 𝜆𝑟)
1/(𝑗𝜔2 − 𝜆𝑟)

⋮
1/(𝑗𝜔𝑘 − 𝜆𝑟)

} (10) 

Having obtained the displacement mode shapes, system 

poles and scaling factors from all necessary modal orders 

(𝑟 = 1,…𝑁), the flexibility matrix of the structure can be 

identified by 

𝐹𝑙𝑒𝑥𝑑 =∑(
𝑄𝑟{𝜙𝑟}{𝜙𝑟}

𝑇

−𝜆𝑟
+
𝑄𝑟
∗{𝜙𝑟

∗}{𝜙𝑟
∗}𝑇

−𝜆𝑟
∗

)

𝑁

𝑟=1

 (11) 
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where ⁡∗  represents the complex conjugate operation. It 

can be seen that the displacement flexibility matrix is the 

superposition of the modal parameters in the complex 

mode. The flexibility indicates the stiffness distribution of 

the structure. Assuming that a static force vector acting on 

the structure is ⁡{𝑓𝑠𝑡𝑎𝑡𝑖𝑐}, then the static deflection of the 

structure can be predicted by 𝐷 = 𝐹𝑙𝑒𝑥𝑑{𝑓𝑠𝑡𝑎𝑡𝑖𝑐}. 
 
3.3 Procedure of the proposed method 
 

Based on the theoretical work developed above, Fig. 3 

presents the framework of using continuous wheel forces to 

develop the bridge-testing methodology. First, the vehicle–

bridge vertical interaction force is obtained by the Wheel 

Force Transducer. Second, the continuous interaction forces 

are transformed to the equivalent point-type forces by virtue 

of the calculated load distribution function. Third, 

combining the acquired acceleration response from the 

SHM system and the transformed input forces, the FRF of 

the structure is estimated. Finally, modal scaling factors and 

the flexibility matrix are identified by employing available 

modal identification algorithms. The identified flexibility 

matrix can be used to assess bridge performance. The 

details are as follows. 

Step 1: Vehicle–bridge coupling system decoupling. The 

bridge is excited by the moving vehicle, and simultaneously 

all wheel forces and the acceleration of the bridge are 

measured.  

Step 2: Equivalent nodal load generation. First, the 

elements are generated according to the deployed 

accelerometers by using two adjacent sensors to determine 

an element at the same side of the bridge deck. Second, all 

the measured wheel forces are distributed to all nodes via 

Eq. (6). This process results in each node having two kinds 

of input, the equivalent vertical nodal force and equivalent 

nodal moment, while the output at each node is only the 

vertical acceleration. 

 

 

Step 3: Displacement flexibility matrix identification. 

First, the displacement FRF is estimated from the input and 

output data. Note that this FRF is the dimension of⁡⁡𝑁𝑜𝑢𝑡 ×
𝑁𝑖𝑛 because of the existence of nodal moment. This FRF is 

further reduced to the dimension of 𝑁𝑖𝑛 × 𝑁𝑖𝑛 via Eq. (7) 

to eliminate the angular DOF. Second, a SVD is performed 

for the reduced FRF to obtain CMIF curves via Eq. (8) and 

eFRF via Eq. (9), and structural frequencies, damping ratios 

and mode shapes are identified from Eq. (8). Finally, the 

modal scaling factor can be solved from the least squares 

estimation formulation from Eq. (10) and the flexibility 

matrix can be identified from Eq. (11). 

 

 

4. Laboratory experiment example 
 
4.1 Experimental design and monitoring strategy 
 

In order to verify the proposed methodology, a 

laboratory experiment was conducted in which a loaded tire 

moving over a simply supported beam was investigated, 

and real-time measurements included the wheel force and 

vertical accelerations of a simple beam. Static load tests 

were then conducted by applying mass blocks, and vertical 

displacements of the simple beam were measured. The 

wheel force and accelerations were used to identify those 

structural parameters and static displacements that were 

necessary to verify the predicted deflection by the identified 

structural flexibility. 

The structure to be studied was a simply supported beam 

with a length of 5868mm as shown in Fig. 4(a). It was a 

hot-rolled channel-section steel beam made of Chinese 

standard steel material Q235. The beam was divided into 

twelve elements (E1–E12) and thirteen nodes (N1–N13) as 

shown in Fig. 4(c). The monitoring system of the beam 

comprised of eleven accelerometers (type: ICP 393B04) and 

eleven cable-extension displacement transducers (type:  

 

Fig. 3 Flowchart of the proposed method 
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CELESCO PT1DC). Accelerometers and displacement 

transducers dynamically measured the vertical deformation 

of the beam’s central axis from nodes N2 to N12. The single 

tire (type: Giti Wingro 165/70R13) was adopted to simulate 

the tire force on the beam structure as shown in Fig. 4(b). 

An axle through the center of the tire served as a bar for 

propulsion, and additional masses were hung on the bar 

symmetrically for serving as the vehicle weight. Wheel 

force monitoring system was installed on tires to obtain 

continuous wheel force.  
 

4.2 Description of the experiment 
 

Two kinds of tests were conducted: the first was a tire–

beam interaction experiment to identify the beam 

parameters, and the second was a static load experiment to 

verify the reliability of the identified flexibility. The 

experiment was conducted by rolling the loaded tire along 

the beam at a speed of 0.88m/s; the total mass of the tire 

including the additional mass was 120kg. Strip-shaped 

magnets were placed on the steel beam to mimic surface 

obstacles. The wheel force monitored by the wheel force 

monitoring system is shown in Fig. 5(a). Vertical beam 

accelerations (Fig. 5(b) displays a typical measurement) 

were combined with the wheel force to calculate the 

structural parameters. In order to verify the reliability of the 

 

 

identified parameters, namely the flexibility and basic 

modal parameters, static load tests were conducted by 

applying mass blocks at specified nodes on the simply 

supported beam, and its static deflections were measured by 

displacement transducers. Two static load cases were 

conducted: Case 1, three mass blocks weighing 30kg were 

placed on both nodes N5 and N9 respectively; and case 2, 

two mass blocks weighing 30kg  were placed on each 

nodes N3, N4, N6, N8 and N11 respectively. 

 

4.3 Structural identification results 
 

The equivalent nodal loads of the simply supported 

beam were firstly calculated. As the simple beam was 

divided into twelve elements, the length of each element 

was, on average, 489mm. Based on Eqs. (4)-(6), the 

equivalent loads of each node were obtained and are shown 

in Fig. 6.  

The simply supported beam was regarded as a MIMO 

system, consisting of 26 inputs (thirteen vertical forces and 

thirteen bending moments) and eleven outputs (vertical 

accelerations). The FRF representing the relationship 

between vertical forces and vertical accelerations was a 

11 × 11 matrix obtained via Eq. (7). By performing the 

SVD of the FRF, a CMIF plot was drawn (Fig. 7(a)). It was 

determined by the reference nodes. For instance, should be  

 
(a) Beam 

 
 (b) Tire-Beam-Interaction 

 
(c) Monitoring strategy of the beam 

Fig. 4 Experiment design 

 
(a) Wheel force 

 
(b) A typical nodal acceleration 

Fig. 5 Experiment data 
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noted that the number of curves in the CMIF plot there are 

thirteen curves in Fig. 7(a), because there are thirteen 

equivalent impacting nodes in the test. Natural frequencies 

were identified from CMIF peaks as denoted by the red 

circles in Fig. 7(a). The abscissa of the red dot in the figure 

is the structural nature frequency and the identified natural 

frequencies of the first six modes were 4.78, 18.89, 41.49, 

71.52, 106.19, 142.18 (Hz), and the corresponding damping 

ratios were 4.44, 0.05, 0.82, 0.33, 0.34, 0.71(%). The mode 

shapes and the modal participation factor matrices were 

identified via Eq. (8), and the identified mode shapes (MS) 

are shown in Fig. 7(b), so that the eFRF could be 

constructed with Eq. (9), which was then used to identify 

the modal scaling factor. 

The modal scaling factor was identified via Eq. (10). 

The structural flexibility matrix of the beam was then 

identified via Eq. (11), and structural deflections under any  

static load could be predicted. Static loads for the two cases 

were used to verify the effectiveness of the identified 

flexibility. For instance, the predicted deflection under the 

static loads in Case 1 (i.e. 882N,⁡882N at nodes N5, N9 

respectively) are shown in Fig. 8(a), and the predicted 

deflection under the static loads in Case 2 (i.e. 588N, 588N, 

588N, 588N, 588N at nodes N3, N4, N6, N8, N11 

respectively) are shown in Fig. 8(b). In both predictions, 

curves denoted by ‘3 modes’ means that the flexibility was  

 
 

calculated from the modal parameters of the first three 

modes. It is seen from Eq. (11) that the flexibility has been 

estimated as the sum of the residuals normalized by the 

eigenvalues and their conjugate in all identified structural 

modes. As illustrated by Fig. 8, the simplicity of this 

structure meant that the flexibility calculated using only the 

first mode could accurately capture the real structural 

characteristics, which is reasonable from our knowledge of 

basic structural dynamics.  
 
 
5. Numerical studies of a three-span continuous 

beam bridge  
 

To verify the proposed structural identification theory 

under a more realistic level, a 2D model of the double-axle 

vehicle and a continuous bridge model were established in 

MATLAB. The vehicle with four DOF is shown in Fig. 9, it 

consists of ups and downs of freedom, nodal degree of 

freedom, with the front and back wheel set having a vertical 

displacement DOF. The vehicle was driven at a constant 

speed of 8m/s (28.8km/h). The bridge with a double cell 

section was modelled as a continuous bridge using Euler-

Bernoulli beam theory and divided into eighteen elements 

and nineteen nodes from N1 to N19. Each node had two 

DOFs, i.e. the vertical displacement and the rotational  

 
(a) Vertical forces                           (b) Moment 

Fig. 6 Equivalent nodal loads 

 
 

(a) CMIF plot (b) Mode shapes 

Fig. 7 Identified results 
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angle, and the boundary conditions of continuous bridge 

were set by restraining the vertical degrees of freedom of 

the nodes at the supports. The Rayleigh damping was 

considered and the road surface roughness was simulated by 

the power spectral density (PSD) (Dodds and Robson. 

1973) provided by International Organization for 

Standardization (ISO, 2016). 

A road surface profile is usually assumed to be a zero-

mean stationary Gaussian random process and can be 

generated through an inverse Fourier transformation (Deng 

and Cai. 2009) as: 

𝑟(𝑋) =∑√2𝐺(𝑛𝑘)∆𝑛𝑐𝑜𝑠⁡(2𝜋𝑛𝑘𝑋 + 𝜃𝑘)

𝑁

𝑘=1

 (12) 

where 𝜃𝑘 is the random phase angle uniformly distributed 

from 0 to 2 ⁡𝜋 ; 𝐺(⁡)⁡  and 𝑛𝑘  are the PSD function 

(m3/cycle) and the wave number (cycle/m)，respectively. 

In this study, the PSD function was used: 

𝐺(𝑛) = 𝐺(𝑛0)(
𝑛

𝑛0
)−2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑛1 < 𝑛 < 𝑛2) (13) 

 

 

 

where 𝑛0  is the discontinuity frequency of 1/2𝜋 
(cycle/m); 𝑛 is the spatial frequency (cycle/m); 𝐺(𝑛0) is 
the roughness coefficient (m3/cycle) whose classification 
index is from A (very good) to H (very poor); and 𝑛1 and 
𝑛2  are the lower and upper cut-off frequencies, 
respectively. In this numerical simulation, the road surface 
roughness of “Level B” was used. Parameter settings of the 
vehicle and the bridge are listed in Table 1 and Fig. 9, and 
were used to solve the vehicle bridge coupling equation 
with the 𝑁𝑒𝑤𝑚𝑎𝑟𝑘 − 𝛽 method. 

The front wheel force 𝐹𝑓 and the rear wheel force 𝐹𝑟 

were calculated via the following equations: 

𝐹𝑓 = (𝑚𝑠

𝑎2
𝑎1 + 𝑎2

+𝑚𝑡1)𝑔 + 𝑚𝑡1𝑦̈𝑡1 +
𝑎2

𝑎1 + 𝑎2
𝑚𝑠𝑦̈𝑠

+
1

𝑎1 + 𝑎2
𝐽𝜃̈ 

(14) 

𝐹𝑟 = (𝑚𝑠

𝑎1
𝑎1 + 𝑎2

+𝑚𝑡2) 𝑔 + 𝑚𝑡2𝑦̈𝑡2 +
𝑎1

𝑎1 + 𝑎2
𝑚𝑠𝑦̈𝑠

−
1

𝑎1 + 𝑎2
𝐽𝜃̈ 

(15) 

 
(a) Case 1 

 
(b) Case 2 

Fig. 8 Deflections prediction 

 
Fig. 9 Numerical simulation 
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Table 1 Bridge parameters and vehicle parameters  

 

 

where 𝑦̈𝑡1 and 𝑦̈𝑡2 are the accelerations of the 𝑚𝑡1 and 

𝑚𝑡2, respectively; 𝑦̈𝑠 is the acceleration of the 𝑚𝑠; 𝜃̈ is 

the angle acceleration of the vehicle body; and 𝑔 is the 

acceleration due to gravity. The calculated wheel forces are 

shown in Fig. 10(a), and a typical node acceleration of the 

bridge is shown in Fig. 10(b). 

Equivalent nodal loads were then calculated. First, we 

substituted the element length 𝑙 = 3.33m into Eq. (4) to 

obtain the distribution function of each element. Second, we 

constructed the distribution function of the whole bridge. 

Third, we calculated the equivalent nodal loads using Eq. 

(6). The equivalent loads of some nodes are shown in Fig. 

11. 

The FRF was estimated using equivalent nodal loads 

and accelerations. White noise of 5%, which is the ratio to 

the standard deviation of the simulated data, was added into 

all wheel forces and structural responses as the 

environmental noise. It was noticed that the dimension of 

the FRF was 19 × 38 because the bridge is a MIMO 

system of 38 inputs and 19 outputs. The required FRF 

matrix (representing the relationship between vertical forces 

and vertical accelerations) was then extracted from the 

original FRF matrix. The dimension of the new FRF 

calculated via Eq. (7) matrix was⁡19 × 19. By performing 

the SVD for the new FRF, the left singular matrix, the 

singular value matrix and the right singular matrix were  

 
(a) Wheel forces 

 
(b) A typical nodal acceleration 

Fig. 10 Numerical simulation data 

 

 
(a)Moments; (b) Vertical forces 

Fig. 11 Equivalent loads of some nodes 

 

 

obtained. The eFRF was estimated via Eq. (9) and the basic 

modal parameters shown in Table 2 were obtained. It is seen 

from Table 2 that the identified frequencies and damping 

ratios are very close to the theoretical values. The mode 

shapes and the modal participation factor matrices had been 

identified from the CMIF method via Eq. (10). Modal 

Assurance Criteria (MAC) values of mode shapes from the 

proposed method and the theoretical solutions are shown in 

Fig. 12(a). The minimum MAC value is 0.996, which 

illustrates that the identified modal shapes generated from 

the proposed methods are accurate. The structural flexibility 

matrix of the bridge structure was then identified via Eq. 

(11) as shown in Fig. 12(b). 

Items Parameters Values 

B
ri

d
g

e 

Young's modulus of the bridge E 3.5 × 1010𝑃𝑎 

Moment of inertia of cross-section I 8.65⁡𝑘𝑔⁡𝑚2 

Mass of the bridge per unit length m 3.6 × 104𝑘𝑔 

The length of the bridge L 3@20m 

The width of the bridge W 13.3⁡m 

V
eh

ic
le

 

The mass of the body 

Pitching moment of inertia of body 

𝑚𝑠 

𝐽 
41750⁡kg 

2.08 × 106𝑘𝑔⁡𝑚2 

Mass of the front axle suspension m𝑡1 3.04 × 103𝑘𝑔 

Mass of the rear axle suspension m𝑡1 3.04 × 103𝑘𝑔 

Upper spring stiffness of the front 

axle 
𝑘𝑠1 5.3 × 105𝑁/𝑚 

Upper spring stiffness of the rear 

axle 
𝑘𝑠2 5.3 × 105𝑁/𝑚 

Upper damping of the front axle 𝑐𝑠1 9.02 × 104𝑘𝑔/𝑠 

Upper damping of the rear axle 𝑐𝑠2 9.02 × 104𝑘𝑔/𝑠 

Lower spring stiffness of the front 

axle 
𝑘𝑡1 1.18 × 106𝑁/𝑚 

Lower spring stiffness of the rear 

axle 
𝑘𝑡2 1.18 × 106𝑁/𝑚 

Lower damping of the front axle 𝑐𝑡1 3.92 × 104𝑘𝑔/𝑠 

Lower damping of the rear axle 𝑐𝑡2 3.92 × 104𝑘𝑔/𝑠 

Distance from center to front axle 𝑎1 2.75⁡m 

Distance from center to rear axle ⁡𝑎2 2.75⁡m 

The total length of the vehicle 𝑎 5.50⁡m 

 The velocity of the vehicle 𝑉 8.0⁡m/s 
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Table 2 Identified results and theoretical values 

 

 
(a) MAC values 

 
(b) Flexibility 

Fig.12 Identified results 

 

 

 Once the structural flexibility is identified, deflection 

of the structure under any static load can be predicted. The 

predicted and actual deflections under three different static 

loads are shown in Fig. 13. In Case 1, static loads of 50kN 

were imposed on each node of N3, N8 and N13. In Case 2, 

static loads of 50kN were imposed on each node of N8 and 

N10. In Case 3, static loads of 20kN, 50kN and 20kN were 

imposed on nodes N4, N9 and N16, respectively. All three 

cases certify that the proposed method generates accurate 

identification results. In Case 3, further study was 

undertaken to determine how the mode number affects the 

accuracy of the deflection prediction. Eq. (11) shows that 

the flexibility is estimated as the sum of the residuals 

normalized by the eigenvalues and its conjugate in all 

identified structural modes. The error due to the mode 

number truncation in this case is shown in Fig. 13(c), where 

the curve denoted by ‘2 modes’ means that the 

corresponding flexibility was calculated from the modal 

parameters of the first two modes. It is seen that the 

flexibility using only the first two modes could not 

accurately capture the structural characteristics, whereas 

results from the first five modes were very close to the 

theoretical value; in this case, the modes after five orders 

did not contribute much to the structural flexibility 

calculation. 
 
 

6. Parametric analysis 
 

In Section 5 we presented the displacement flexibility 

identification and displacement prediction of a three-span 

continuous bridge. In this section we consider the effect of 

road roughness, vehicle speed, measurement noise, vehicle 

weight, vehicle’s stiffness and damping on displacement 

flexibility identification by a simulated static load 

experiment that enables the predicted displacement and 

theoretical displacement for each span to be compared. The 

predicted displacement is calculated from the flexibility 

obtained in this paper, and the theoretical displacement of 

the finite element simulation is calculated from the 

theoretical stiffness of the bridge. As shown in Fig. 14, 

static loaded trucks are distributed at the middle position of 

each span. The relative error is calculated by comparing the 

predicted displacement and theoretically calculated 

displacement at the position of the red dots in the spans. 

 

6.1 Road roughness 
 

First, we investigated the effect of road roughness on the 

identified flexibility. According to ISO-8608 specification, 

road roughness is classified into eight levels from “Level 

A” (very good) to “Level H” (very poor). In this study, six 

road roughness classes, i.e. A, B, C, D, E and F, based on 

the different values of PSD, were selected to investigate the 

effect of the road surface condition on the proposed method. 

In the calculation, the speed is set to 28.8km/h; the 

measurement noise is set to 0%; the vehicle weight is set to 

41750kg; the different road roughness functions are added 

to the vehicle–bridge interaction analysis code, and the 

other parameters used are shown in Table 1. The relative 

errors between predicted displacement and theoretically 

calculated displacement with different road surface 

roughness are shown in Fig. 15(a); it can be seen that the 

maximum error for all types of road roughness is less than 

0.49%, which demonstrates that road roughness has no 

influence on the flexibility identification. 

 

6.2 Vehicle speed 
 

Second, we investigated the effect of vehicle speed on 

flexibility identification. In the calculation, the roughness of 

the pavement is set to “Level A”; the measurement noise is 

set to 0%; the weight of the vehicle is set to 41750kg; Five  

Mode 
number 

Theoretical 

frequency 

(Hz) 

Identified 

frequency 

(Hz) 

Frequency 

Error 

(%) 

Theoretical 

damping 

ratio 

Identified 

damping 

ratio 

Damping 

ratio 

error (%) 

1 11.39 11.38 0.10 0.07 0.07 0.20 

2 14.60 14.57 0.16 0.07 0.07 0.27 

3 21.31 21.24 0.33 0.09 0.09 0.58 

4 45.60 44.91 1.50 0.15 0.15 2.91 

5 51.97 50.97 1.93 0.17 0.16 3.77 

6 63.79 61.97 2.86 0.21 0.20 5.41 
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different vehicle speeds, 10, 20, 30, 40,50⁡𝑘𝑚/ℎ , were 

studied and the other parameters used are shown in Table 1. 

The relative errors between predicted and theoretically 

calculated displacement with different vehicle speeds are 

shown in Fig. 15(b); it can be seen that the maximum error 

for any vehicle speed is less than 0.83%, which 

demonstrates that vehicle speed has no influence on the 

flexibility identification. 
 

6.3 Measurement noise 
 

Third, we studied the effect of measurement noise on  

 

 

 

flexibility identification in order to verify the robustness of 

the proposed method. In this numerical calculation, the road 

roughness is set to “Level A”; the vehicle speed is set to 

28.8km/h; the vehicle weight is set to 41750kg; five cases 

of measurement noise at 0⁡%, 3%, 5%, 8%, 10% are 

considered, and the other parameters used are shown in 

Table 1. The relative errors between predicted and 

theoretically calculated displacement with different 

measurement noise are shown in Fig. 15(c); it can be seen 

that the relative errors increase with measurement noise but 

they are below 4.5%, which satisfies the precision 

requirement of practical engineering and proves the  

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

Fig. 13 Static deflection prediction 

 
Fig.14 Static load experiment simulation 
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proposed method is robust in terms of noise. If the 

measurement noise affects the authenticity and stability of 

the data, signal pre-processing is a necessary means such as 

eliminating trend terms, band pass or wavelet filtering, 

applying window functions, etc. 

 

6.4 Vehicle weight 
 

Fourth, we studied the effect of vehicle weight on 

flexibility identification. In this numerical model, the road 

roughness is set to “Level A”; the speed is set to 28.8km/h;  

 

 

the measurement noise is 0%; five cases of vehicle weight 

of 20,40,60,80,100 ton are considered, and the other 

parameters used are shown in Table 1. The relative errors 

between predicted and theoretical displacement with 

different vehicle weight are shown in Fig. 15(d). It can be 

seen that the maximum error of all cases of vehicle weight 

is less than 0.62%, which demonstrates that the vehicle 

weight has little influence on flexibility identification.  
 

6.5 Spring stiffness of vehicle 
 

Fifth, we further studied the effect of spring stiffness K 

  
(a) Influence of road roughness (b) Influence of vehicle speed 

  
(c) Influence of measurement noise (d) Influence of vehicle weight 

  
(e) Influence of spring stiffness of vehicle (f) Influence of damping of vehicle 

Fig.15 Influence of various parameters on the error. 
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of vehicle on flexibility identification, where the K includes 

𝑘𝑠1, 𝑘𝑠2, 𝑘𝑡1, 𝑘𝑡2 listed in Table 1 are considered. In this 

numerical model, the road roughness is set to “Level A”; 

the speed is set to 28.8km/h; the measurement noise is 0%; 

the vehicle weight is set to 41750kg; five cases of spring 

stiffness of the vehicle with stiffness reduction of 20 %, 10 

%, original stiffness, and stiffness increase of 10%, 20% are 

considered and the other parameters used are shown in 

Table 1. The relative errors of displacement between 

predicted and calculated theoretically with different spring 

stiffness of vehicle are shown in Fig. 15(e); it can be seen 

that the maximum error among all cases is less than 0.42%, 

which demonstrates that the spring stiffness of testing 

vehicle has little influence on flexibility identification. 

 

6.6 Damping of vehicle 

 

Sixth, we also studied the effect of damping C of vehicle 

on flexibility identification, where the C includes 𝑐𝑠1, 𝑐𝑠2, 

𝑐𝑡1 , 𝑐𝑡2  as shown in Table 1 are considered. In this 

numerical model, the road roughness is set to “Level A”; 

the speed is set to 28.8km/h; the measurement noise is 0%; 

the vehicle weight is set to 41750kg; five cases of damping 

of vehicle with damping reduction of 20 %, 10 %, original 

damping, and damping increase of 10%, 20% are 

considered and the other parameters used are also shown in 

Table 1. The relative errors of displacement between 

predicted and calculated theoretically with different 

damping of vehicle are shown in Fig. 15(f); it can be seen 

that the maximum error among all cases is less than 0.45%, 

which demonstrates that the damping of testing vehicle has 

little influence on flexibility identification. 
 
 

7. Conclusion 
 

To improve the efficiency of impact vibration testing, a 

new bridge testing method with corresponding theory is 

proposed in this article. Specific conclusions are drawn as 

follows: 

•  The proposed method uses a moving vehicle instead 

of a hammer or artificial excitation device to excite a bridge 

without testing interruption, in which the wheel force 

(input) of the moving vehicle and acceleration responses 

(output) of the bridge are simultaneously measured for 

following structural identification.  

•  A deep-level parameters (i.e. scaling factor and 

flexibility matrix) identification method adapting to the new 

rapid testing method is proposed. It includes equivalent load 

distribution, eFRFs construction, modal scaling factor 

identification and flexibility identification, which are good 

candidates for structural damage detection and structural 

bearing capacity evaluation. 

•  Laboratory and numerical examples are conducted to 

verify the correctness of the proposed method, the predicted 

value from the proposed method agrees well with the 

reference value, which has successfully validated the 

proposed method. 

•  The effect of critical parameters on the identified 

results has also been conducted. Results indicates that road 

roughness, vehicle speed, vehicle weight, vehicle’s stiffness 

and damping have little influence on flexibility 

identification, and although the relative error increases with 

the increase of measurement noise, the proposed method is 

still robust.  
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