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1. Introduction 

 
The rapid development of technology causes that 

modern construction objects have high strength parameters 

with low structural stiffness and low damping coefficient. 

These objects are particularly susceptible to dynamic load 

such as wind. Such structures include among others: tall 

buildings, chimneys, masts, suspended and cable stayed 

bridges and overhead transmission lines. 

Transmission lines are constantly subjected to variable 

wind loads which may gradually lead to the impairment of 

their durability, resulting in the shortened service life. That 

is the huge need to design and construct the transmission 

lines with the respect of wide range of load cases acting on 

these slender structures. This is very important to develop 

the easy and fast methodology for design, taking into 

consideration all loads and uncertainities. Nowadays we see 

the wide development of new materials and solutions to 

increase the conductivity but at the same time we observe 

that conductors' durability is change and require the 

permanent update analysis. Spectral element method seems 

to be such fast and easy tool which fulfills these 

requirements. 

There are some theoretical and experimental researches 

on transmission lines (Wang et al. 1997, Vecchiarelli et al  
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2000, Meynen 2005, Gołębiowska et al. 2015, Dutkiewicz 

2017a). Wind forces cause three main types of conductor 

vibrations: aeolian vibrations with a frequency from 3 to 

150 Hz and amplitudes lower than the conductor diameter, 

galloping with a frequency from 0.1 to 1 Hz and amplitudes 

from ±0.1 to 1 of conductor sag, wake induced vibrations 

with a frequency from 0.15 to 10 Hz and amplitudes from 

0.5 to 80 times the conductor diameter (Gołębiowska and 

Dutkiewicz 2016, 2017a,b, Dutkiewicz 2017b). 

The majority of common wind induced vibrations are 

aeolian vibrations. These vibrations are generated as a result 

of vortices shed in the conductor wake under sustained 

wind of low speed from 1 to 7 m/s – they occur mainly in 

the vertical plane (Dutkiewicz 2017b), Vibrations of 

conductors, both single and in a bundle, form standing 

waves with forced nodes and intermediate nodes located 

along the span at intervals depending on the frequency of 

free vibrations. When the conductor wind flow is laminar, 

alternately shedding vortices are formed in two points of the 

suction zone and make the conductor move perpendicularly 

towards the wind direction. The alternate shedding of 

vortices is regular. As a result, a so-called Karman vortex 

street is formed. When the frequency of the shedding of 

vortices is approximately equal to one of the frequencies of 

free vibrations of a conductor, a ‘lock-in’ phenomenon 

occurs. During this frequency synchronisation, the 

conductor is in the resonance state. Aeolian vibrations occur 

on single conductors and conductors in a bundle. Although 

these vibrations are hardly noticeable due to low amplitude 

values (lower than the conductor diameter), they are very  
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important, since they can lead to fatigue destruction of a 

conductor in points of high stress concentrations. 

Galloping is an aeroelastic self-excitation phenomenon 

characterised by low frequencies and high amplitudes, and 

it refers to single conductors and conductors in a bundle, 

with one or two loops of standing and running waves, or 

their combination in a conductor span. Standing waves may 

have one or more loops (up to 10) over the span length. 

However, a small number of loops is predominant. In most 

cases, galloping is caused by sustained wind of an average 

and high speed (V > 15 m/s), blowing on an asymmetrically 

loaded (e.g. with ice or wet snow) conductor. High 

amplitudes are observed in the vertical plane, whereas the 

frequencies depend on the type of a conductor and 

vibrations (Gołębiowska et al. 2015). Galloping is a typical 

instability caused by the coupling of aerodynamic forces 

which affect the conductor with its vibrations. Conductor 

vibrations change the wind angle of attack on a periodic 

basis. The change of the angle of attack results in a change 

of aerodynamic forces affecting the conductor, which 

consequently changes the conductor response. The first, 

simplified criterion (if a single degree-of-freedom system is 

applied) pertaining to the instability connected with 

galloping was presented by Den Hartog (1932) and 

developed by other researchers (Gołębiowska and 

Dutkiewicz 2018). A precondition for galloping (on the 

basis of the quasi-steady theory) is the presence of negative 

aeroelastic damping in the system. A conductor of a circular 

section cannot gallop due to its geometrical symmetry 

(dCL/dα=0), unless this section is changed. Icing of a 

conductor changes its cross-section, thus it leads to its 

aerodynamic instability. Research works carried out by Den 

Hartog indicate that the aerodynamic instability is the main 

reason for the galloping phenomenon. His research was 

conducted with an assumption that the vertical motion of a 

conductor is predominant, and the effect of torsional and 

horizontal motions can be ignored. Further research proved 

that the torsional motion is an integral part of the galloping 

phenomenon. The effect of a coupled torsional-translational 

motion plays a crucial role in most cases of progressing 

galloping (Luongo et al. 2009).  

These extremely important phenomena described above 

have mobilized the authors of the article to look for 

transmission line vibration solutions using numerical 

methods. Spectral Element Method (SEM) proved to be 

such a method. SEM is a meshing method similar to Finite 

Element Method (FEM), where the approximated element 

shape functions are substituted by exact dynamic shape 

functions obtained from the exact solution of governing 

differential equations. Therefore, a single element is 

sufficient to model any continuous and uniform part of the 

structure. This feature reduces significantly the number of  

 

 

elements required in the structure model and improves the 

accuracy of the dynamic system solution. At the same time, 

there are some drawbacks like the unavailability of exact 

wave solutions for most complex and 2D and 3D structures. 

In these cases, approximated spectral element modelling 

can be used and may still provide very accurate solutions. 

In recent years some researchers were performed with use 

of SEM. The extensive study of the fundamentals and a 

variety of new applications such as composite laminated, 

periodic lattice, damage detection was presented in (Lee 

2004). The wave behaviour in composites and 

inhomogeneous media is studied in (Gopalakrishnan et. al 

2007). Studies related to structural damage detection have 

been developed in (Fabro et al. 2010). Other works using 

wave propagation and SEM to detect damage under the 

presence of structural randomness can also be found in 

references (Flynn et al. 2011, Machado and  Santos 2015, 

Machado et al. 2017). The spectral element method for the 

vibration analysis of a multi-span beam subjected to a 

moving point force was analysed by Boseop et al. (2018). 

An enhanced spectral element model was proposed by Lee 

et al (2017)  for a functionally graded material (FGM) bar 

model in which axial and radial displacements in the radial 

direction are treated by representing the inner FGM layer by 

multiple sub-layers. 
 
 

2. Mathematical model of transmission line 
 

2.1 Beam spectral element subjected to a tensile 
load with structural damping 

 

Considering a simplified cable model, as shown in 

Fig.1, the governing differential equation for the undamped 

free vibration is given by Clough and Penzien (1993) and 

Yu and Soliman (2014): 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
− 𝑇

𝜕2𝑣

𝜕𝑥2
+ 𝜌𝐴

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
= 0 (1) 

For a simply supported beam under axial force the 

natural frequency can be written as (Rao 2008): 

𝜔𝑛 =
𝜋2

𝐿2
√

𝐸𝐼

𝜌𝐴
(𝑛4 +

𝑛2𝑇𝐿2

𝜋2𝐸𝐼
)

1
2

,       𝑛 = 1,2, . .. (2) 

where 𝜌𝐴 is mass per unit length, 𝐸𝐼 the uniform bending 

rigidity, 𝐿  is cable length, 𝑇 is tension force, and 𝑣(𝑥, 𝑡) 

is the cable displacement as a function of the position 𝑥 

and time 𝑡. 

The undamped Euler-Bernoulli beam equation of 

motion subjected to axial force and under bending vibration 

is governed by Eq. (1).  Fig. 2 shows an elastic two-node  

 

Fig. 1 Analysed model 
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Fig. 2 Two-node spectral element 

 

 

element with a uniform rectangular cross-section subjected 

to an axial force, where the properties are assumed to be 

deterministic variables. A structural internal damping is 

introduced into the beam formulation by adding into 

Young´s modulus weighted by a complex damping 

factor 𝑖𝜂, 𝑖 =  √−1, 𝜂 is the hysteretic structural loss factor, 

to obtain 𝐸 = 𝐸(1 + 𝑖𝜂). 

By considering a constant coefficient a displacement 

solution can be assumed of the form (Dutkiewicz and 

Machado 2019 a,b): 

𝑣(𝑥, 𝑡) = 𝑣0𝑒−𝑖(𝑘𝑥−𝜔𝑡) (3) 

where 𝑣0 is a amplitude, 𝜔 is the frequency and 𝑘 is the 

wave number. Substituting it into Eq. (1), the dispersion 

equation is given by: 

𝑘4𝐸𝐼 +  𝑘2𝑇 − 𝜔2𝜌𝐴 = 0 (4) 

There are two distinct wave modes in the positive 

direction (𝑘2), which is positive-going waves with wave 

numbers given as: 

𝑘1 = √−
𝑇

2𝐸𝐼
+ √(

𝑇

2𝐸𝐼
)

2

+
𝜌𝐴𝜔2

𝐸𝐼
 (5) 

𝑘2 = −√−
𝑇

2𝐸𝐼
− √(

𝑇

2𝐸𝐼
)

2

+
𝜌𝐴𝜔2

𝐸𝐼
 (6) 

The general solution for the Euler-Bernoulli beam 

spectral element subjected to axial load of length 𝐿, can be 

expressed in the form: 

𝑣(𝑥, 𝜔) = 𝑎1𝑒−𝑖𝑘𝑥 + 𝑎2𝑒−𝑘𝑥 + 𝑎3𝑒−𝑖𝑘(𝐿−𝑥)

+        + 𝑎4𝑒−𝑘(𝐿−𝑥) = 𝒔(𝑥, 𝜔)𝒂 
(7) 

where 

𝒔(𝑥, 𝜔) = {𝑒−𝑖𝑘𝑥 , 𝑒−𝑘𝑥, 𝑒−𝑖𝑘(𝐿−𝑥), 𝑒−𝑘(𝐿−𝑥)} 

𝒂(𝑥, 𝜔) = {𝑎1, 𝑎2, 𝑎3, 𝑎4}𝑇  

(8) 

 

(9) 

The spectral nodal displacements and slopes of the beam 

element are related to the displacement field at node 1 (x=0) 

and node 2 (x=L), by 

d=[

𝑣1

𝜙2
𝑣2

𝜙2

] = [

𝑣(0)

𝑣′(0)

𝑣(𝐿)

𝑣′(𝐿)

] (10) 

By substituting Eq. (7) into the right-hand side of Eq. 

(10) and written in a matrix form gives 

d=[

𝑠(0, 𝜔)

𝑠′(0, 𝜔)

𝑠(𝐿, 𝜔)

𝑠′(𝐿, 𝜔)

] 𝒂 = 𝑮(𝜔)𝒂 (11) 

where 

𝑮(𝜔) = 𝐝 = [

1
−𝑖𝑘

𝑒−𝑖𝑘𝐿

−𝑖𝑘𝑒−𝑖𝑘𝐿

1
−𝑘

 𝑒−𝑘𝐿

  −𝑘𝑒−𝑘𝐿

  𝑒−𝑖𝑘𝐿

    𝑖𝑘𝑒−𝑖𝑘𝐿

1
𝑖𝑘

       𝑒−𝑘𝐿

          𝑘𝑒−𝑘𝐿

1
𝑘

] (12) 

The frequency-dependent displacement within an 

element is interpolated from the nodal displacement vector 

d, by eliminating the constant vector a from Eq. (7) and 

using Eq. (11) it is expressed as: 

𝑣(𝑥, 𝜔) = 𝒈(𝑥, 𝜔)𝒅 (13) 

where the shape function is 

𝒈(𝒙, 𝜔) = 𝒔(𝒙, 𝜔)𝑮−1(𝜔) = 𝒔(𝒙, 𝜔)𝚪(𝜔) (14) 

The dynamic stiffness matrix for the spectral beam 

element under axial tension can be determined as 

𝑺(𝜔) = 𝑲(𝜔) − 𝜔2𝑴(𝜔) (15) 

where 

𝑲(𝜔) = ∫(𝐸𝐼𝒈′′(𝑥)𝑇𝒈′′(𝑥) + 𝑇𝒈′(𝑥)𝑇𝒈′(𝑥))𝑑𝑥

𝐿

0

 (16) 

𝑴(𝜔) = 𝜌𝐴 ∫ 𝒈(𝑥)𝑇𝒈(𝒙)𝒅𝒙

𝐿

0

 (17) 

where the prime ( ' ) denotes the derivative with respective 

to the spatial coordinate x. By solving the integral, the 

dynamic stiffness matrix is 

𝑺(𝜔) =
EI

∆
[

𝑠11

𝑠𝑦𝑚

𝑠12
𝑠22

𝑠13
𝑠23
𝑠33

𝑠14
𝑠24
𝑠34

𝑠44

] (18) 

where ∆= cos(k L)cosh(k L) − 1 and the components of 

element matrix (Eq.18) are given as 

𝑠11 = −𝑘3(𝑐𝑜𝑠(𝑘𝐿)𝑠𝑖𝑛ℎ (𝑘𝐿) + 𝑠𝑖𝑛(𝑘𝐿)𝑐𝑜𝑠ℎ(𝑘𝐿)) 

𝑠12 = −𝑘2𝑠𝑖𝑛 (𝑘𝐿)𝑠𝑖𝑛ℎ (𝑘𝐿) 

𝑠13 = 𝑘3 (𝑠𝑖𝑛 (𝑘𝐿) + 𝑠𝑖𝑛ℎ (𝑘𝐿)) 

𝑠14 = 𝑘2 (𝑐𝑜𝑠(𝑘𝐿) − 𝑐𝑜𝑠ℎ(𝑘𝐿)) 

𝑠22 = 𝑘(𝑐𝑜𝑠(𝑘𝐿)𝑠𝑖𝑛ℎ(𝑘𝐿) − 𝑠𝑖𝑛(𝑘𝐿) 𝑐𝑜𝑠ℎ(𝑘𝐿)) 

𝑠23 = 𝑘2(𝑐𝑜𝑠ℎ(𝑘𝐿) − 𝑐𝑜𝑠(𝑘𝐿)) 

𝑠24 = 𝑘(𝑠𝑖𝑛 (𝑘𝐿) − 𝑠𝑖𝑛ℎ(𝑘𝐿)) 

𝑠33 = −𝑘3(𝑐𝑜𝑠(𝑘𝐿)𝑠𝑖𝑛ℎ(𝑘𝐿) + 𝑠𝑖𝑛(𝑘𝐿)𝑐𝑜𝑠ℎ(𝑘𝐿)) 

𝑠34 = 𝑘2 𝑠𝑖𝑛(𝑘𝐿) 𝑠𝑖𝑛ℎ(𝑘𝐿) 

𝑠44 = 𝑘(𝑐𝑜𝑠(𝑘𝐿) 𝑠𝑖𝑛ℎ(𝑘𝐿) − 𝑠𝑖𝑛(𝑘𝐿) 𝑐𝑜𝑠ℎ(𝑘𝐿)) 

(19) 
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2.2 Beam spectral element subjected to a tensile 
load with aerodynamic and friction damping 

 

As far as structure beam is uniform without any sources 

of discontinuity, it can be represented by a single spectral 

element with very accurate solutions (Doyle 1997). 

However, if there exist sources of discontinuity such as the 

point loads the beam should be spatially discretized into 

spectral elements. Analogous to Finite Element Method 

(FEM) (Zienkiewicz 1991), the spectral elements can be 

assembled to form a global structure matrix system (Lee 

2009). As presented in last section the cable was modelled 

as an equivalent homogeneous Euler-Bernoulli beam with 

constant bending stiffness, subjected to a constant tensile 

load, and assuming hysteretic damping. However, it is 

known that overhead conductors works exposed to wind 

gust, random winds and different weather conditions. Such 

environment can influence the cable vibration. The simple 

cable dynamic model as presented in Eq.1 have been 

frequently applied in the literature. Concerning with the 

aerodynamic damping, which can be associated with the 

energy dissipation due to friction between the vibrating 

conductor and surrounding air, and the conductor self-

damping represented by a linear damping model derived 

from the Kelvin-Voigt constitutive relationship where the 

friction among the conductor wires is related to the 

curvature during bending vibrations, the following 

governing equation is proposed (Matt and Castello 2007) 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
− 𝑇

𝜕2𝑣

𝜕𝑥2
+ 𝜉𝐼

𝜕

𝜕𝑡
(

𝜕4𝑣

𝜕𝑥4
) + 𝛼

𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
 

+ 𝜌𝐴
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
= 0 

(20) 

where ρA is mass per unit length, 𝛼 stands for a viscous-

like aerodynamic damping, E is the Young modulus and ξI 

represents the energy dissipation mechanism associated 

with the inter-strand friction among the wires of a typical 

conductor, 𝜉 is material damping factor. The equilibrium 

equation (20) at frequency domain can be written as: 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
− 𝑇

𝜕2𝑣

𝜕𝑥2
+ 𝜉𝐼

𝜕

𝜕𝑡
(

𝜕4𝑣

𝜕𝑥4
) + (𝑖𝜔𝛼 + 𝜔2𝜌𝐴)𝑣 = 0 (21) 

In this work, beside the dynamic behaviour of the 

conductor we are also interested from the wave propagation 

perspective. By considering a constant coefficient, a 

displacement solution can be assumed in the form of Eq. 

(3). Substituting 𝑣(𝑥, 𝑡)  into Eq. (20), the dispersion 

equation is given by: 

𝑘4𝐸𝐼 − 𝑘2𝑇 + 𝜔𝑘4𝜉𝐼 + 𝜔𝛼 − 𝜔2𝜌𝐴 = 0 (22) 

By solving the Eq. (22) in function of the quadratic term 

of  𝑘2 , there are two distinct wave modes in the positive 

direction with wave numbers expressed as: 

𝑘1 = √−
𝑇

2𝐸𝐼 + 2𝜉𝐼
+ √(

𝑇

2𝐸𝐼 + 2𝜉𝐼
)

2

+
𝛼𝜔 + 𝜌𝐴𝜔2

𝐸𝐼 + 𝜉𝐼
 (23) 

𝑘2 = √−
𝑇

2𝐸𝐼 + 2𝜉𝐼
− √(

𝑇

2𝐸𝐼 + 2𝜉𝐼
)

2

+
𝛼𝜔 + 𝜌𝐴𝜔2

𝐸𝐼 + 𝜉𝐼
 (24) 

The other two distinct wave modes in the negative 

direction, i.e. negative-going waves, having wave numbers 

given by k3 = −k1 and k2 = −k4. The general solution for the 

Euler-Bernoulli beam spectral element subjected to axial 

load and shape function formulation are a similar procedure 

presented in Eqs. (7 - 13), where the shape function has the 

form of Eq.14. 

The global damped dynamic spectral matrix for a 

deterministic system can be described as 

𝑺(𝜔) = 𝑲(𝜔) + 𝑖𝜔𝐶(𝜔) −  𝜔2𝑴(𝜔) (25) 

𝑲(𝜔) , 𝑴(𝜔) are described by Eqs. (16-17), 

respectively, and the damping matrix can be rewritten as 

𝑪(𝜔) = ∫(𝜉𝐼𝒈′′(𝑥)𝑇𝒈′′(𝑥) + 𝛼𝑔(𝑥)𝑇𝑔(𝑥))𝑑𝑥

𝐿

0

 (26) 

or as function of the element mass and stiffness matrices 

as follows: 

𝑪(𝜔) =
𝛼

𝜚𝐴
𝑀(𝜔)

+ ∫(𝜉𝐼𝒈′′(𝑥)𝑇𝒈′′(𝑥)

𝐿

0

+ 𝛼𝑔(𝑥)𝑇𝑔(𝑥))𝑑𝑥 =
𝛼

𝜚𝐴
𝑀(𝜔)

+
𝜉

𝐸
𝐾(𝜔) −

𝜉𝑇

𝐸
∫ 𝑔′(𝑥)𝑇

𝐿

0

𝑔′(𝑥)𝑑𝑥 

(27) 

where the prime ( ' ) denotes the derivative with respective 

to the spatial coordinate x. 
 

 

3. Validation and verification 
 

The article presents a validation analysis in relation to 

the experimental and the simulation model. The essence of 

using computer simulation methods requires determining 

their level of accuracy in relation to direct measurement of 

the actual model. The required level of accuracy of the 

simulation depends on the purposes for which the 

simulation is applied. According to AIAA (1998) and 

ASME (2006) validation and verification are the basic tools 

used to determine the credibility of the used model. 

Validation explains how the model represents reality, while 

verification determines that the implementation of the 

model properly represents the adopted description and 

solutions of the model application. In the validation process, 

the accuracy is referred to the measurement results, in 

verification the accuracy is referred to the pattern obtained 

in the calculation model. Uncertainty and error are the 

reasons that affect the accuracy of results obtained in the 

modelling and simulation process. Uncertainty results from 
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the lack of knowledge or incomplete knowledge about the 

physical characteristics, the analyzed parameter, wrong 

assumptions concerning, for example, the flow of wind 

around the analyzed body with different surface porosity, 

may result from the complexity of the phenomenon, eg 

wind turbulence. Errors can be classified as confirmed and 

unconfirmed (conscious and unconscious). Errors in 

rounding are confirmed errors, while programming errors 

are not anomalous errors. The validation strategy is to 

identify and quantify errors and uncertainties in the 

conceptual and computational model. 

The strategy of model verification is connected with the 

identification and quantification of errors consisting in 

obtaining inappropriate convergence of spatial and temporal 

discretization, convergence of iterations and computer 

programming. The essence of verification consists in a 

detailed analysis of the size of the division grid and the time 

step. With the size of the grid size and the time step 

approaching zero, the discretization error should 

asymptotically reach zero. 

Validation metrics is the subject of interest of many 

researchers. Oberkampf and Trucano (2002) present an 

extensive review of the literature in validation and 

verification (V&V) in computational fluid dynamics (CFD), 

discusses methods and procedures for assessing V&V, and 

develops a number of extensions to existing ideas. The 

review of the development of V&V terminology and 

methodology points out the contributions from members of 

the operations research, statistics, and CFD communities. 

Authors explain that the fundamental strategy of 

verification is the identification and quantification of errors 

in the computational model and its solution. A set of 

guidelines is proposed for designing and conducting 

validation experiments, supported by an explanation of how 

validation experiments are different from traditional 

experiments and testing. A description is given of a 

relatively new procedure for estimating experimental 

uncertainty that has proven more effective at estimating 

random and correlated bias errors in wind-tunnel 

experiments than traditional methods.  

Aeschliman et al. (1995) describe a methodology for 

verification, calibration, and validation (VCV). A novel 

approach to uncertainty analysis is described which can 

both distinguish between and quantify various types of 

experimental error, and whose attributes are used to help 

define an appropriate experimental design for code VCV 

experiments.  

Schwer (2007) presents developed metrics and their 

wave form comparative quantification was demonstrated 

through application to analytical wave forms, measured and 

computed free-field velocity histories, and comparison with 

Subject Matter Expert opinion. 
William et al. (2014) propose a framework for assessing 

validation experiments for computational fluid dynamics 
regarding information content, data completeness, and 
uncertainty quantification. This framework combines two 
concepts: the concept of a strong-sense benchmark for 
validation experiments and the modelling assessment 
procedure referred to as the predictive capability maturity 
method. The validation experiment assessment 
requirements are captured in a table of attributes: 

Experimental Facility, Analog Instrumentation and Signal 
Processing, Boundary and Initial Conditions, Fluid and 
Material Properties, Test Conditions, and Measurement of 
System Responses and four levels of information 
completeness for each attribute.  

William et al. (2006) develop a validation metric that is 

based on the statistical concept of confidence intervals. 

Using this fundamental concept, two specific metrics: one 

that requires interpolation of experimental data and one that 

requires regression (curve fitting) of experimental data. 

Authors discuss how the present metrics are easily 

interpretable for assessing computational model accuracy, 

as well as the impact of experimental measurement 

uncertainty on the accuracy assessment. 

Russell (1997) develops a new set of magnitude, phase, 

and comprehensive error measures to evaluate the 

differences between two functions or test and analytical 

data. The error factors are on the same relative scale and 

have physical interpretations.  

Geers (1984) presents the metric for comparing 

calculated transient response history with its measured 

counterpart. The proposed measure assigns a single 

numerical value to the discrepancy between the two 

histories over a specified comparison period. Computational 

of the measure involves the integration in time of squares 

and products of the calculated and measured histories. 

Representative results are shown for both idealized and 

actual response histories. 

Validation metrics problems were developed also in 

works (Aeschliman and Oberkampf 1998, Barber 1998, 

Benek et al. 1998, Bertin et al. 1993, Bradley 1998, 

Coleman and Stern 1997, Mehta 1996, Sprague and Geers 

2003). 

In the present paper the formulation of the validation 

metrics is proposed as follows (Sprague and Geers 2003, 

Schwer 2007) 

𝜗𝑚𝑚 = (𝑡2 − 𝑡1)−1 ∫ 𝑚2

𝑡2

𝑡1

(𝑡)𝑑𝑡 (28) 

𝜗𝑐𝑐 = (𝑡2 − 𝑡1)−1 ∫ 𝑐2

𝑡2

𝑡1

(𝑡)𝑑𝑡 (29) 

𝜗𝑚𝑐 = (𝑡2 − 𝑡1)−1 ∫ 𝑚

𝑡2

𝑡1

(𝑡)𝑐(𝑡)𝑑𝑡 (30) 

where  𝑚(𝑡)  is the measured history and 𝑐(𝑡)  is the 

simulation history, 𝑡1 < 𝑡 <  𝑡2 is the time span of interest 

for the response history. The amplitude validation metric 

(AVM) is: 

𝑀𝑆𝐺 =  √
𝜗𝑐𝑐

𝜗𝑚𝑚

− 1 (31) 

The AVM is insensitive to phase discepancies and is 

based upon the area under the squared response history. The 

phase validation metric (PVM) is: 
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𝑃 =  
1

𝜋
acos (

𝜗𝑚𝑐

√𝜗𝑚𝑚𝜗𝑐𝑐

) (32) 

PVM is insensitive to magnitude differences. The 

comprehensive validation metric is: 

𝐶𝑆𝐺 = √𝑀𝑆𝐺
2 + 𝑃2 (33) 

In the article, the validation process consisted in 
determining the validation coefficients and checking 
whether these coefficients are smaller than the assumed 
level of 30% in full range of analysed domain (Geers 1984). 
Checks were carried out for different stiffness and tension 
values within the fixed time range. During the analysis, also 
the damping factors were changed. In the work, the 
verification process was carried out for different grid 
densities – spectral element’s length.  

 
 

4. Numerical results  
 

The first step of the analysis is to validate the proposed 
model. It is compared with the analytical solution and 
experimental tests. In both case, the conductor has simply 
supported ends with the same properties of the experimental 
tests, conductor with diameter of D = 18 mm, the weight 
per unit length of 0.656 kg/m, density of 2580 kg/m3, 
relative Young’s modulos of 0.10 GPa, and the span length 
of L = 0.7 m. The aspect ratio of the conductor was about 
38.89. 

To compare the numerical model with analytical natural 
frequency solution described in the Eq. (2) it is required to 
estimate the natural frequencies from the FRF obtained 
through the SEM. Analysis was made for different length of 
the spectral element: L1=[0.035, 0.07, 0.175]m. All 10 
frequencies corresponding to the theoretical analysis were 
obtained for L1 = 0.035 (Table 1), for L1 = 0.07 the tenth 
natural frequency was omitted, for L1 = 0.175, the fourth 
and eight natural frequencies were omitted (Fig. 3) 

The frequency response functions (FRF) and change of 
the dispersion curve (k) with tension force T=1000 kN and 
T=0.10 kN are showed in Fig. 4.  For the higher tension 
force, T=1000 kN, the dispersion curve of the conductor 
presents a straight line generating a non-dispersive wave. 
The total natural frequencies were five for the range from 0 
Hz to 1500 Hz. By decreasing of the tension force to 
T=0.10 kN the conductor changes the wave behaviour. The 
waves propagate dispersively and the number of natural 
frequency increased to twenty one in the frequency range 
from 0 Hz to 1500 Hz. Figs. 5 and 6 present the dispersion 
diagram for the conductor model with hysteretic and 
aerodynamic damping and different values of tension force. 
The wave numbers are calculated according to Eq. (5), for 
the tension force T = [0.1, 1, 10, 100, 1000, 10000] kN. 

 
 

 
Fig. 3 Natural frequency identification for different length 

L1 of spectral element, A=254.34mm2, T=0.1 kN,η=0.01, 

(a) simulation 1 L1=0.175m, (b) simulation 2 L1=0.07m, 

(c) simulation 3 L1=0.035m 
 

 

(a) 

 

(b) 

Table 1 Comparison of 10 firsts analytical natural frequency with resonance picks obtained in the simulations for different 

length L1 of spectral element, A=254.34mm2, T=0.1 kN,η=0.01, simulation1 L1=0.175m, simulation2 L1=0.07m, simulation 3 

L1=0.035m 

𝛚𝐧 (𝐇𝐳) 3,98 12,65 26,89 46,78 72,34 103,58 140,49 183,08 231,35 285,30 

Simulation 1 4 12,6 26,9 - 72,4 103,7 140,7 - 231,6 285,9 

Simulation 2 4 12,6 26,9 46,8 72,3 103,6 140,8 183,3 232,9 - 

Simulation 3 4 12,6 26,9 46,8 72,4 103,9 140,2 183,5 231,8 285,9 
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(c) 

 

(d) 

Fig. 4 FRFs and hysteretic dispersion curves, (a), (c) for 

tension force of T=1000 kN, (b), (d) for tension force of 

T=0.1kN 

 

 

 

The dispersion diagram of the conductor with a tension 

force of T = 0.10 kN, different material damping ratio ξ and 

aerodynamic damping α are shown in Figs. 7 and 8. 

Figs. 9 (a) and (b) show the FRF functions for the 

natural vibration of the conductor for different value of 

aerodynamic damping α and fixed values of material 

damping ratio ξ. Figs. 9 (c) and (d) show the FRF functions 

for different value of material damping ratio ξ and fixed 

 
(a) 

 
(b) Zoom 

Fig. 5 Dispersion curves for hysteretic damping and 

different tension values, T = [0.1, 1, 10, 100, 1000, 10000] 

kN. 

 

 

values of aerodynamic damping α, and Figs. 9 (e)and (f) for 

different value of hysteretic loss factor η. 

The presented analysis shows the impact of the 

aerodynamic damping and hysteretic loss factor on 

frequency response functions. The change of aerodynamic 

damping causes the phase discepancies and hysteretic loss 

factor has the impact on values of amplitudes. 

  

(a) (b) Zoom 

Fig. 6 Dispersion curves for aerodynamic damping and different tension values, T=[0.1, 1, 10, 100, 1000, 10000] kN. 
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(a) (b) Zoom 

Fig.7 Dispersion curves for tension force T=0.1 kN, different value of aerodynamic damping α and fixed material damping 

ratio ξ 

  
(a) (b) Zoom 

Fig.8 Dispersion curves for tension force T=0.1 kN, different value of material damping ratio ξ and fixed aerodynamic 

damping α 

  
(a) (b) Zoom 

  
(c) (d) 
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(e) (f) 

Fig. 9 FRF functions for the natural vibration of the conductor, aerodynamic damping, T=0.1 kN, (a),  (b) for different 

value of aerodynamic damping α and fixed values of material damping ratio ξ, (c), (d) for different value of material 

damping ratio ξ and fixed values of aerodynamic damping α, (e), (f) for different value of hysteretic loss factor 

 

 

 

(a) (b) 

Fig. 10 Measuring set-up, (a) camera recording system, (b) marking of measuring points 

 

  

(a) (b) 

Fig. 11 Comparison of FRF functions for the natural vibrations, tension T=0.1 kN, obtained in experiment and in numerical 

simulations of the conductor for different value of material damping ratio ξ 
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(a) 

 
(b) Zoom 

Fig. 12 Comparison of FRF functions for the natural 

vibrations, tension T=0.1 kN, obtained in experiment and 

in numerical simulations of the conductor for different 

value of hysteretic loss factor η, aerodynamic damping α 

and material damping ratio ξ. Best fit function achieved 

for η=0.02, α=0.1, ξ=10e-5 
 
 

5. Experiments and results 
 

The purpose of the experiments was to analyze the 

natural vibrations caused by the unit impulse force. Natural 

vibrations were investigated in the test section of 

dimensions 500 x 700 -2000mm. The flexible conductor 

model had a parameters as described in the section 4 of this 

paper. The conducting part was covered with a flexible 

rubber skin. The conductor was axially tensioned with a 

tension of 0.1 kN. For the purpose of vibration 

measurement the Digital Image Correlation (DIC) method 

was applied with use of CCD (Charge Couple Device) 

camera of the GOM Pontos 12M system (Fig.10a). In this 

case the dots with reflected layer were put on the conductor 

(Fig.10b). Dimensions of markers were 2mm and calculated 

using the geometrical features of DIC system and test 

details of dimensions of measurements. Testing procedure 

was designed to check the correctness of PONTOS 12M for 

detection of acceleration components in 3D measurements. 

The measurement system included two cameras, working 

stations and calibration equipment. The CCD camera 

worked at the resolution of 4096x3072 pixels and the 

sampling rate was equal to 256 Hz. 

Figs.11-13 show the comparison of FRF functions for 

the natural vibration obtained in experiment and in 

 
(a) 

 
(b) Zoom 

Fig. 13 Comparison of FRF functions for the natural 

vibrations, tension T=0.1 kN, obtained in experiment and 

in numerical simulations in the case of hysteretic damping 

only, for different value of hysteretic loss factor η 
 

 

Fig. 14 Time history natural vibrations obtained in the 

experiment and in the simulation for the parameter of 

damping: L1=0.035, η=0.02, α=0.1, ξ=10e-5 

 

numerical simulations of the conductor for different value 

of hysteretic loss factor η and with aerodynamic damping 

(Fig.11), for parameters of best fit function: η=0.02, α=0.1, 

ξ=10e-5 (Fig.12) and for different value of hysteretic loss 

factor η (Fig. 13). 

Fig. 14 presents the time history natural vibrations 

obtained in the experiment and in the simulation for the 

parameter of damping: η=0.02, α=0.1, ξ=10e-5.    
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Fig. 15 Zoom of time history natural vibrations obtained in the experiment and in the simulation for the parameter of 

damping η=0.02, α=0.1, ξ=10e-5 and for different length of spectral element (a)-(j) 
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Fig. 16 Validation metrics for experimental and simulation 

results for different spectral element length, damping 

parameters η=0.02, α=0.1, ξ=10e-5 
 

Table 2 Validation metrics for experimental and simulation 

results for different spectral element length, damping 

parameters η=0.02, α=0.1, ξ=10e-5. 

L1 , [m] 
Natural vibrations 

MSG P CSG 

0.035 0,269216 0,109515 0,290639 

0.039 0,368617 0,137097 0,393286 

0.0875 0,414985 0,232857 0,475852 

 

 

Fig. 15 presents the time history natural vibrations 

obtained in the experiment and in the simulation for the 

parameter of damping η=0.02, α=0.1, ξ=10e-5 and for 

different length of spectral element. 

Fig. 15 Zoom of time history natural vibrations obtained 

in the experiment and in the simulation for the parameter of 

damping η=0.02, α=0.1, ξ=10e-5 and for different length of 

spectral element (a)-(j) 

The results of validation metric analysis are shown in 

Fig.16 and in Table 2. As the validation process consisted in 

determining the validation coefficients and checking 

whether these coefficients are smaller than the assumed 

level of 30%, this criterion was fulfilled by simulation 

parameters of L1=0.035, η=0.02, α=0.1, ξ=10e-5. 
 

 

6. Conclusions 
 

In the paper the analysis of natural vibrations of the 

transmission line with use of spectral elements and the 

laboratory experiments was performed. Investigations were 

carried out on transmission line with the span of 0.7 m. 

Particular attention was paid to the hysteretic and 

aerodynamical damping analysis. Sensitivity of the wave 

number was performed for changing of the tension force 

and damping parameters. 

The numerical model was made using the Spectral 

Element Method. Experimental data from measurements 

was used in the estimation process, frequency response 

functions and time history dependences were compared for 

experiment and simulation results. In the spectral model, for 

various parameters of damping and tension force, the 

system response was checked and compared to the results 

of the vibration accelerations obtained in the measurement. 

The frequency analysis was carried out. The credibility of 

the model was assessed through a validation process carried 

out by comparing graphical plots of FRF functions and 

numerical values expressing differences in acceleration 

amplitude, phase angle differences and differences in 

acceleration and phase angle total values. The validation 

process consisted in determining the validation coefficients 

and checking whether these coefficients are smaller than the 

assumed level of 30%. 

The next aspect constituting the purpose of this article 

was to present the wide possibilities of modelling and 

simulation of slender conductors using the Spectral Element 

Method. The obtained results show very good accuracy in 

the range of both experimental measurements as well as 

simulations analysis. The paper emphasizes the ease with 

which the sensitivity of the cable and its response to 

changes in density of spectral mesh division, tensile force or 

damping parameters can be studied. 

In the paper, a very important issue of vibration of the 

actual transmission line was performed. In the literature, 

there are not too many studies on modern constructions of 

high-voltage transmission lines under real working 

conditions. It is worth noting that the presented results bring 

closer the producers and users of power transmission lines 

for the application of more durable cables than those 

currently used and more resistant to fatigue damage being 

the main cause of cable breakages and transmission 

infrastructure. 
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