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1. Introduction 
 

Failure probability can be defined as: 

𝑝𝑓 = ∫ 𝑓𝑥(𝑥) 𝑑𝑥
ℎ(𝑥)≤0

 (1) 

where 𝑿 = (𝑥1, 𝑥2, … , 𝑥𝑑) is the d-dimensional vector of 

random variables, 𝑓𝑥(𝑥)  is the joint probability density 

function (PDF) of x and ℎ(𝑥) is the limit state function. 

This integration is calculated over the failure domain where 

ℎ(𝑥) ≤ 0. Evaluation of this multi-dimensional integral is 

difficult except for some limited problems, especially when 

the limit state function is a function of structural responses 

such as displacement and stress, which can be obtained 

through finite element (FE) analysis and are determined 

implicitly. Numerous methods have been proposed to 

estimate the probability of failure. These can be categorized 

as geometric approximations of the failure region, Monte 

Carlo simulation (MCS) and surrogate models (Li 2012).  

The first-order reliability method (FORM) (Der 

Kiureghian, Lin et al. 1987, Breitung and Hohenbichler 

1989, Tvedt 1990, Goda and Atkinson 2010) and second-

order reliability method (SORM) (Hasofer. and Lind 1974, 

Rackwitz and Flessler 1978, Liu and Der Kiureghian 1991) 

are common geometric approximation methods. FORM and 

SORM approximate the limit state function near the most 

probable point using a hyper-plane and paraboloid, 

respectively. It is evident that the performance of these 

methods strongly depends on how close the approximated  
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failure region is to the exact failure region. In cases in 

which the performance function and the corresponding the 

failure region are highly nonlinear, the approximation is 

likely be inappropriate, which will decrease the accuracy of 

the methods. In addition, these methods cannot estimate the 

approximation error.  

Monte Carlo simulation (MCS) is based on the law of 

large numbers and is applied to approximate the multiple 

integral in Eq. (1). The MCS approach is initiated by 

generating independent and identically-distributed samples 

according to distribution 𝐹𝑋. The performance function at 

each sample generated is then evaluated. Next, the failure 

probability is obtained as the ratio between the number of 

samples falling in the failure region and the total size of the 

sample set. Although MCS is a straightforward method, its 

main disadvantage is the formidable computational efforts 

required by the considerable number of sampling cycles.  

Some techniques have been developed to reduce the 

number of samples without losing accuracy. Importance 

sampling (IS) (Robert and Casella, Shanmugam and 

Balaban 1980, Hohenbichler and Rackwitz 1988, Echard, 

Gayton et al. 2013), subset simulation (SS) (Au and Beck 

2001, Ching, Au et al. 2005, Giovanis, Papaioannou et al. 

2017, Alvarez, Uribe et al. 2018), and line sampling 

(Pradlwarter, Schueller et al. 2007, Valdebenito, Jensen et 

al. 2018) are all alternative sampling-based methods. Where 

the analysis of complex structures using a FE model is 

involved, however, the number of samples required is still 

considerable. To overcome the computational costs, one 

alternative way is to use surrogate models instead of 

evaluating the FE computer model. Surrogate models are 

built by fitting a set of observations of system responses. 

These models approximate the failure region using a simple 

and explicit function. 
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The response surface methods (RSMs) are the earlier 

surrogate models which are usually quadratic. Kmiecik and 

Soares (2002) used the RSM to determine the cumulative 

distribution function of the strength of compressed plates. 

Teixeira and Soares (2010) extended this approach for 

reliability problems involving a random field of corrosion. 

Gaspar, Naess et al. (2014) combined RSM with MCS to 

estimate the failure probability of complex structural 

systems. Fang and Tee (2017) combined response surface 

and genetic algorithm in structural reliability. 

Artificial neural networks (ANNs) have been used as 

surrogate models to assess failure probability by Hurtado 

and Alvarez (2001). ANN estimates nonlinear mapping 

from the input to the output set of a system. Several studies 

have assessed the performance of ANN in the domain of 

reliability analysis (McCulloch and Pitts 1943, Hornik, 

Stinchcombe et al. 1989, Elhewy, Mesbahi et al. 2006, 

Bucher and Most 2008, Chojaczyk, Teixeira et al. 2015, 

Chojaczyk, Teixeira et al. 2015). It is clear that ANN 

provides more flexibility than RSM in this area; however, 

constructing an ANN for a complex system requires huge 

computational outlay for training algorithms.  

Support vector machines (SVMs) as powerful statistical 

learning techniques have been used for structural reliability 

by Hurtado and Alvarez (2003). They combined a SVM as a 

classification approach and the stochastic FE method to 

analyze structural reliability. Li, Lü et al. (2006) proposed 

two SVM-based approaches, SVM-based FORM and SVM-

based MCS, and compared their performance to those of 

conventional RSM and ANNs. Zhao, Ru et al. (2014) 

implemented SVM-based RSM in combination with FORM 

for tunnel reliability analysis. Tan, Bi et al. (2011) 

compared the SVM-based RSM with the radial basis 

function neural network-based RSM and showed that there 

was no significant difference between these methods. Dai, 

Zhang et al. (2012) proposed a local approximation 

approach based on support vector regression (a regression 

model used in SVM) and adaptive Markov chain 

simulation. The efficiency and accuracy of SVM as a 

surrogate model have been investigated by other researchers 

(Song, Choi et al. 2013, Liu, Wu et al. 2017, Pan and Dias 

2017, Xiang, Li et al. 2017). 

Kriging interpolation is a powerful prediction tool used 

to build a surrogate model to approximate the limit state 

function. This technique was introduced in geostatistics by 

Karig and Matheron (Matheron 1973). Sacks, W. J. Welch 

et al. (1989) applied this method to computer experiments 

to solve deterministic optimization problems. Kaymaz 

(2005) introduced kriging to estimate structural failure 

probability and compared it with RSMs. The accuracy of 

this model, as are those of the other surrogate models, is 

strongly dependent on the training points. If the points 

selected are close to the limit state function, the 

performance of the surrogate model improves. Kriging has 

been combined with different methods to improve its 

efficiency and accuracy (Huang, Chen et al. 2016). In 

addition, in problems with the nonlinear limit state function, 

the accuracy of surrogate models is very important and it 

can decrease the number of calls to the numerical model. 

Although the approaches proposed based on kriging and 

adaptive enrichment are efficient, the performance of 

method is strongly dependent on the method used to add 

new points. Therefore, more robust models are still required 

to accurately approximate the limit state function. This 

study proposed a method based on genetic programming as 

a surrogate model which has not been tested in structural 

reliability.  

Genetic programming (GP) as an alternative predictive 

approach is proposed herein to compute failure probability. 

In general, GP is specialization of genetic algorithms 

(GAs); both are based on Darwinian natural selection (Koza 

1992). Genetic operators used in GAs can be implemented 

in GP with a little change. The main difference between GA 

and GP is the presentation of solutions. In GP, the results 

are presented by computer programs while, in GA, a binary 

string is proposed for the solution. The programs generated 

by traditional GP are tree structures and are expressed using 

a functional programming language (Koza 1992, Gandomi, 

Alavi et al. 2010). The main advantage of a GP-based 

approach over other surrogate models is its ability to 

generate predictive equations without assuming the 

prescribed form of an existing relationship.  

Different strategies have been proposed to improve the 

traditional GP. GP and its variants have been applied to 

different kinds of structural engineering problems (Parsons 

and Canfield 2002, Yeun, Kim et al. 2005, Gao, Xiao et al. 

2012). Multi-gene genetic programming (MGGP) is a 

robust variant of GP in which an individual solution 

consists of a number of genes which are combined linearly.  

The present paper is organized as follows. Section 2 

introduces GP and MGGP. Section 3 describes the adaptive 

Metropolis sampling technique. The proposed method is 

introduced in section 4. Section 5 illustrates the efficiency 

and accuracy of the proposed method using five examples. 

Section 6 concludes the article. 
 

 

2. Genetic programming and MGGP 
 

2.1 Genetic programming 
 

Genetic programming was introduced by Koza (1992) 

and is a symbolic regression technique that solves problems 

without having a prescribed form for the solution. Unlike 

surrogate models such as ANN, GP is a self-parametrizing 

method that constructs the model without user training. GP 

is an extension of GA; most genetic operators applied in GA 

can be developed and implemented in GP. Although these 

methods are similar, the main difference between them 

relates to the representation of the solutions. In GP, 

individual solutions are computer programs that are usually 

represented as parse trees. In GA, a string of numbers is 

generated as the solution (Koza 1992).  

Each individual in GP is represented as a tree structure 

comprising terminals and functions. The terminals and 

functions are selected from a pre-defined set in the GP 

system. The function set consists of useful arithmetic 

operators (+, -, ×, and ÷), mathematical functions (cos(), 

sin(), tan(), etc.), Boolean operators (And, Not, Or), logical 

expression (If, Then) or any other reasonable function 

defined by the user. The terminal set may consist of the  
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Fig. 1 The tree representation of a GP model 

 

 

variables and constants of the programs (Gandomi, Alavi et 

al. 2010). A set of functions and terminals are randomly 

selected and combined to form a computer model. This 

model is a tree-like structure which consists of a root node 

with branches extending from each function and ending in a 

terminal node. An example of a computer model is shown 

in Fig. 1.  

After a set of GP trees is generated at random, the 

fitness value is calculated for each individual using the 

objective function. A set of computer models are selected 

based on their fitness value for reproduction. Then a new 

population is created by implementing the genetic 

operators. Crossover and mutation are the basic genetic 

operations. For a crossover operator, given two parents as 

shown in Fig. 2, a crossover point in each parent tree is 

randomly selected. The offspring is then created by 

replacing the sub-tree rooted at the crossover point in a 

copy of the first parent along with the sub-tree rooted at the 

crossover point of the second parent. For mutation 

operators, a function or terminal is randomly selected and 

mutated. The GP continues replacing the old generation 

with the new one. This process is repeated until one of the 

stopping conditions is satisfied. The individual which has 

the best fitness value is selected as the result of the GP 

(Koza 1992). 

 

2.2 Multi-gene genetic programming (MGGP) 
 

Symbolic regression is generally implemented using a 

traditional GP to evolve a population of trees. Each tree 

predicts a (n×1) vector of output y through a corresponding 

(n×d) matrix of input X, in which n is the number of 

observations and d is the number of variables (Searson, 

Leahy et al. 2010). In MGGP, a symbolic model consists of 

a weighted linear combination of GP trees, also called 

genes. Fig. 3 shows a typical multi-gene model. This model 

predicts one output variable using three input variables (𝑥1, 

𝑥2, and 𝑥3). This model configuration includes a nonlinear 

term (e.g. 𝑡𝑎𝑛) but is linear in the parameters with respect 

to coefficients 𝑏0, 𝑏1, and 𝑏2. In MGGP, the maximum 

number of genes in a model (𝐺𝑚𝑎𝑥) and the maximum tree 

depth for any gene are the main parameters used to 

construct a model. These parameters control the maximum 

complexity of the evolved models. In particular, the 

restriction of tree depth usually leads to the evolution of a 

relatively compact model. 

The optimal linear coefficients for each model are 

evaluated using the training population and ordinary least 

squares methods. MGGP is an efficient tool that can 

combine the power of classical linear regression with the 

ability to capture the nonlinear behavior of a system. A 

comparison of MGGP and traditional GP shows that MGGP 

is more accurate and computationally efficient than the 

standard GP for symbolic regression (Searson, Willis et al. 

2007, Searson, Leahy et al. 2010).  

The initial population in MGGP is obtained by creating 

individuals, including GP trees, which are randomly 

generated with different genes. MGGP, in addition to the 

standard GP recombination operators, uses a crossover 

mechanism called the two-point high-level crossover 

operator which allows the exchange of genes between 

individuals. During a MGGP run, implementing this 

operator may delete some genes.  

Let 𝐺𝑖 be the ith gene of an individual. The first parent 

contains three genes (𝐺1, 𝐺2, 𝐺3) and the second contains 

four genes (𝐺4, 𝐺5, 𝐺6, 𝐺7) . For each individual, two 

randomly-selected crossover points are generated. The 

genes enclosed by a crossover point are exchanged. It is 

assumed that 𝐺2 in the first parent and 𝐺5 and 𝐺6 in the 

second are enclosed by the crossover points. The enclosed 

genes are exchanged and the new individuals result as 

follows: 
(𝐺1, 𝐺5, 𝐺6, 𝐺3)  (𝐺4, 𝐺2, 𝐺7). 

This combination operator allows acquisition of new 

genes for both individuals. Some genes can be removed by 

applying this combination operator. When an exchange of 

genes creates new ones with more genes than 𝐺𝑚𝑎𝑥 , the 

genes are randomly selected and removed until the number 

of genes in an individual decreases to less than  𝐺𝑚𝑎𝑥. 

Standard subtree crossover can be applied in the MGGP 

algorithm. This operator is known as a low level crossover 

in which a gene is selected at random from each parent. The 

standard subtree crossover is then applied and the 

constructed trees replace the parent trees in the otherwise 

unchanged individual in the next generation.  

Mutation can be performed in MGGP using the 

following methods: (1) sub-tree mutation; (2) mutation of 

constants using an additive Gaussian perturbation; (3) 

setting a randomly-selected constant to zero s; (4) 

substitution of a randomly-selected input node by another 

randomly-selected input node; (5) setting a randomly-

selected constant to one and; (6) substitution of a randomly-

selected constant with another randomly generated constant 

(Searson, Leahy et al. 2010). The probability of each 

evolutionary process can be specified by the user. These  
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processes are grouped into categories which are called 

events. Their probabilities must sum to one.  

 

 

3. Generation of dataset using adaptive Metropolis 
algorithm 
 

The first step in the proposed method is generation of 

samples from the region of interest. Because the failure 

region is not a closed-form expression, traditional MCS 

cannot be handled directly. Hence, adaptive sampling 

approaches have been received more attention these years. 

A review and discussion of these approaches have been 

presented by Liu, Ong et al. (2017). In this situation, a 

Markov chain simulation using the Metropolis algorithm 

can be implemented to achieve samples having a favored 

target distribution (Au and Beck 2001, Au and Beck 2003, 

Yuan, Lu et al. 2013). The classic metropolis algorithm is 

non-adaptive, therefore the target PDF at each iteration will 

be unchanged. In some cases, its performance may not be 

good and the convergence of the generated samples to target 

distribution may be delayed. Adaptive algorithms that use 

all samples in the chain to tune the proposal distribution  

 

 

have been proposed to overcome these difficulties. 

The adaptive Metropolis algorithm is formed on the 

basis of the classic random-walk Metropolis algorithm 

(Metropolis, Rosenbluth et al. 1953). Suppose 𝜋(x) is a 

target distribution function and is sampled in the current 

step in set (𝑥0, 𝑥1, … , 𝑥𝑡). Candidate point 𝑥∗ is generated 

from proposal density function 𝑞(. |(𝑥0, 𝑥1, … , 𝑥𝑡)) which 

depends on all samples in the chain. This point is accepted 

as the sample point of the next step with probability of: 

𝑟 = 𝑚𝑖𝑛 (1,
𝜋(𝑥∗)

𝜋(𝑥𝑡)
) (2) 

The candidate point is rejected with the remaining 

probability of (1 − 𝑟).  In this case, set 𝑥𝑡+1 = 𝑥𝑡.  

The proposal distribution used in this method can be 

selected arbitrarily, but the convergence rate of the 

generated chain will accelerate if this distribution 

approaches the true target distribution. Common choices for 

the proposal distribution have a multivariate uniform or 

multivariate normal distribution. It has been shown that the 

results obtained with a uniform distribution can be sensitive 

with respect to the parameters. In the present study, the 

 
Fig. 2 Cross-over operation in GP  

 

 

𝑦 = 𝑏0 + 𝑏1((𝑥1 − 𝑥2) + 𝑠𝑖𝑛 (2𝑥1)) + 𝑏2 (
𝑥3
0.5

− 𝑡𝑎𝑛(𝑥1𝑥2)) 

Fig. 3 A typical example of multi-gene GP model  
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multivariate normal distribution was employed. The 

proposed distribution is centered at the current state of the 

samples, 𝑥𝑡 , and covariance matrix 𝐶𝑡 = 𝐶𝑡(𝑥0, 𝑥1, … , 𝑥𝑡). 
The challenging issue regarding the adaption is how the 

covariance of the proposed distribution depends on the 

entire chain. The covariance matrix affects the deviation of 

the next point from the actual point and plays an important 

role in the performance of the Metropolis algorithm. Haario, 

Saksman et al. (2001) proposed a covariance matrix as 

follows: 

𝐶𝑡 = 𝑠𝑑 𝑐𝑜𝑣(𝑥0, 𝑥1, … , 𝑥𝑡) + 𝑠𝑑 𝜀 𝑰𝒅 (3) 

where d is the dimension of the random variable, 𝑠𝑑  is a 

scaling parameter and is proposed to be a basic approximate 

as 𝑠𝑑 = 2.42/𝑑, 𝜀 is a positive constant that can be very 

small and 𝑰𝒅 is a d-dimensional identity matrix. In general, 

the definition of the empirical covariance matrix for the 

samples (𝑥0, 𝑥1, … , 𝑥𝑡)  is: 

𝑐𝑜𝑣(𝑥0, 𝑥1, … , 𝑥𝑘) =
1

𝑘
(∑𝑥𝑖𝑥𝑖

𝑇

𝑘

𝑖=0

− (1 + 𝑘)�̅�𝑘�̅�𝑘
𝑇) (4) 

where �̅�𝑘 = 1/(1 + 𝑘)∑ 𝑥𝑖
𝑘
𝑖=0 , which can be obtained 

using Eq. (3). The covariance matrix at step t+1 (𝐶𝑡+1) 
satisfies the following recursion equation as: 

𝐶𝑡+1 =
𝑡 − 1

𝑡
𝐶𝑡 +

𝑠𝑑 
𝑡
(𝑡 �̅�𝑡−1 �̅�𝑡−1

𝑇 − (𝑡

+ 1) �̅�𝑡−1 �̅�𝑡−1
𝑇 ) + 𝜀 𝑰𝒅 

(5) 

Covariance matrix 𝐶𝑡+1  can be calculated at small 

computational cost. Because the adaptive Metropolis 

algorithm generates the candidate point according to the 

overall history, this algorithm is non-Markovian. Haario et 

al. (2001) showed that this algorithm has the correct ergodic 

properties and can converge to correct the target 

distribution. 

 

 

4. Proposed method 
 

In this section, the proposed method to evaluate the 

failure of probability is describe. MGGP is used as a 

surrogate model to approximate the exact limit state 

function. The method employs adaptive Metropolis 

algorithm to generate the training population. The main 

steps of the proposed method are as follows: 

1. In the first step of implementation of GP, n input-output 

pairs are required as the initial population. These 

samples are randomly generated according to the PDF 

of input variable x and their limit state function is 

evaluated.  

2. The sample set is then divided into the learning and 

validation. The learning subset is used to train the 

MGGP model. The validation subset is used to evaluate 

the accuracy of the models generated for sampling 

which are not used for training. In order to achieve a 

reliable MGGP model, several combinations of training 

and validation data set are employed. This step aims to 

determine the main parameters of MGGP. The number 

of learning data set can be considered as 80% of 

population and 20% can be used for validating. After 

determining the parameters, both the learning and 

validation subsets are used for construction of the 

MGGP model and are called training data.  

3. Computation of an MGGP model based on the training 

data using the GPTIPS toolbox (Searson, Leahy et al. 

2010). This open-source toolbox is widely used for GP 

reference efforts.  

4. Evaluation of the performance of the MGGP 

constructed in step 3 is carried out using the correlation 

coefficient (R), mean absolute error (MAE) and root 

mean square error (RMSE). R, MAE, and RMSE are 

defined as follows: 

𝑅 =
∑ (𝑇𝑖 − �̅�𝑖)(𝑃𝑖 − �̅�𝑖)
𝑁
𝑖=1

√∑ (𝑇𝑖 − �̅�𝑖)
2  ∑ (𝑃𝑖 − �̅�𝑖)

2𝑁
𝑖=1

𝑁
𝑖=1

 
(6) 

𝑀𝐴𝐸 =
∑ |𝑇𝑖 − 𝑃𝑖|
𝑁
𝑖=1

𝑁
 (7) 

𝑅𝑀𝑆𝐸 = √
∑ |𝑇𝑖 − 𝑃𝑖|

2𝑁
𝑖=1

𝑁
 (8) 

where 𝑇𝑖  and 𝑃𝑖  are the observed and predicted values, 

respectively, and N is the number of samples. 

5. After constructing the MGGP model, the failure 

probability can be estimated using MCS or any 

simulation method with a variance reduction technique. 

First, the MCS sample set  𝑖 = 1,2, … , 𝑛𝑀𝐶𝑆  is 

generated. Next, using GPTIPS, the values of the limit 

state function at the samples are evaluated. The 

probability of failure can then be calculated as follows: 

𝑝𝑓 ≅ �̂�𝑓 =
𝑛𝐻≤0
𝑛𝑀𝐶𝑆

 (9) 

where 𝑛𝐻≤0  is the number of samples with limit state 

functions that are null or negative.  

6. The initial population set and MGGP model are 

updated. A new point , 𝑥∗ , is generated using the 

adaptive Metropolis algorithm and the true limit state 

function on the generated point is calculated. The 

distribution is considered as multivariate normal 

distribution with center at the current state of the 

samples, 𝑥𝑡 . Next, return to step 2. 

7. Repeat steps 2-6 until the failure probability obtained 

satisfies convergence as follows: 

|
pf
(k)
− pf

(k−1)

p
f
(k)

| < ε (10) 

where 𝑝𝑓
(𝑘)

 is the present estimation and 𝑝𝑓
(𝑘−1)

 is the 

previous value of failure probability. Threshold 𝜀 can be 

chosen as a value between 10−4 and 10−1. 
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Table 1 Proposed ranges of parameters used in MGGP 

algorithm 

parameter ranges 

Population size 200-1000 

Number of generations 500-1000 

Maximum number of genes allowed in a 

model 
8-20 

Maximum tree depth 3-6 

Tournament size 
10% of population 

size 

Crossover probability 0.7-0.9 

Low-level crossover 0.6-0.9 

High-level crossover 0.15-0.5 

Mutation probability 0.1-0.2 

Sub-tree mutation 0.5-0.9 

Substituting input terminal with another 

random terminal 
0.05 

Gaussian perturbation of randomly selected 

constant 
0.05 

Ephemeral random constant [-10 10] 

 

 

4.1 Implementation issues 

 
GPTIPS toolbox and other subroutines in MATLAB are  

used to estimate the failure probability by MGGP. Different 

parameters are involved in MGGP applications. The number 

of generations, population size, and maximum allowable 

genes in each individual, and maximum tree depth play 

important roles in accurately constructing a MGGP model. 

The number of generations determines the number of levels 

run in MGGP before termination and the number of models 

generated is determined by the population size. In general, 

an increase in these parameters increases the accuracy of 

the model. A MGGP model with high parameter values, 

especially for 𝐺𝑚𝑎𝑥 , can more accurately predict a 

nonlinear complex system; however, the risk of over-fitting 

may increase.  

To avert over-fitting in the proposed method, a testing 

subset is used. GPTIPS includes a number of mechanisms 

intended to mitigate this; however, in early iterations where 

the number of samples are few relative to the number of 

variables, it is strongly recommended to assign a moderate 

number of generations. Configuration parameters exist in 

addition to these parameters. Table 1 lists the parameters 

used in MGGP and their proposed ranges. These parameters 

can be assigned by considering the complexity of problem 

and after trial-and-error. To obtain consistent data division, 

it is better to combine several training and testing subsets; 

however, in this study, these subsets were considered to be 

unchanged during the running of the algorithm. Of the total 

data, 80% were applied for training and the rest data for 

testing. 

5. Numerical examples 
 

To illustrate the performance of the proposed method, its 

results were compared with the results of five examples 

from previous studies of other surrogate models. The first 

three examples were chosen to illustrate method efficiency 

and each have two random variables. The forth example is a 

system with a moderate number of non-random variables. 

The last example is a truss structure with an implicit limit 

state function. 
 

5.1 Example 1: Two random variable problem 
 
The first example featured an explicit limit state 

function with two random variables. This example was 

tested by Echard, Gayton et al. (2013). The limit state 

function is as follows: 

𝐻(𝑥1, 𝑥2) = 0.5(𝑥1 − 2)
2 − 1.5(𝑥2 − 5)

3 − 3 

where 𝑥1 and 𝑥2 are assumed to have a standard normal 

distribution.  

The failure probability obtained by MCS with 108 

samples was 2.873×10-5. In the proposed method the 

MGGP surrogate model was constructed with a total of 20 

calls, 15 as the step number of the Metropolis algorithm as 

the initial population and 5 as the number of added samples 

required by the proposed method. The starting point and 

samples generated by the adaptive Metropolis algorithm are 

shown in Fig. 4.  

These samples were evaluated at the origin limit state 

function and were divided into training and testing subsets. 

The training subset was used to learn and construct the 

MGGP model using GPTIPS. The parameters required to 

define the MGGP structure were in range determined by 

Table 1.  

In this example, the number of generations was 200, 

population size was 200 and 𝐺𝑚𝑎𝑥  was 8. Other 

parameters were assigned as default values in GPTIPS. The 

accuracy of the model was evaluated by calculating R, 

MAE and RMSE using the testing subset. To investigate the 

effect of 𝐺𝑚𝑎𝑥 on the accuracy of the MGGP model, four 

configurations at 𝐺𝑚𝑎𝑥 = 2, 4, 6 and 8 were trained based 

on the aforementioned samples.  

In order to investigate the effect of parameters, the 

normalized failure probability is defined as the ratio of 

exact Pf which is obtained from MCS to Pf obtained from 

the proposed method. Fig. 5 shows the normalized failure 

probability obtained by each model. It can be seen that the 

accuracy increased as 𝐺𝑚𝑎𝑥 increased. When the value for 

𝐺𝑚𝑎𝑥 was low, it was necessary to increase the number of 

generations and population size to construct a model 

offering reasonable accuracy. The results are summarized in 

Table 2. As seen, the number of calls to the origin limit state 

function, Ncall, was less than for the other surrogate models 

and the predicted failure probability was very accurate.  

An important method for evaluation of the capabilities 

of the surrogate models is to determine whether or not the 

predicted values are close to the limit state function. Fig. 6 

shows the exact limit state function and the predicted values 

using the MGGP model. As seen, the predicted values are 

very accurate. 
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Fig. 4 The training subset generated by the proposed 

method 

 

Fig. 5 The effect of  𝐺𝑚𝑎𝑥  

 

Fig. 6 The exact limit state function and the predicted 

value in Example 1 

 

Table 2 Results of failure probability in Example 1 

Method Ncall Pf 

MCS 108 2.873×10-5 

Proposed method 15+5 2.873×10-5 

Adaptive Kriging + IS 19+7 2.86×10-5 

IS 19+104 2.86×10-5 

FORM 19 4.21×10-5 

Table 3 Failure probability, Example 2 

Method Ncall Pf 

MCS 108 8.9×10-5 

Proposed method 130+22 8.8×10-5 

Au and Beck 300+500 6.71×10-5 

Dai et al. 500+500 7.21×10-5 

Changcong et al. 106+642 7.89×10-5 

 

 

Fig. 7 The training samples in Example 2 

 
 
5.2 Example 2: Series system with two design points 

 
The second example is a series system using two 

explicit performance functions. This example has also been 

investigated in (Au and Beck 1999, Dai, Zhang et al. 2012, 

Changcong, Zhenzhou et al. 2015). This system has two 

standard normal distributed variables, 𝑥1 and 𝑥2, and the 

limit state function is defined as: 

𝐻1(𝑥1, 𝑥2) = 3 − 𝑥2 + 𝑒𝑥𝑝 (−
𝑥1
2

10
) + (

𝑥1
5
)

4

 

𝐻2(𝑥1, 𝑥2) = 8 − 𝑥1 𝑥2 

𝐻(𝑥1, 𝑥2) = min (𝐻1, 𝐻2) 

This performance function is illustrated in Fig. 7. The 

design points were (0, 4) and (2.83, 2.83). Comparison of 

the results from the examples and those obtained by the 

proposed method are shown in Table 3.  

The failure probability estimated by MCS was 8.9×10-5 

from 108 samples. The results show that the proposed 

method was more efficient than the other surrogate models. 

The predicted failure probability was also more accurate 

than the others. This accuracy was achieved by a lower 

number of calls to the origin limit state function.  

 
5.3 Example 3: Four branch series system 
 
This example is a series system with two random 

variables and four branches. It was studied in (Waarts 2000, 

Schueremans and Van Gemert 2005, Schueremans and Van 

Gemert 2005, Echard, Gayton et al. 2011) and is defined as: 
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𝐻(𝑥1, 𝑥2) = 𝑚𝑖𝑛

{
  
 

  
 3 + 0.1(𝑥1 − 𝑥2)

2 −
√2(𝑥12𝑥2)

2

3 + 0.1(𝑥1 − 𝑥2)
2 +

√2(𝑥12𝑥2)

2

(𝑥1 − 𝑥2) + 3√2

(𝑥2 − 𝑥1) + 3√2 }
  
 

  
 

 

where 𝑥1  and 𝑥2  are the standard normal distributed 

random variables. The results are compiled in Table 4.  

The MGGP model was constructed based on a total of 

57 calls, as shown in Fig. 8, among which 40 points were 

used as the initial population generated by adaptive 

Metropolis and 17 points were added during 

implementation of the proposed method. The results show 

that the proposed method was more efficient than the other 

surrogate models. The number of calls required to the origin 

limit state function was lower than for most of the other 

surrogate models, but the failure probability was very 

accurate. 

 

 

Table 4 Results of failure probability in Example 3 

Method Ncall β Pf 

MCS 106 2.618 0.004416 

Proposed method 75 2.618 0.004416 

Adaptive Kriging-

MCS+U 
126 2.618 0.004416 

Adaptive Kriging-MCS 

+EFF 
124 2.619 0.004412 

Directional Sampling 

(DS) 
52 2.61 0.0045 

DS + Response Surface 1745 2.57 0.0050 

DS + Spline 145 2.82 0.0024 

DS + Neural Network 165 2.64 0.0041 

Importance Sampling 

(IS) 
1469 2.58 0.0049 

IS + Response Surface 1375 2.62 0.0045 

IS + Spline 428 2.62 0.0045 

IS + Neural Network 52 2.53 0.0057 

 

 

Fig. 8 Points generated during implementation of the 

proposed method 

Table 5 Results of failure probability for Example 4 

Method Ncall Pf 

MCS 5×106 4.83×10-3 

Proposed method 55+16 4.83×10-3 

Ziha 2500×4 4.87×10-3 

Yuan et al. 200×10 4.53×10-3 

Changcong et al. 95+337 5.01×10-3 

 

 

Fig. 9 Convergence of failure probability in Example 4 

 
 
5.4 Example 4: System with non-normal variables 

 

A plane frame structure, which is a series system with 7 

non-normal variables, was considered. The following limit 

state functions was developed based on virtual work as: 

{
 
 

 
 𝐹𝑟𝑎𝑚𝑒: 𝐻1(𝑿) = 𝑥1 + 2 𝑥3 + 2 𝑥4 + 𝑥5 − ℎ 𝑥6 − ℎ 𝑥7

𝐵𝑒𝑎𝑚: 𝐻2(𝑿) = 𝑥2 + 2 𝑥3 + 𝑥4 + 𝑥5 − ℎ 𝑥7
𝑆𝑤𝑎𝑦: 𝐻3(𝑿) = 𝑥1 + 𝑥2 + 𝑥4 + 𝑥5 − ℎ 𝑥6
𝐻(𝑿) = min(𝐻1(𝑿), 𝐻2(𝑿),   𝐻3(𝑿))

 

where 𝑥1 − 𝑥5  are the plastic moment capacities and 

𝑥6  and  𝑥7  are the loads, which are log normally 

distributed independent variables with the following mean 

values and standard deviations: 𝐸(𝑥𝑖) = 134.9, 𝐷(𝑥𝑖) =
13.49 , 𝑖 = 1,2,3,4,5, 𝐸(𝑥6) = 50, 𝐷(𝑥6) = 15  

and𝐸(𝑥7) = 40, 𝐷(𝑥7) = 12. Parameter ℎ  equalled 5.0. 

This example has been studied in (Žiha 1995, Yuan, Lu et al. 

2013, Changcong, Zhenzhou et al. 2015).  

The results of these studies were compared with those 

from the proposed method in Table 5. The results of Yuan 

show good accuracy, but considering the number of samples, 

the computational cost was high. The estimate obtained 

from the proposed method was more accurate and efficient 

than the others. This estimate was obtained with only 71 

samples, 55 as the initial population and 16 added by the 

adaptive Metropolis algorithm. Fig. 9 shows the number of 

samples versus the failure probability and indicates that the 

estimate converged after 71 samples. This example shows 

the efficiency of the proposed method in problems with 

non-normal variables. 
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Table 6 Results of failure probability for Example 5 

Method Ncall Pf Error (%) 

MCS 106 0.1394 - 

Proposed method 175 0.1390 0.3 

FORM 127 0.0862 38.2 

Rahman and Wei 187 0.1357 2.6 

 

 

Fig. 10 Example 5, 10-Bar truss structure   
 

 

5.5 Example 5: 2D truss structure 
 
This example deals with a 2D truss structure composed 

of 10-bar elements and is shown in Fig. 10. It was selected 

to examine the performance of the proposed method for 

problems with an implicit limit state function. The structure 

layout, member sizes and Young’s modulus are based on 

Rahman and Wei (2006). The random variables were the 

cross-sectional areas of members Ai, i=1,2,…,10. It was 

assumed that Ai is a normally-distributed variable with a 

mean and standard deviation of 16.13×10-4 m2 and 3.23×10-

4 m2, respectively. The material Young’s modulus was 

deterministic and equal to 68.96 GP. The limit state of 

interest was node 4 displacement v4 with a limit value of 

457.2 mm. It is expressed as: 

 

𝐻(𝑥) = 457.2 − 𝑣4 

 

The limit state function is implicit and must be 

evaluated using FE analysis. It was assumed that the 

behavior of the model was linear elastic. 

The failure probability obtained by MCS based on 106 

samples was 0.1394. Fig. 11 shows the convergence of the 

failure probability as the size of the dataset samples 

increases. As seen, the MGGP model was trained using a 

small number of samples with good accuracy and a lower 

number of samples than the other methods (Table 6). 
 

 

6. Conclusion 
 

This paper introduced a method to estimate the failure 

probability of complex systems which is based on multi-

gene genetic programming (MGGP) as a robust variant of 

genetic programming (GP) and Monte Carlo simulation. 

The main advantage of GP is that it is self-parametrizing, so 

constructing the model structure can occur without user 

training, unlike other surrogate models.  

 

Fig. 11 Example 5, failure probability 

 

 

This methodology begins with the generation of initial 

samples by the adaptive Metropolis algorithm which are 

then divided into training and testing subsamples. A MGGP 

model is constructed based on training samples and its 

accuracy is evaluated by testing samples to reduce the risk 

of over-fitting. The MGGP model is an explicit surrogate 

model and an approximation of the original limit state 

function or FE-based structures. Construction of a MGGP 

model requires parameters, four of which play important 

roles. Although these parameters can be obtained through 

trial-and-error, it has been shown that convergence of the 

proposed method does not depend on them.  

Five examples were investigated to illustrate the 

efficiency and accuracy of the proposed method. The results 

show that the models having high MGGP parameters, 

especially for maximum allowable genes, in each individual 

were more accurate; however, the models were 

implemented with parameters in the lower range with 

reasonable computational cost. The results were compared 

with other surrogate models and MCS as the exact response. 

They indicate that the proposed method is very accurate and 

the number of samples required for evaluation of the true 

limit state function is reduced.  
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