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1. Introduction 
 

As time passes, the importance of using composite 

materials is becoming more and more obvious due to their 

various applications in many engineering fields of interest 

like civil, mechanical, marine and aeronautic. The 

composites are majorly chosen for their low weight to 

strength ratio. Composite materials are typically categorized 

with respect to their matrix constituent and their 

reinforcements. Fiber reinforced composite is one of the 

composite types which is composed of a group of fibers 

scattered in the matrix material. Because of their 

remarkable specific strength, specific stiffness and high 

resistance to fatigue failure, many models are allocated to 

analyze the mechanical performance of fiber reinforced 

composites. For example, Kant and Babu (2000) surveyed 

the buckling behaviors of skew composites reinforced with 

fibers under thermal loading via a shear deformable model 

coupled with the finite element method (FEM). Anlas and 

Göker (2001) investigated the vibration analysis of a 

laminated composite structure in which each layer was in a 

shape of skew plate and reinforced with fibers in order to 

find out how skew angle can affect the natural frequency of 

this structure. In other researches, a combination of both 

analytical and experimental methods is utilized to study the 

buckling behavior of both cantilever I and open channel 

beams by considering shear effects (Shan and Qiao, 2005). 
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Laminated composites (LCs) are made from of a series 

of layers held together by matrix. Sandwich structures can 

be categorized in this group of composites. The layers are 

often of different materials, but not necessary. Laminates 

are also able to provide a group of needed engineering 

features, like in-plane stiffness, bending stiffness, strength, 

and thermal expansion coefficient. According to these 

properties of laminated composites and their potential to be 

used in evolving applications, scientists have tried to 

analyze these materials as more as possible recently. Liu et 

al. (2002) presented an investigation on the buckling 

analysis of LC plates via an element-free Galerkin method 

to show the efficiency of this method. Afterwards, A global 

higher-order plate theory was presented by Zhen and Wanji 

(2006) to probe the free vibration problem of LC plates. 

Urthaler and Reddy (2008) investigated the bending 

response of LC plates to find out an accurate prediction of 

the global bending response of the plates with different 

thickness subjected to large rotation. Shariyat (2010) 

introduced a new theory for analyzing the thermally 

affected bending and vibrational behavior of sandwich 

plates to cover the continuity conditions between layers. 

Also, some investigations have been performed on LCs via 

non-uniform rational B-splines (NURBS) method (Shojaee 

et al. 2012). Carrera Unified Formulation (CUF) was 

employed by Tornabene et al. (2014) in order to analyze the 

stability problem of doubly-curved shells. The Fourier-Ritz 

method was applied by Wang et al. (2017) with the aim of 

analyzing the vibrational behavior of LC shells and panels 

by considering various boundary conditions (BCs). Sobhani 

et al. (2018) solved the stability problem of LC with respect 

to the delamination effects in the framework of acoustic 
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emission and signal processing techniques. Pandey and 

Sharma (2018) reviewed the ecological friendly functional 

fluids and lubricant techniques in machining processes and 

the applications of shear thickening fluids was presented by 

Tian et al. (2018). Micro and nanostructures have been 

introduced as novel materials whose size of elemental 

structure has been engineered at the micro or nanometer 

scale. The curiosity of the researchers has been driven into 

nanostructures due to the novel applications of these 

structures in almost all branches of technology. For instant, 

the dynamic and static behaviors of some microstructures 

have been analyzed recently to show hoe these structures 

can be applicable for engineering purposes (Akgoz and 

Civalek, 2013). Some mechanical responses of the 

nanobeams have been investigated by Bellifa et al. (2017) 

on the basis of nonlocal shear deformation theory. Several 

effects such as thermal loadings, elastic foundations and 

magnetic field are applied to the nanostructures like 

nanobeams and nanoplates by the researchers (Hamza-

Cherif et al. 2018, Ebrahimi and Barati, 2016a-n; Ebrahimi 

et al. 2016a; Ebrahimi and Dabbagh; 2016; Ebrahimi and 

Hosseini; 2016a, b) in order to find out how these effects 

can influence the buckling and vibrational responses of 

these nanostructures.  

Also the wave propagation, buckling and bending 

analysis of the nanotubes have been carried out She et al. 

(2018b). The application of the nonlocal strain gradient 

theory in the wave propagation analysis of the porous 

nanobeams presented by She et al. (2018a). The wave 

propagation analysis of the nanoshells and magneto-electro-

elastic (MEE) nanotubes have been investigated by 

Ebrahimi et al. (2019) based on the nonlocal strain gradient 

elasticity theory. In addition, the wave dispersion analysis 

of the rotating FG nanobeams have been conducted by the 

same authors (Ebrahimi et al. 2018, Ebrahimi and Haghi, 

2018) by utilizing nonlocal elasticity theory. The nonlinear 

bending responses of the curved nanotubes have been 

performed by She et al. (2019) for the first time by 

implementing nonlocal strain grading theory to describe the 

stiffness enhancement and stiffness reduction effects. 
Furthermore, once elements with at least one dimension 

in nano scale are selected as reinforcements, the composite 
is named a nanocomposite. Indeed, the outstanding 
mechanical properties of nanoparticles were appealing 
enough in the engineers’ opinion to be employed as 
reinforcement in composites. One of the most famous nano 
size reinforcing elements is carbon nanotube (CNT) which 
is an important new class of technological materials that 
possesses numerous novel and useful properties. Therefore, 
it is of high importance to analyze the mechanical behaviors 
of CNT reinforced (CNTR) nanocomposites. In a 
remarkable endeavor, the Eshelby-Mori-Tanaka 
homogenization model was employed by Formica et al. 
(2010) to investigate the vibration behavior of CNTR 
nanocomposites via FEM. Single-walled CNTs (SWCNTs) 
have attracted the attention of the researchers recently with 
their evolving applications such as reinforcements in 
composites, additives in polymers, catalysts and so on. For 
example, Shen and Zhang (2010) investigated both thermo-
elastic pre- and post-buckling response of nanocomposite 
plates reinforced with SWCNTs to show how the 

nanofillers’ distribution type can improve the stability limits 
of nanocomposite plates. Also, Arani et al. (2011) employed 
both FE and analytical methods to investigate effects of 
some variants such as aspect ratio, BCs and CNTs’ 
orientation on the buckling loads of SWCNT reinforced LC 
plates. Wang and Shen (2011) presented a thermal analysis 
on the nonlinear vibrational behaviors of nanocomposite 
plates reinforced with SWCNTs via a higher-order plate 
theory. Both static and dynamic FEM analyses of SWCNT 
reinforced nanocomposite plates have been performed by 
Zhu et al. (2012) by considering different types of 
reinforcements’ distributions. In addition, Shen and Xiang 
(2012) probed the nonlinear thermal vibration behaviors of 
CNTR nanocomposite shells with respect to various 
distribution patterns of nanofillers. Yas and Samadi (2012) 
solved the vibration and buckling problems of the CNTR 
nanocomposite beams numerically by considering the 
influences of elastic foundation. Moreover, 
Wattanasakulpong and Ungbhakorn (2013) surveyed 
bending, buckling and vibration behaviors of the embedded 
nanocomposite beams reinforced with SWCNTs by the 
means of Navier method. Lei et al. (2013) implemented the 
Eshelby-Mori-Tanaka homogenization technique to account 
for the nanotubes’ aggregation while investigating the 
buckling behaviors of CNTR nanocomposite plates via a FE 
based element-free method. In another research, Liew et al. 
(2014) introduced a meshless approach for the purpose of 
studying the post-buckling responses of axially compressed 
CNTR nanocomposite panels. Also, Zhang et al. (2015) 
employed first-order shear deformation plate theory 
incorporated with Ritz method to analyze the vibrational 
behaviors of CNTR skew nanocomposites. Wu et al. (2016) 
found it significant to account for the geometrical 
imperfections once examining the nonlinear vibration 
behaviors of FG-CNTR nanocomposite beams. Ebrahimi 
and Farazmandnia (2017) employed a higher-order shear 
deformation beam theory to analyze the thermo-mechanical 
vibration of sandwich beams with FG-CNTR 
nanocomposite face sheets. Ebrahimi and Rostami (2018) 
have just analyzed the wave propagation problem of CNTR 
nanocomposite beams via different shear deformation 
theories.  

On the other hand, CNTs are not the only nano size 

reinforcement which is used in the nanocomposites. Nano 

fillers consisted of other carbon-based materials are utilized 

in nanocomposites, too. For instant, graphene platelets 

(GPLs) and graphene oxide powders (GOPs) are recently 

employed by researchers to design and analyze novel 

nanocomposites. Suk et al. (2010) investigated the 

mechanical properties of the GO by combining the AFM 

measurement with the FEM in a new approach for 

evaluating the mechanical properties of ultrathin 

membranes. The Halpin-Tsai model was employed by Feng 

et al. (2017) for homogenization of the nanocomposites in 

order to investigate the effects of using GPLs, as 

reinforcements in a nanocomposite, on the nonlinear 

bending responses of a beam. Also, a higher-order plate 

model is incorporated with the nonlinear theory of von-

Kármán by some of the authors in order to consider for the 

impacts of thermal environment and elastic medium on the 

nonlinear bending and vibration characteristics of 

functionally graded graphene-reinforced composite (FG-
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GRC) laminated plates (Shen et al. 2017a, Shen et al. 

2017b). Also, the issue of postbuckling problem of a porous 

GPL reinforced (GPLR) nanocomposite beam is undertaken 

and studied by Barati and Zenkour (2017) with respect to 

the influences of geometrical imperfection. Yang et al. 

(2017) carried out an analysis on the stability of FG 

nanocomposite beams reinforced with GPLs. Also, Zhao et 

al. (2017) studied the bending and vibration behaviors of a 

FG trapezoidal plate reinforced with GPLs by employing 

the modified Halpin-Tsai model and the rule of mixture to 

predict the effective material properties. Besides, 

researchers have also probed the vibration, bending and 

compressive buckling of the GPLR polymeric 

nanocomposite plates via Mindlin-Reissner theory (Song et 

al. 2018). Graphene oxide also is a novel nanofiller with 

astounding thermal (Balandin et al. 2008), mechanical and 

optical properties (Yazid et al. 2018). In the recent years, it 

is found that graphene oxide can be a great reinforcement 

for the plates with polymer matrix in order to enhance the 

mechanical and functional properties of the polymer 

materials due to its remarkable compatibility with polymers 

(Potts et al. 2011). The experiments on this novel nanofiller 

show that monolayer GO has the Young modulus of 0.25 ±
0.15TPa (Gómez-Navarro et al. 2008). Due to this fact, 

nanocomposites reinforced with GO have extraordinary 

tensile strength in addition to their low cost. GO has been 

also used in fabricating flexible displays and transparent 

conducting films, accumulators, and supercapacitors 

(Mikoushkin et al. 2011). Moreover, owing to the GOs’ 

hierarchical structure, it can be utilized as an adsorbent 

material. Most recently, Zhang et al. (2018) surveyed the 

buckling, bending and vibration of the GOP reinforced 

(GOPR) nanocomposite beams via Timoshenko theory. 

Except the aforementioned paper, no other research can be 

found dealing with the mechanical behaviors of 

nanocomposite continuous systems reinforced with GOPs. 

To our best knowledge, the buckling problem of FG-GOPR 

nanocomposite plate, subjected to non-uniform magnetic 

field has never been studied up to now. 

Present research is devoted to examining the influence 

of nonuniform magnetic field on the buckling responses of 

a GOPR nanocomposite beam. The material properties are 

achieved from Halpin-Tsai micromechanical scheme. 

Moreover, in the usage of Hamilton’s principle, a refined 

higher-order beam model is implemented to reach the 

governing equations. Afterwards, Galerkin’s method is 

implemented to solve the eigenvalue problem and compute 

the critical buckling load. Also, the accuracy of the method 

is verified too.  Finally, the non-dimensional form of the 

results is presented for the sake of simplicity. 
 
 

2. Theoretical formulations of the GOPRC beam 
for buckling analysis 

 
2.1 Material homogenization 
 

The structure of the beam, which is shown in Fig. 1, is 

consisted of an initial polymer matrix that is strengthened 

via a group of GOP fibers. The reinforcements are dispersed 

in the primary material via different patterns. These patterns  

 

Fig. 1 Geometry of a composite beam 

 

 

can be generated by putting the fibers in a series of 

specified positions which can be calculated by following 

simple modeling: 

{
 
 

 
 
𝑉𝐺𝑂𝑃 = 𝑉𝐺𝑂𝑃

∗ GOPR-U

𝑉𝐺𝑂𝑃 = (2 − 4
|𝑧|

ℎ
) 𝑉𝐺𝑂𝑃

∗ GOPR-O

𝑉𝐺𝑂𝑃 = 4
|𝑧|

ℎ
𝑉𝐺𝑂𝑃
∗ GOPR-X

 (1) 

in which 𝑉𝐺𝑂𝑃
∗  is the volume fraction of GOPs and can be 

formulated as: 

𝑉𝐺𝑂𝑃
∗ =

𝑊𝐺𝑂𝑃

𝑊𝐺𝑂𝑃 + (
𝜌𝐺𝑂𝑃
𝜌𝑀

) (1 −𝑊𝐺𝑂𝑃)
 (2) 

where GOP and M subscripts are related to GOP 

reinforcements and the matrix, respectively. In addition, ρ 

stands for mass density and WGOP denotes GOP weight 

fraction. Afterwards, it is necessary to earn the 

nanocomposite’s equivalent elasticity modulus and 

Poisson’s ratio. Herein, the Halpin-Tsai homogenization 

technique is extended for derivation of the material 

properties (Zhang et al. 2018). Now, the Young’s modulus 

can be written as: 

𝐸𝑒𝑓𝑓 = 0.49𝐸𝑙 + 0.51𝐸𝑡  (3) 

where El and Et account for longitudinal and transverse 

Young’s modulus of the composite, respectively. These 

elastic parameters can be calculated as (Zhang et al. 2018): 

𝐸𝑙 =
1 + 𝜉𝑙𝜂𝑙𝑉𝐺𝑂𝑃
1 − 𝜂𝑙𝑉𝐺𝑂𝑃

× 𝐸𝑀 , 𝐸𝑡 =
1 + 𝜉𝑡𝜂𝑡𝑉𝐺𝑂𝑃
1 − 𝜂𝑡𝑉𝐺𝑂𝑃

× 𝐸𝑀 (4) 

where 

𝜂𝑙 =
(
𝐸𝐺𝑂𝑃
𝐸𝑀

) − 1

(
𝐸𝐺𝑂𝑃
𝐸𝑀

) + 𝜉𝑙

, 𝜂𝑡 =
(
𝐸𝐺𝑂𝑃
𝐸𝑀

) − 1

(
𝐸𝐺𝑂𝑃
𝐸𝑀

) + 𝜉𝑡

 (5) 

in which EGOP and EM stand for GOPs and matrix Young 

modulus, respectively. Also, the geometry factors (𝜉𝑙 , 𝜉𝑡) are 

defined as follows (Zhang et al. 2018): 

𝜉𝑙 = 𝜉𝑡 =
2𝑑𝐺𝑂𝑃
ℎ𝐺𝑂𝑃

 (6) 

In which the GOPs’ diameter and thickness are shown 

with dGOP and hGOP respectively. Now, the effective 

Poisson’s ratio of the composite can be achieved by using 

the rule of mixture in the following form: 

𝜈𝑒𝑓𝑓 = 𝜈𝐺𝑂𝑃𝑉𝐺𝑂𝑃 + 𝜈𝑀𝑉𝑀 (7) 
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where VGOP and VM correspond with the volume fractions of 

GOPs and matrix, respectively. It should be mentioned that 

the effective mass density can be computed in the same 

form as Poisson’s ratio is achieved in Eq. (7). The volume 

fractions are related to each other as: 

𝑉𝐺𝑂𝑃 + 𝑉𝑀 = 1 (8) 

 

2.2 Refined higher-order beam theory 
 

The classical theory of beams and plates possesses some 

simplifying assumptions which leads to some limitations in 

modeling. For example, this theory cannot present reliable 

results whenever the slenderness and length-to-thickness 

ratios are inside 10. Due to this fact, the researchers have 

introduced some mathematical modeling which is able to 

estimate the shear stress and strain of the plates and beams 

(Fourn et al. 2018). Moreover, Bourada et al. (2019) 

employed sinusoidal shear deformation theory in order to 

investigate the dynamic behavior of the FG porous beam. In 

addition, She et al. (2017a) investigated the buckling and 

post-buckling analysis of the FG beams under thermal 

loadings by utilizing general higher-order shear deformation 

theory. In comparison to the other works in which the 

thickness stretching effect is taken into account (Bouafia et 

al. 2017) the very small difference was seen on the 

vibrational behavior of FG plates which could be negligible 

for the sake of simplicity. On the other hand, in some other 

researches, other versions of the classical kinematic theories 

are presented which are modified to be applicable in the 

cases that influences of the shear deformation cannot be 

ignored (Younsi et al. 2018). For the purpose of capturing 

the shear effect in the higher-order theorems, a shape 

function is presented in each theory. In this paper, the 

refined form of sinusoidal beam theory is utilized in order 

to achieve the kinematic relations of the beam. According to 

this theory, the displacement field of a beam can be written 

as: 

𝑢𝑥(𝑥, 𝑧) = 𝑢(𝑥) − 𝑧
𝜕𝑤𝑏
𝜕𝑥

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

 (9) 

𝑢𝑧(𝑥, 𝑧) = 𝑤𝑏(𝑥) + 𝑤𝑠(𝑥) (10) 

where, u is longitudinal displacement and wb, ws are 

bending and shear deflections, respectively. The 

corresponding shape function of the employed theory is 

given as: 

𝑓(𝑧) = 𝑧 −
ℎ

𝜋
𝑠𝑖𝑛 (

𝜋𝑧

ℎ
) (11) 

Now, the following equations indicate the nonzero 

strains of the beam: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤𝑏
𝜕𝑥2

− 𝑓(𝑧)
𝜕2𝑤𝑠
𝜕𝑥2

, 𝛾𝑥𝑧 = 𝑔(𝑧)
𝜕𝑤𝑠
𝜕𝑥

 (12) 

in which 

𝑔(𝑧) = 1 −
𝑑𝑓(𝑧)

𝑑𝑧
 (13) 

2.3 Hamilton’s principle 
 

Now, Hamilton’s principle can be defined as: 

∫ 𝛿(𝑈 + 𝑉)𝑑𝑡
𝑡

0

= 0 (14) 

Here U is the variation of strain energy and V is work 

done by external forces, respectively. The virtual strain 

energy can be calculated as: 

𝛿𝑈 = ∫(𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝑉
𝑉

 (15) 

Substituting Eqs. (9) – (13) in Eq. (15) yields: 

𝛿𝑈 = ∫ (𝑁
𝜕𝛿𝑢

𝜕𝑥
− 𝑀𝑏

𝜕2𝑤𝑏
𝜕𝑥2

−𝑀𝑠

𝜕2𝑤𝑠
𝜕𝑥2

+ 𝑄
𝜕𝑤𝑠
𝜕𝑥

) 𝑑𝑥
𝐿

0

 (16) 

in which the stress resultants N, Mb, Ms, and Q can be 

written as: 

[𝑁,𝑀𝑏 , 𝑀𝑠] = ∫[1, 𝑧, 𝑓(𝑧)]𝜎𝑥𝑥𝑑𝐴
𝐴

, (17) 

𝑄 = ∫𝑔(𝑧)𝜎𝑥𝑧𝑑𝐴
𝐴

 (18) 

Besides, in this research, the nanocomposite is assumed 

to be subjected to an in-plane magnetic field. Thus, the 

Maxwell’s magnetic induction rules are extended to achieve 

the equivalent body force applied to the beam. Herein, the 

longitudinal magnetic field is: 

𝐻 = (𝐻𝑥 , 0,0), 𝐻𝑥 = 𝐻̄𝑥sin (
𝜋𝑥

𝐿
) (19) 

where 𝐻̄𝑥 is the amplitude of the longitudinal magnetic 

field. Maxwell’s relation can be developed as: 

𝑓𝑧 = 𝜂 [𝛻 × (𝛻 × (𝑢⃗ × 𝐻⃗⃗ ))] 𝐻⃗⃗  

= 𝜂 [𝐻𝑥
2 𝜕

2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+ 2𝐻𝑥

𝜕𝐻𝑥
𝜕𝑥

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥

+ 𝐻𝑥
𝜕2𝐻𝑥
𝜕𝑥2

(𝑤𝑏 + 𝑤𝑠)] 

(20) 

In which η is magnetic permeability and 𝑢⃗ = (𝑢𝑥, 0, 𝑢𝑧) 
is displacement vector. By inserting the displacement field 

in above equation, the resultant Lorentz force can be 

achieved as: 

𝑓𝐿𝑧 = ∫𝑓𝑧𝑑𝐴
𝐴

= 𝜓1
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2
+ 𝜓2

𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑥
− 𝜓3(𝑤𝑏 + 𝑤𝑠) 

(21) 

where 

𝜓1 = 𝜂𝐴𝐻̄𝑥
2
𝑠𝑖𝑛2 (

𝜋𝑥

𝐿
) , 

𝜓2 = 2𝜂𝐴 (
𝜋

𝐿
) 𝐻̄𝑥

2
𝑠𝑖𝑛 (

𝜋𝑥

𝐿
) 𝑐𝑜𝑠 (

𝜋𝑥

𝐿
) , 

𝜓3 = 𝜂𝐴 (
𝜋

𝐿
)
2

𝐻̄𝑥
2
𝑠𝑖𝑛2 (

𝜋𝑥

𝐿
) 

(22) 

Now, the variation of work done by external forces can 

be formulated as: 
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𝛿𝑉 = ∫ (
𝑁𝑏
𝜕𝛿(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥

𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥
+ 𝜓1

𝜕2𝛿(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2

+𝜓2
𝜕𝛿(𝑤𝑏 +𝑤𝑠)

𝜕𝑥
− 𝜓3𝛿(𝑤𝑏 +𝑤𝑠)

)𝑑𝑥
𝐿

0

 (23) 

Therefore, once substituting Eqs. (16) and (23) in Eq. 

(14) and solving for the nontrivial response, the Euler-

Lagrange equations of this problem are derived as: 

𝜕𝑁

𝜕𝑥
= 0, (24) 

𝜕2𝑀𝑏

𝜕𝑥2
−𝑁𝑏

𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2
+𝜓1

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2

+ 𝜓2
𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑥
− 𝜓3(𝑤𝑏 + 𝑤𝑠)

= 0, 

(25) 

𝜕2𝑀𝑠

𝜕𝑥2
+
𝜕𝑄

𝜕𝑥
− 𝑁𝑏

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+ 𝜓1

𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2

+ 𝜓2
𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑥
− 𝜓3(𝑤𝑏 + 𝑤𝑠)

= 0 

(26) 

 

2.4 Constitutive equations 
 

The constitutive equations of the nanocomposite 

structure including the stress-strain relations of isotropic 

materials are expressed as follows in order to obtain the 

fundamental elastic equations of solids.  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (27) 

where σij and εkl are the constituents of second order stress 

and strain tensors, respectively; whereas, Cijkl corresponds 

with the constituent of the fourth order elasticity tensor. 

Whenever extending the aforementioned equation for a 

shear deformable beam, the following relations can be 

reached: 

𝜎𝑥𝑥 = 𝐸𝑒𝑓𝑓𝜀𝑥𝑥 , (28) 

𝜎𝑥𝑧 = 𝐺𝑒𝑓𝑓𝛾𝑥𝑧 (29) 

in which Eeff and Geff signify the Young and shear moduli of 

the nanocomposite, respectively. Integrating from Eqs. (28) 

and (29) over the cross-section area of the beam, the 

following equations obtained for the stress resultants: 

𝑁 = 𝐴
𝜕𝑢

𝜕𝑥
− 𝐵

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐵𝑠
𝜕2𝑤𝑠
𝜕𝑥2

, (30) 

𝑀𝑏 = 𝐵
𝜕𝑢

𝜕𝑥
− 𝐷

𝜕2𝑤𝑏
𝜕𝑥2

− 𝐷𝑠
𝜕2𝑤𝑠
𝜕𝑥2

, (31) 

𝑀𝑠 = 𝐵𝑠
𝜕𝑢

𝜕𝑥
− 𝐷𝑠

𝜕2𝑤𝑏
𝜕𝑥2

−𝐻𝑠
𝜕2𝑤𝑠
𝜕𝑥2

, (32) 

𝑄 = 𝐴𝑠
𝜕𝑤𝑠
𝜕𝑥

 (33) 

where 

[𝐴, 𝐵, 𝐷, 𝐵𝑠, 𝐷𝑠 , 𝐻𝑠]

= ∫[1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧)]𝐸𝑒𝑓𝑓𝑑𝐴
𝐴

, (34) 

𝐴𝑠 = ∫𝑔
2(𝑧)𝐺𝑒𝑓𝑓𝑑𝐴

𝐴

 (35) 

Now, inserting Eqs. (30) – (33) in Eqs. (24) – (26), the 

governing equations of GOPRC beams can be derived as 

follows: 

𝐴
𝜕2𝑢

𝜕𝑥2
− 𝐵

𝜕3𝑤𝑏
𝜕𝑥3

− 𝐵𝑠
𝜕3𝑤𝑠
𝜕𝑥3

= 0, (36) 

𝐵
𝜕3𝑢

𝜕𝑥3
− 𝐷

𝜕4𝑤𝑏
𝜕𝑥4

− 𝐷𝑠
𝜕4𝑤𝑠
𝜕𝑥4

+𝑁𝑏
𝜕2(𝑤𝑏 +𝑤𝑠)

𝜕𝑥2

+ 𝜓1
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+ 

𝜓2
𝜕(𝑤𝑏 +𝑤𝑠)

𝜕𝑥
− 𝜓3(𝑤𝑏 + 𝑤𝑠) = 0, 

(37) 

𝐵𝑠
𝜕3𝑢

𝜕𝑥3
− 𝐷𝑠

𝜕4𝑤𝑏
𝜕𝑥4

− 𝐻𝑠
𝜕4𝑤𝑠
𝜕𝑥4

+ 𝐴𝑠
𝜕2𝑤𝑠
𝜕𝑥2

+ 𝑁𝑏
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2

+ 𝜓1
𝜕2(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥2
+ 

𝜓2
𝜕(𝑤𝑏 + 𝑤𝑠)

𝜕𝑥
− 𝜓3(𝑤𝑏 + 𝑤𝑠) = 0 

(38) 

 

 

3. Solution procedure 
 

Here, the Galerkin’s method is applied to solve the 

governing equations based on refined higher order beam 

theory. Three kinds of boundary conditions such as simply 

supported-simply supported, simply supported-clamped and 

clamped-clamped are applied to the beam in the following 

form: 

❖ Simply – supported (S): 

𝑤𝑏 = 𝑤𝑠 = 𝑁 = 𝑀 = 0at𝑥 = 0, 𝐿 

❖ Clamped (C): 

𝑢 = 𝑤𝑏 = 𝑤𝑠 = 0at𝑥 = 0, 𝐿 

Now, following solutions can be applied for 

displacement fields for satisfying the above-mentioned 

boundary conditions: 

𝑢 = ∑𝑈𝑛
𝜕𝑋𝑚(𝑥)

𝜕𝑥

∞

𝑛=1

 (39) 

𝑤𝑏 =∑𝑊𝑏𝑛𝑋𝑚(𝑥)

∞

𝑛=1

 (40) 

𝑤𝑠 =∑𝑊𝑠𝑛𝑋𝑚(𝑥)

∞

𝑛=1

 (41) 
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where Un, Wbn, and Wsn are unknown Fourier coefficients. 
Once Eqs. (39) – (41) are inserted in Eqs. (36) – (38), the 
following relation can be obtained: 

[𝐾]3×3 [

𝑈𝑛
𝑊𝑏𝑛

𝑊𝑠𝑛

] = 0 (42) 

in which K is stiffness matrix. The kij arrays can be 

calculated in the following form 

𝑘11 = 𝐴 ×∫
𝜕3𝑋𝑚(𝑥)

𝜕𝑥3
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑑𝑥

𝐿

0

, 𝑘12

= −𝐵 × ∫
𝜕3𝑋𝑚(𝑥)

𝜕𝑥3
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑑𝑥

𝐿

0

, 

𝑘13 = −𝐵𝑠 × ∫
𝜕3𝑋𝑚(𝑥)

𝜕𝑥3
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑑𝑥

𝐿

0

, 𝑘21

= −𝐵 × ∫
𝜕4𝑋𝑚(𝑥)

𝜕𝑥4
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

, 

𝑘22 = −𝐷 ×∫
𝜕4𝑋𝑚(𝑥)

𝜕𝑥4
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+∫ 𝜓1
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+∫ 𝜓2
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

−∫ 𝜓3𝑋𝑚(𝑥)𝑋𝑚(𝑥)𝑑𝑥
𝐿

0

 

−𝑁𝑏∫
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

, 

𝑘23 = −𝐷𝑠 ×∫
𝜕4𝑋𝑚(𝑥)

𝜕𝑥4
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+∫ 𝜓1
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+∫ 𝜓2
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

−∫ 𝜓3𝑋𝑚(𝑥)𝑋𝑚(𝑥)𝑑𝑥
𝐿

0

 

−𝑁𝑏∫
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

, 

𝑘31 = −𝐵𝑠 × ∫
𝜕4𝑋𝑚(𝑥)

𝜕𝑥4
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

, 

𝑘32 = −𝐷𝑠 ×∫
𝜕4𝑋𝑚(𝑥)

𝜕𝑥4
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+∫ 𝜓1
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+∫ 𝜓2
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

−∫ 𝜓3𝑋𝑚(𝑥)𝑋𝑚(𝑥)𝑑𝑥
𝐿

0

 

−𝑁𝑏∫
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

, 

𝑘33 = −𝐻𝑠 ×∫
𝜕4𝑋𝑚(𝑥)

𝜕𝑥4
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+ 𝐴𝑠 ×∫
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+∫ 𝜓1
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

+∫ 𝜓2
𝜕𝑋𝑚(𝑥)

𝜕𝑥
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

 

−∫ 𝜓3𝑋𝑚(𝑥)𝑋𝑚(𝑥)𝑑𝑥
𝐿

0

− 𝑁𝑏∫
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2
𝑋𝑚(𝑥)𝑑𝑥

𝐿

0

 

It shall be mentioned that the final form of Xm function 

for each boundary condition can be evaluated in the 

following form: 

S-S:𝑋𝑚 = 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) , 

C-S:𝑋𝑚 = 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) [𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
) − 1] , 

C-C:𝑋𝑚 = 𝑠𝑖𝑛2 (
𝑛𝜋𝑥

𝐿
) 

 
 

4. Numerical results and discussion 
 

Herein, a detailed parametric study is performed to 

investigate the reinforcing influences of GOP on the 

buckling behavior of nanocomposite beams with various 

boundary conditions and distribution patterns of GOP. The 

material properties of the constituent materials are chosen 

as same as those presented by Zhang et al. (2018). Also, 

beam’s thickness is supposed to be h=5 cm unless another 

value is mentioned. Moreover, magnetic permeability is 

η=4π×10-7. Through this part, the influences of the different 

boundary condition will be figured out. Also, for the first 

time, the shear deformation effects on the buckling response 

of GOPRC beams are considered by implementing refined 

higher order beam theory. Accuracy of present model is 

verified, too. The natural frequencies of simply-supported 

(S-S) CNTRC beams are obtained via present model and 

compared with those of Zhang et al. (2018) and 

Wattanasakulpong and Ungbhakorn (2013). As can be 

observed, the results of present model correspond with 

those of published papers. In addition, the frequency values 

of present model are compared with the results reported by 

Zhang et al. (2018) and Wattanasakulpong and Ungbhakorn 

(2013) for GOPR nanocomposite beams (Table 1, 2). In all 

the future results, the following dimensionless forms of 

buckling load and magnetic field intensity are used: 

𝛺 =
𝑁𝑏𝐿2

𝐸𝐺𝑂𝑃𝐼
, 𝐻0 =

𝜂𝐴𝐿2

𝐸𝐺𝑂𝑃𝐼
𝐻̄𝑥

2
, 𝐼 =

𝑏ℎ3

12
 (43) 

 

 

Table 1 Comparison of the first dimensionless frequency of 

S-S CNTRC beams (L/h=15, VCNT=0.12) 

  Distribution type 

Reference  UD  O  X 

Wattanasakulpong and 

Ungbhakorn (2013) 
 0.9976  0.7628  1.1485 

Zhang et al. (2018)  0.9842  0.7595  1.1249 

Present model  0.9904  0.7528  1.1399 

 

Table 2 Comparison of the first dimensionless frequency of 

S-S GOPRC beams (WGOP = 0.3%) 

   Distribution type 

L/h   X-GOPRC  O-GOPRC  U-GOPRC 

10 Zhang et al. (2018)  0.3379  0.2921  0.3159 

 Present model  0.3576  0.3013  0.3095 

15 Zhang et al. (2018)  0.2271  0.1959  0.2121 

 Present model  0.2411  0.2009  0.2079 

20 Zhang et al. (2018)  0.1708  0.1473  0.1595 

 Present model  0.1815  0.1461  0.1564 
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First ten dimensionless buckling loads of GOPRC 

beams subjected to various magnetic field intensities with 

S-S boundary condition and different types of GOP 

distribution are tabulated in Table 3. By dividing the Table 

in two parts with respect to different magnetic field 

intensities, it is observed that first ten buckling loads 

become slightly higher as magnetic field intensity increases. 

Also, Table 3 shows that among these types of GOP 

distribution, the X-distribution leads to the strongest beams 

that can tolerate the highest buckling loads followed by the 

U-distribution and O-distribution. To investigate the 

influences of BCs on the variation of buckling loads, the 

results are classified in Table 4 by changing the BC to 

clamped-clamped (C-C) edge condition. It should be noted 

that except the effect of BC, all other effects that can be 

seen in Table 3 are preserved in Table 4, too. In this way, it 

can be found that applying the C-C BC leads to higher 

buckling loads in comparison with S-S one. 

Fig. 2 depicts the effects of GOPs’ weight fraction and 

different BCs on the variation of dimensionless buckling 

load of GOPRC beams neglecting the influences of 

magnetic field in a constant slenderness ratio. It can be seen 

that within each of these BCs, the dimensionless buckling  

 

 

load of GOPRC beams increases greatly with an increment 

in the weight fraction of GOPs. Then, BCs’ effects on the 

dimensionless stability response is investigated. As 

illustrated in Fig. 2, for the beams with C-C edge 

conditions, the improvement of dimensionless buckling 

load is remarkably higher than S-S and C-S BCs. Moreover, 

S-S BC has the lowest value of dimensionless buckling 

load. By considering same GOPs’ weight fraction among 

these three boundary conditions shown in Fig. 2a, 2b and 

2c, the largest dimensionless buckling load is about 70 for 

C-C BC while for the others it does not exceed 55. 

Moreover, in Fig. 3, the effect of various magnetic field 

intensities on the first and second dimensionless buckling 

load of S-S beam with various GOPs’ weight fraction are 

investigated. It can be found that the dimensionless 

buckling loads, with desirable GOPs’ weight fraction, are 

increased linearly as magnetic field intensity is added. 

According to the figure, the dimensionless buckling loads 

become greater once the GOPs’ weight fraction is 

increased. Besides, the increasing influence of nanoparticles 

which are utilized as reinforcements should be taken into 

account. In fact, the structure can be subjected to higher 

critical buckling loads whenever a greater amount of GOPs  

Table 3 First ten dimensionless buckling loads of GOPRC beams for different distributions of the GOP and various 

magnetic field intensities with S-S edge condition (L/h = 25, WGOP = 1%) 

  H0=0.2  H0=0.5 

n  GOPR-U GOPR-X GOPR-O  GOPR-U GOPR-X GOPR-O 

1  0.36061 0.407339 0.31362  0.66061 0.707339 0.61362 

2  0.759444 0.937722 0.575978  0.946944 1.125222 0.763478 

3  1.509615 1.880636 1.112957  1.676281 2.047303 1.279624 

4  2.523784 3.116036 1.856285  2.683159 3.275411 2.01566 

5  3.751935 4.559437 2.778567  3.907935 4.715437 2.934567 

6  5.144858 6.131742 3.853861  5.299025 6.285909 4.008028 

7  6.65437 7.763368 5.055379  6.807432 7.916429 5.20844 

8  8.235796 9.397928 6.356175  8.38814 9.550272 6.508519 

9  9.849936 10.99331 7.730178  10.00179 11.14516 7.88203 

10  11.46414 12.52068 9.153084  11.61564 12.67218 9.304584 

Table 4 First ten dimensionless buckling loads of GOPRC beams for different distributions of the GOP and various 

magnetic field intensities with C-C edge condition (L/h = 25, WGOP = 1%) 

  H0=0.2  H0=0.5 

n  GOPR-U GOPR-X GOPR-O  GOPR-U GOPR-X GOPR-O 

1  0.859444 1.037722 0.675978  1.196944 1.375222 1.013478 

2  2.536284 3.128536 1.868785  2.714409 3.306661 2.04691 

3  5.150414 6.137298 3.859416  5.312914 6.299798 4.021916 

4  8.238921 9.401053 6.3593  8.395953 9.558084 6.516332 

5  11.46614 12.52268 9.155084  11.62064 12.67718 9.309584 

6  14.59718 15.31101 12.06226  14.75031 15.46413 12.21539 

7  17.49791 17.71548 14.93992  17.65021 17.86777 15.09222 

8  20.11133 19.75866 17.69305  20.26309 19.91042 17.8448 

9  22.42971 21.49169 20.2663  22.5811 21.64308 20.41769 

10  24.47224 22.97096 22.63441  24.62337 23.12208 22.78554 
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is implemented. Naturally, a lower buckling load can be 

applied in the case of using pure epoxy. Also, changes in 

magnetic field intensity can affect the first mode’s response 

more than the second mode’s one. 

At last, the variation of first dimensionless buckling 

load is plotted against GOPs’ weight fraction by considering 

different values of slenderness ratio in Fig. 4. Actually, it 

can be found that the differences between the buckling load 

diagrams are negligible as GOPs’ weight fraction is 

increased, hence, it can be figured out that slenderness ratio 

possesses less influence on the dimensionless buckling 

loads. Also, Fig. 4 show that the addition of GOP weight 

fraction causes linear increment in the amount of 

dimensionless buckling load.  

 
 

5. Conclusion 
 

In this study, buckling analysis of GOPRC beams under 

non-uniform magnetic field is conducted by using higher-

order shear deformation theory. The beams are reinforced 

by various types of GOPs distributions along the thickness 

direction. By implementing Galerkin method, the governing 

differential equations are solved and also the accuracy of 

the numerical results are verified by comparison with some 

previous works. Finally, the influences of different 

parameters such as GOPs’ weight fraction, magnetic field 

intensity, slenderness ratio and BCs on critical buckling 

load of GOPRC beams are investigated. Here the most 

important highlights of this study can be reviewed as 

follows:  

 
 

 
 

(a) S-S (b) C-S 

 
(c) C-C 

Fig. 2 Variation of the dimensionless buckling load of GOPRC beams versus mode number for various amounts of GOPs’ 

weight fraction with respect to changes in edge conditions (H0 = 0, L/h = 25) 
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Fig. 3 Variation of the first and second dimensionless 

buckling load of S-S composite beams versus 

dimensionless magnetic field intensity for various 

amounts of GOPs’ weight fraction and natural modes (L/h 

= 25) 

 

 

Fig. 4 Variation of the first dimensionless buckling load of 

S-S composite beams versus GOP weight fraction for 

various slenderness ratios (H0 = 0.5) 
 

 

•  According to the results, it is figured out that the 

beam with X-distribution can tolerate higher buckling loads 

in comparison to the other distributions types which is 

meant that this beam is the strongest beam while, the beam 

with O-distribution is the weakest one. 

•  It was clearly seen that boundary conditions play an 

important role in changing the buckling loads in the way 

that C-C BC corresponds with the highest values of 

buckling loads and followed by C-S and S-S types. 

•  It is also revealed that buckling loads increase 

gradually as magnetic field intensity grows. 

•  It was observed that an increase in the GOPs’ weight 

fraction can remarkably make the GOPRC beam structures 

to have a better buckling performances. 
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