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1. Introduction 
 

The applicable span of early modern cable-stayed 

bridges ranged from 200 to 550 m. Advancements in 

engineering materials, computational theory, and 

construction methods, as well as increased demand for 

longer bridge spans, have driven the span of today’s cable-

stayed bridges well above this range (Virlogeux 1999). The 

Stromsund Bridge (Sweden), with a main span of 183 m, 

was opened to traffic in 1956; by 2012, the Russky Bridge 

(Russia) was completed with a main span length of 1,104 m 

(Fig. 1). In just over half a century, the span of cable-stayed 

bridges has increased more than five-fold while the span of 

suspension bridges has only increased by 55% (Gimsing 

2005). 

After the span of cable-stayed bridges broke 1,000 m, 

modern bridge engineers became confident that the span of 

cable-stayed bridges could be continually further increased. 

In the past 30 years, international bridge experts have 

extensively researched super-long span cable-stayed 

bridges. Leonhardt and Zeller (1991), for example, 

proposed an 1,800 m span conceptual design. Japanese 

experts proposed the Honshu-Shikoku 1,400 m span cable-

stayed bridge (Nagai et al. 2004). Chinese experts 

investigated the feasibility of developing 2,000 m span 

cable-stayed bridges based on the Sutong Bridge (Cao et al. 

2009) and 1,500 m multi-span cable-stayed bridges as 

replacements for suspension bridge anchorages in deep 

water (Tang 2014). These and other valuable contributions 

to the literature raise several questions: to what length can 

the span of cable-stayed bridges be theoretically increased 
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Fig. 1 Span evolution in modern cable-stayed bridges 
 

 

based on the materials used today? What is the possible 

limit and which factors determine this limit? 

Many researchers have studied the span limit of cable-

stayed bridges differently based on the assumption that the 

limiting factor in the bridge span is the allowable stress 

through analytical methods. Wu (1996), Wang (2002), 

Lewis (2012), Zhang (2013), and Tang (2017) considered 

the maximum possible span length of a steel cable-stayed 

bridge to be about 2,900 m, 1,820 m, 7,000 m, 2,250 m, and 

5,200 m, respectively. Their theoretical analysis models, 

however, contained oversimplified and impractical 

assumptions such as ignoring the cable sag, representing the 

cables as an equivalent cable “curtain”, keeping the girder’s 

cross-section constant, considering the limiting length 

determined by a non-load carrying cable, and regarding a 

stay cable of reasonable length as a part of a stay cable with 

the theoretical limiting length. Moreover, the effect of 

continuous cable distribution and different types of cable 

system were not taken into account in most studies on the 

maximum span length determined by the girder due to 
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Fig. 2 Force diagram of infinitesimal cable element 

 

 
allowable stress. Hence, it is necessary to develop an 
improved analytical solution to estimate the span limit. The 
present study was conducted to determine the reasonable 
theoretical analysis for the span limit of cable-stayed 
bridges. 

Over the 5,000-year history of engineering structures, 
bridge spans have been determined mainly by the strength-
to-density ratio of available materials. The stiffness and 
stability of cable-stayed bridges can be improved by 
changing the cross-sectional form and the spatial 
distribution of materials or other technical measures (Xiao 
2016). The theoretical maximum span length of cable-
stayed bridges can be determined based on material 
strength-to-density ratios (Gimsing and Georgakis 2012, 
Sun et al. 2016). In addition to the theoretical span limit of 
cable-stayed bridges and its relationship to the strength-to-
density ratio of materials, in this study, the span limit of 
cable-stayed bridges as determined by practical engineering 
information was defined as the “engineering” span limit. 
Factors affecting the engineering span limit were analyzed 
in terms of material strength. Further knowledge regarding 
the stiffness and stability (e.g., aerodynamic stability) of 
cable-stayed bridges also merits consideration, but these 
factors are not discussed in detail here as the focus of this 
study was only the span limit based on material strength. 

 

 

2. Theoretical span limit of cable-stayed bridges 
 

2.1 Theoretical span limit determined by the stay 
cable 

 
The external cable at midspan serves as the research 

object under the assumption that the external cable 
projection is one-half of the main span of a super long-span 
cable-stayed bridge. The equilibrium condition of the 
infinitesimal cable element with a horizontal projection of 
dx is shown in Fig. 2. 

Equilibrium is defined by ΣX = 0 

H H H() d )(F xx F x F= + =
 

(1) 

where FH(x) is the horizontal component of cable force of 
the infinitesimal cable element. 

Expressing vertical equilibrium from ΣY = 0 yields 

V V( ) d ( d )F x q s F x x+ = +
 

(2) 

where Fv(x) is the vertical component of cable force of the 

infinitesimal cable element and q the vertical load intensity 

along the cable curve. 

The equilibrium Eqs. (1) and (2) can be expressed as 
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Eq. (3) is rewritten as 
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After adding the integral, the result is 

1

H

d
sinh

d

y q
x C

x F

 
= + 

   

(5) 

Under the theoretical span limit condition, the tangent at 
the lower end point of the cable is horizontal, in which case 
the vertical load would induce an infinitely large force in 
the stay cable (Gimsing and Georgakis 2012); that is, with 
the coordinate system origin at the lower end of the cable, 
y’(0) = 0; C1 = 0; thus 

H
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(6) 

Introducing y(0) = 0 leads to C2 = −FH/q so that Eq. (6) 

can be rewritten as follows 

H
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According to Eq. (5) and C1 = 0, the derivative function 

follows 

H

d
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d
x

y q
x

x F
= =

 

(8) 

where φx is the angle between the tangent line of the curve 
and the ground. 

The cable force FT at the upper supporting point with 

the maximum span length (x = amax) is 

max max

2

T H Hsec 1 (tan )x a x aF F F = == = +
 

(9) 

where amax is the theoretical maximum horizontal projection 
of the external cable. 

Inserting Eq. (8) into Eq. (9) yields the equation 

T H max

H

cosh
q

F F a
F

 
=  

   

(10) 

The related conditions are given as 
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Fig. 3 Horizontal component of the force diagram of 

cables in a semi-harp system 

 

 

where gc denotes the dead load per unit length of the cable, 

γc the weight per unit volume of the cable, Ac the cross-

sectional area of the cable, α the inclination of the chord 

linking the two cable ends, [σ]c the allowable stress of the 

cable material, n the height-to-span ratio of the cable-stayed 

bridge, and Lc, max the theoretical maximum span length of 

the cable-stayed bridge determined by the cable. 

Inserting Eq. (11) into Eqs. (7) and (10) yields 
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(12) 

The expression for horizontal force FH can be derived 

by rearranging the above equations as follows 

H c c, max c ( )F S nL g= −
 

(13) 

where Sc = [σ]c/γc is the strength-to-density ratio of the cable 

material. 

The following equation is derived after substituting Eq. 

(13) into Eq. (12) and rearrangement 
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1
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(14) 

where theoretical maximum span length Lc, max is related 

only to the strength-to-density ratio of the cable material Sc 

and the height-to-span ratio n. 

 
2.2 Theoretical span limit determined by the girder 

 
There are three main types of cable system: fan, harp, 

and semi-harp (semi-fan) patterns. The axial compression 

force on the girder at the pylon of the harp system is twice 

that of the fan system (Gimsing and Georgakis 2012). 

Without loss of generality, the semi-harp system is adopted 

as the research object in this study. 

The cable system is shown in Fig. 3. The coordinate 

system with the origin at the pylon is inconsistent with the 

equations of theoretical span limit determined by the cable, 

in which the origin was at the lower cable end. 

Under the force of cables, the maximum axial 

compression force of the girder lays at the intersection with 

the pylon. The cross-sectional area from midspan to the 

pylon is expanded by design. Assuming linear and parabolic 

increases in girder cross-sectional area from the midspan to 

the pylon, then 

c

0 A dA A=
 

(15) 

where ηA denotes the ratio of girder cross-sectional area at 

the pylon to that of girder at midspan, A0 the cross-sectional 

area of the girder at the pylon and 𝐴d
c  the cross-sectional 

area at midspan. A(x) is expressed as 
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where Ld is the span of the cable-stayed bridge determined 

by the girder. 

Assuming the cable spacing on the girder and pylon are 

arranged equally and ignoring the adverse effects of cable 

sag, the horizontal component of the force of a girder 

segment with a distance x from the pylon under the 

combination of dead and live loads is 

 D d IId ( ) d ( )d ( ) d
x x x

N x x g p x A x g p x
y y y
 = = + = + +

 
(17) 

where ω denotes the load of the girder per meter of track, 

gD the dead load of the girder, γd the weight per unit volume 

of the girder material, and gII the secondary dead load. 

k, which denotes the girder-to-pylon ratio of the cable 

spacing, can be defined as follows 

d d
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2L
k

h




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(18) 

where λd denotes the cable spacing of the girder, λp the cable 

spacing of the pylon and h2 the length of cable-pylon 

anchorage zone. 

The cable equation can be derived as per the geometric 

relationship in Fig. 3 
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(19) 

where h is the height of the pylon. 

By substituting A(x) and y(x) into Eq. (17) and via 

integration, the axial pressure of the girder at the pylon N0 

on the assumption of linear and parabolic increases in girder 

cross-sectional area, respectively, becomes 
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(20) 

and 
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(21) 

When axial stress of the girder reaches the material 

allowable stress, then 

c

0 d 0 d A d[ ] [ ]N A A  = =
 

(22) 

where [σ]d denotes the allowable stress of the girder 

material. 

With the height-to-span ratio of the bridge n =h/Ld, the 

strength-to-density ratio of the girder material Sd = [σ]d/γd 

and 𝑔II + 𝑝 = 𝛾𝑑
′𝐴𝑑

𝑐 , where 𝛾𝑑
′  denotes the equivalent 

additional weight of the girder per unit volume, the 

following expression for Ld,1 assuming linear increase in 

girder cross-sectional area is derived by combining Eqs. 

(20) and (22)  
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(23) 

Similarly, the expression for Ld,p assuming parabolic 

increase in girder cross-sectional area is derived by 

combining Eqs. (21) and (22) 
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where when k → ∞, the cable system is a fan system and Ld 

becomes 
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and when k → Ld/(2h) = 1/2n, the cable system is a harp 

system and Ld becomes 

A d
d, l

1/2
d

A

d

A d
d, p

1/2
d

A

d

for linear increase, lim 8

2 1

for parabolic increase, lim 12

3 2

k n

k n

S
L n

S
L n















→

→


=  

+ + 
  

=
 

+ +  
   

(26) 

By comparing Eqs. (25) and (26), when ηA =1, the span 

limits Ld,1 and Ld,p of cable-stayed bridges with fan systems 

are twice that of those with harp systems, respectively. This 

is in accordance with the rule that axial pressure on the 

girder at the pylon of a harp system is twice that of a fan 

system. 

The expressions derived above are based on the 

assumption of a continuous distribution of cables and, thus, 

the results are generalizable. For example, when cables are 

arranged in a fan shape and the enlargement of the girder 

cross-sectional area is not considered (k → ∞, ηA =1), the 

axial force distribution of the girder obtained by Eqs. (20) 

or (21) is consistent with results obtained by Gimsing and 

Georgakis (2012). 

The enlargement ratio of the girder cross-sectional area 

ηA is also an important parameter affecting Ld. When ηA → 

∞, Eqs. (23) and (24) becomes 
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(27) 

Clearly, the span limit of the cable-stayed bridge 

determined by the girder increases as k and ηA increase, 

thus, when k → ∞ and ηA → ∞, the theoretical maximum 

span length determined by the girder assuming linear and 

parabolic increases in girder cross-sectional area, 

respectively, becomes 

A
d, max d, l dfor linear increase, lim (lim ) 24

k
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= =   (28) 

and 
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d, max d, p dfor parabolic increase, lim (lim ) 48
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= = 

 
(29) 

where Ld,max denotes the theoretical maximum span length 

of the cable-stayed bridge determined by the girder. 

The above derivation also suggests that the theoretical 

span limit determined by the girder is also related only to 

the strength-to-density ratio of the girder material and the 

height-to-span ratio of the bridge. The theoretical maximum 

span length of cable-stayed bridges with a parabolic 

increase assumption is twice that under a linear increase 

assumption. 

The cable inclination angle is less than that of the pylon 

such that the horizontal component force of the girder is 

much greater than that of the vertical component force of 

the pylon. As a result, the theoretical span limit is 

determined by the girder. The span limit determined by the 

pylon is not specifically discussed here for this reason. 

 

2.3 Theoretical span limit of cable-stayed bridges 
 

The solutions for Lc,max and Ld,max are obtained once the 

strength-to-density ratio of the cable material Sc, strength-

to-density ratio of the girder material Sd, and height-to-span 

ratio n of the cable-stayed bridge are determined. The 

theoretical maximum span length of the cable-stayed bridge 

is the smaller of the two values: 

max c, max d, maxmin{ }L L L= ,
 

(30) 

where Lc,max denotes the theoretical maximum span length 

determined by the cable and Ld,max the theoretical 
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Fig. 4 Relationship between theoretical span limit and 

height-to-span ratio 

 

 

maximum span length determined by the girder. According 

to relevant parameters from existing actual long-span cable-

stayed bridge projects, the theoretical span limit is 

determined by the strength-to-density ratio of the cable and 

girder, respectively. 

For super long-span bridges, steel is still the most 

commonly used construction material. Other materials such 

as fiber-reinforced polymer (FRP) and composites (Xiong 

et al. 2011, Hassan et al. 2014, Kirkland and Uy 2015), 

even though available currently, are not yet ready for 

extensive use in the construction of long-span bridges. For 

this reason, the steel cable-stayed bridge only is considered 

in the following analysis. 

The theoretical span limits determined by cable and 

girder with different height-to-span ratios under the 

following parameters are shown in Fig. 4: [σ]c = 784 MPa 

(fk = 1,960 MPa), γc = 8×104 N/m3 (including corrosion 

protection), [σ]d = 220 MPa (Q420qD steel, with yield 

stress 420 MPa), and γd = 7.85×104 N/m3, respectively. 

When the height-to-span ratio (n < 0.1) is relatively 

small, the theoretical span limit determined by the cable is 

almost proportional to the height-to-span ratio. When n is 

larger, the increase in the theoretical span length slows 

down as the curve progresses; the theoretical span limit 

starts to curve downwards and a maximum is reached for n 

= 0.34, where Lc,max = 12,989 m, and then the curve 

gradually declines. The maximum height-to-span ratio 0.34 

exceeds the 0.18-0.26 range used in existing cable-stayed 

bridges. For the typical height-to-span ratio, n = 0.2, the 

theoretical span limit of cable-stayed bridges determined by 

the cable is 11,450 m. The theoretical span limit determined 

by the girder increases linearly with the height-to-span 

ratio. When the height-to-span ratio is below 0.22, the 

theoretical span limit of the cable is greater than that of the 

girder assuming a linear increase in girder cross-sectional 

area. After that point, the theoretical span limit of the girder 

(assuming a linear increase in girder cross-sectional area) 

exceeds that of the cables as the height-to-span ratio further 

increases. The theoretical span limit of the girder, assuming 

a parabolic increase in girder cross-sectional area, is always 

greater than that of the cable. In this case, the theoretical  

 

Fig. 5 Relationship between span limit and height-to-span 

ratio with varying cable strengths 
 

 

span limit of the cable-stayed bridge is determined by the 

cable. 

In addition to the height-to-span ratio n, the strength-to-

density ratio of materials (Sc, Sd) is an important parameter 

determining the theoretical span limit. The theoretical span 

limit of the girder has an explicit linear relationship with the 

strength-to-density ratio of the girder. The relationship 

between the theoretical span limit and height-to-span ratio 

with varying cable strengths is shown in Fig. 5. In addition 

to the girder, there is a proportional relationship between 

the theoretical span limit and strength-to-density ratio of the 

cable. 
 

 

3. Engineering span limit of cable-stayed bridges 
 

The theoretical span limit of the cable assumes that 

external cable force is infinite, which does not represent the 

actual ability to provide vertical support. The theoretical 

span limit of the girder assumes that all cables are anchored 

to the top of the pylon and that the maximum cross-

sectional area of the girder tends towards infinity. Clearly, 

these assumptions do not apply to actual projects. To ensure 

a rational estimation of the span limit of cable-stayed 

bridges, it is necessary to establish the “engineering” span 

limit. 
 

3.1 Engineering span limit determined by the stay 
cable 

 

The differential equation (Eq. (4)) of the microelement 

equilibrium after two integrations and rearrangement is 

cH
1 2

c H

cosh
gF

y x C C
g F

 
= + + 

   

(31) 

Introducing the boundary condition y(0) = 0 leads to C2 

= −
𝐹H

𝑔c
cosh𝐶1, and C1 can be rewritten as C to derive the 

general equation of the cable geometry 

cH

c H

cosh cosh
gF

y x C
g

C
F

  
= + −  

    

(32) 
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Fig. 6 Force diagram of external cable with span limit  

 

 

The derivative function at the anchorage point of the 

girder and pylon are, respectively, written as 

0

0 A

c
0 0 B

H

(0) tan sinh tan

( ) tan sinh tan

x

x a

y C

g
y a a C

F

 

 

=

=

 = = = 


  
 = = + =  

    

(33) 

where a0 is the horizontal projection length of the external 

cable. 

At the anchorage point of the girder, it is assumed that 

the external cable supports dead and live loads on the girder 

segment within the cable spacing as well as half of the self-

weight of the cable (Fig. 6) 

0 D L c 2W W W W= + +
 (34) 

with the following equations 

D D

L

c c 0

W g

W p

W g s





= 


= 
=   

(35) 

where W0 denotes the total cable tributary weight of the 

girder within the cable spacing; WD, WL, Wc denote the dead 

load, live load, and cable self-weight within the cable 

spacing, respectively. s0 is the non-stress length of external 

cable, which is determined as follows 

0 0

2 2

H
0

0 0
c c

d d
1 d 1 d

d d

a aFy y
s s s x x

x E A x

    
= −  = + − +    

     
 

 

(36) 

where Ec denotes the elastic modulus of the cable. 

The expression for s0 is derived after integration and 

rearrangement as 

cH

0 0

c H

cH H

0 0

c c c H

sinh sinh

sinh 2 sinh 2
2 2

gF
s a C C

g F

gF F
a a C C

E A g F

  
= + −  

   

      
− + + −    

       

 (37) 

Expressing vertical equilibrium at the anchorage point 

of the girder yields 

0 H A0 tanyF W F = =  
(38) 

Combining Eqs. (34)-(38) and rearranging them with Wλ 

= (gD + p) λ yields 

c

H 0

H

c H cH

0 0

c c c H
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sinh 2 sinh 2
2 2

g
W F a C C

F

g F gF
a a C C
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

  
+ + −  
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       

 (39) 

where Wλ denotes the load weight on the girder within the 

cable spacing. 

The cable force at the upper supporting point FT is 

0 0

2

T H Hsec 1 (tan )x a x aF F F = == = +
 

(40) 

Inserting Eq. (33) into Eq. (40) yields 

c
T H 0

H

cosh
g

F F a C
F

 
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   

(41) 

Upon reaching the span limit state, the cable conditions 

are 

0 0 c

T c c

( )

[ ]
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
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

=   

(42) 

where Lc is the span length of the cable-stayed bridge 

determined by the cable. 

Inserting into Eqs. (32) and (41) yields 
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(43) 

The following expression for horizontal force FH can be 

derived by rearrangement of the above equations 

H c c c

1
 ( )

cosh
F S nL g

C
=  −

 
(44) 

By comparison with Eq. (13), the horizontal force of the 

cable under the engineering span limit state determined by 

the cable is smaller than that under the theoretical span limit 

state. The ratio of the two is 1/coshC. 

Substituting Eq. (44) into Eq. (43) yields 

c c

c c c c

1
cosh cosh

2

L S
C C

S nL S nL

 
 + =  

− −   

(45) 

By comparison with Eq. (14), the engineering span limit 

and horizontal component force of the cable are not only 

determined by the strength-to-density ratio of the cable 

material and the height-to-span ratio of the bridge, but are 

also related to the constant C. Equation (39) indicates that 

the constant C is also related to the load weight within the 

cable spacing and the cable self-weight. 

The following equations can be written by combining 

Eqs. (39) and (43) 
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The above system of nonlinear equations contains three 

unknown parameters (FH, Lc, and C) and three equations. 

When the parameters [σ]c, γc, Ec, Ac, and n are all known, 

the engineering limit span length of the cable-stayed bridge 

determined by the cable Lc and horizontal force FH of the 

cable and the constant C can be accurately determined. The 

specific equation of the external cable curve can be 

determined accordingly. 
 

3.2 Engineering span limit determined by the girder 
 

The engineering span limit of the girder is determined 

by the general formulas Eqs. (23) and (24) as derived in the 

previous section. When parameters ηA, Sd, 𝛾d
′ , k, and n are 

all known, the engineering span limit of the cable-stayed 

bridge determined by the girder is obtained. 

It is worth mentioning here that the bending moment 

effect of dead and live loads on the girder is not included in 

the above derivations. For super long-span cable-stayed 

bridges, the stress due to bending is not significant and the 

effect considered by reducing the value of allowable girder 

stress. It is assumed that the allowable girder stress [σ]d is 

reduced by 20% after considering the bending moment 

(Tang 2017); that is, the allowable stress [σ]d multiplied by 

a correction coefficient 0.8 is substituted into the above 

equations for analysis. Assuming the girder adopted is 

Q420qD steel, for example, the allowable stress is [σ]d = 

176 MPa. 
 

3.3 Engineering span limit of cable-stayed bridges 
 

When the material and design parameters are given, the 

engineering span limit of the cable-stayed bridge L can be 

expressed as 

c dmin{ }L L L= ,
 (47) 

where Lc denotes the engineering span limit determined by 

the cable and Ld the engineering span limit determined by 

the girder. The engineering span limit of the cable-stayed 

bridge L is the smaller value of the two. 
 

 

4. Engineering span limit parametric analysis 
 

For the purposes of parametric analysis, the design 

parameters of materials and the structural system of cable- 

stayed bridges are kept within a reasonable range in terms 

of actual engineering applications. In addition to the 

material parameters of the cable and girder discussed in the 

above theoretical span limit analysis, in actual engineering 

scenarios, the height-to-span ratio of cable-stayed bridges is  

 

 

 

Fig. 7 Relationship between engineering span limit of the 

girder and height-to-span ratio (λ = 15 m) 

 
 

generally 0.18-0.26. The cable spacing λ is generally 10-20 

m. The maximum cross-sectional area of a single cable is 

0.018 m2 for double cable planes and thus Ac = 0.036 m2. 

The enlargement ratio of the girder cross-sectional area ηA 

is usually around 1.25. The girder-to-pylon ratio of the 

cable spacing k is typically 5. The dead load intensity of the 

Sutong Bridge is 2.02×105 N/m and that of Stonecutters 

Bridge 2.62×105 N/m. Considering the maximum span 

range discussed here, the values of gD selected are (2-4) 

×105 N/m (including the secondary dead load, where gII = 

7×104 N/m). Live loads in design codes of most countries 

are composed of a uniformly distributed load and several 

concentrated loads. In super long-span bridges, especially in 

the preliminary design stage, concentrated loads can be 

safely represented as a uniformly distributed load with an 

amplification factor (Sun et al. 2016). Thus, live load 

intensity p, considering the multi-function traffic of long-

span cable-stayed bridges with eight traffic lanes and 

concentrated live load (for heavy trucks) with an 

amplification factor 1.5 (Zhang 2013), can be safely set to 

7×104 N/m. The engineering span limit and parametric 

analysis of cable-stayed bridges are discussed below based 

on these basic design parameters. 

 

4.1 Relationship between height-to-span ratio and 
engineering span limit 

 

According to Eqs. (23) And (24), different load weights 

affect the relationship between the engineering span limit Ld 

and height-to-span ratio n (0.18-0.26) as such that the  
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(a) Variations in load weight (λ = 15 m) 

 
(b) Variations in cable spacing (gD = 30 t/m) 

Fig. 8 Relationship between engineering span limit of 

load-carrying cable and height-to-span ratio 

 

 

engineering span limit Ld increases linearly as height-to-

span ratio increases (Fig. 7). Under the same height-to-span 

ratio, the engineering span limit Ld increases as load weight 

increases. This is mainly because load weight is closely 

related to girder cross-sectional area and, accordingly, the 

limit span length increases with the cross-section. The 

increase in engineering span limit Ld also slows down as the 

load weight increases. 

The engineering span limit of the girder under a 

parabolic increase assumption is greater than that under a 

linear increase assumption, which is illustrated above as 

dotted lines of uniform color above solid lines. When the 

load weight on the girder is 5.55 MN (gD = 3×105 N/m, p = 

7×104 N/m, and λ = 15 m) and the height-to-span ratio is 

0.2, the span limit of the cable-stayed bridge determined by 

the girder under linear and parabolic increases in girder 

cross-sectional area are 2,147.3 m and 2,203.2 m, 

respectively. When the height-to-span ratio is increased to 

0.22, the engineering span limit Ld increases to 2,418.4 m 

and 2,481.2 m, respectively. Unlike the theoretical span 

limit discussed above, when design parameters are within 

the scope of actual engineering applications, there is not 

much difference between the engineering span limit of the 

girder with parabolic and linear increase assumptions. 

 

Fig. 9 Relationship between engineering span limit and 

load weight 

 
 

According to Eq. (46), when different load weights are 

used, the relationship between the engineering span limit Lc 

and height-to-span ratio n (0.18-0.26) results in a nonlinear 

increase in engineering span limit Lc with height-to-span 

ratio n as shown in Fig. 8. 

When the load weight on the girder is 5.55 MN (gD = 

3×105 N/m) and the height-to-span ratio 0.2, the span limit 

of the cable-stayed bridge determined by the cable is2,970.9 

m. When the height-to-span ratio is 0.22, the engineering 

span limit Lc increases to 3,412.6 m. 

Contrary to the trend of the engineering span limit being 

determined by the girder, the engineering span limit Lc 

decreases linearly as load weight increases when the height-

to-span ratio remains constant. (The effect of load weight 

on the span limit of the bridge is discussed in greater detail 

below.) The engineering span limit of load-carrying cables 

increases as the cable spacing on the girder decreases (Fig. 

8b). When the load weight on the girder is 5.55 MN (gD = 

3×105 N/m), cable spacing 10 m and height-to-span ratio 

0.2, the span limit of the bridge determined by the load-

carrying cable is 4,078.1 m. When the cable spacing is 

increased to 20 m, the engineering span limit is reduced to 

1,859.2 m. 

 
4.2 Relationship between load weight and 

engineering span limit 

 
Relationship curves of the span limit with load weight 

under different height-to-span ratios (Eqs. (23)-(24) and 

(46)) show that the engineering span limit of load-carrying 

cable decreases as load weight increases and the span of the 

girder increases with load weight (Fig. 9). When the load 

weight is small, the engineering span limit of the bridge is 

determined by the girder (solid lines of uniform color above 

dotted and dot-dash lines). As load weight increases, the 

engineering span limit of load-carrying cable decreases 

while that of the girder increases and the two span lengths 

approach each other (solid lines of uniform color 

intersecting dotted and dot-dash lines). At this point, the 

material performance of both the cable and girder are fully 

utilized. With further increases in load weight, the 

engineering span limit determined by the girder starts to 

exceed that of load-carrying cable (dotted and dot-dash  
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Fig. 10 Relationship between vertical support efficiency 

and external cable horizontal projection 
 

 

lines of uniform color above solid lines). 

Under the height-to-span ratio of 0.2 and girder load 

weight of 5.55 MN (gD = 3×105 N/m), the engineering limit 

length of the bridge determined by the cable is 2,970.9 m 

and that determined by the girder is 2,203.2 m (parabolic 

assumption). The girder is dominant under this condition, 

which is common in engineering practice. When the load 

weight on the girder is increased to 7.05 MN (gD = 4×105 

N/m, p = 7×104 N/m, and λ = 15 m), the span limit of the 

bridge determined by the cable decreases to 2,069.8 m 

while that determined by the girder increases to 2,408.4 m 

(linear assumption). In this case, the engineering span limit 

of the bridge is determined by the cable. 

In practical engineering, the cable spacing can be 

reduced (and load weight reduced accordingly) and the 

cable diameter can also be reasonably increased. Unlike the 

theoretical engineering span limit, the critical member 

which determines the engineering span limit is the girder 

with respect to allowable stresses (based on the materials 

available today). The engineering span limit of cable-stayed 

bridges with respect to allowable stresses is around 2,200 m 

as determined by the girder under the typical values of 

height-to-span ratio n = 0.2 and load weight Wλ = 5.55 MN 

(gD = 3×105 N/m) as shown in Fig. 9  
 

4.3 Vertical support efficiency of stay cables 
 

As the sag of cables is proportional to the length of the 

chord, the effects of cable sag are highly pronounced in 

long-span bridges. The cable angle at the girder anchorage 

point is reduced when span is long, which significantly 

reduces the vertical support efficiency. The vertical support 

efficiency of the sagging cable ηev is defined to express the 

extent to which load-carrying capacity is reduced due to 

cable sag 

Vc A
ev

V0 0

sin

sin

F

F





= =

 

(48) 

where Fvc and Fv0 denote the vertical force component of 

the cable with sag or without, respectively; αA is the cable 

angle at the girder anchorage point and α0 the angle of the 

chord of the inclined cable. 

The vertical support efficiency and horizontal projection  

 

Fig. 11 Relationship between effective load-carrying ratio 

and external cable horizontal projection 

 

 

of cables are plotted under different height-to-span ratios 

and load weights (Eqs. (46) and (48)) as shown in Fig. 10. 

The solid line represents the relationship between the 

vertical support efficiency and horizontal projection of the 

cable at the same height-to-span ratio but different load 

weights and the dotted line represents the relationship 

between the vertical support efficiency and horizontal 

projection of the cable at the same load weight but different 

height-to-span ratios. 

The vertical support efficiency of the cable decreases as 

the horizontal projection length increases. When the 

horizontal projection of the cable is constant, the vertical 

support efficiency of the cable increases with load weight 

and height-to-span ratio and is mainly affected by load 

weight. 

When the girder load weight is 5.55 MN (gD = 3×105 

N/m) and the height-to-span ratio is 0.2, the inclination 

angle of the external cable at the girder anchorage point αA 

can be obtained according to Eq. (33) where αA = 

arctan(sinhC) = 17.22°; this value is considerably smaller 

than the chordal inclination of the cable curve α0 = 

arctan(2n) = 21.80°. The cable end angle decreases as cable 

length increases due to cable sag, which weakens the 

support efficiency. If the vertical support efficiency of 

cables for cable-stayed bridges is required to be at least 

80%, according to Eq. (48), the vertical support efficiency 

of the cable will be ηev = 79.7%, which is slightly less than 

80%; the horizontal projection length is 1,485.5 m (gD = 

3×105 N/m, n = 0.2). When the girder load weight is 7.05 

MN (gD = 4×105 N/m) and the height-to-span ratio is 0.24, 

the horizontal projection length is 1,476 m, which is close 

to 1,485.5 m, and the vertical support efficiency of the 

external cable is 83%. When the girder load weight is 4.05 

MN (gD = 2×105 N/m, p = 7×104 N/m, and λ = 15 m) and 

the height-to-span ratio is 0.25, the vertical support 

efficiency of the horizontal projection length of 2,408 m of 

the external cable is only 71.6%. 

 

4.4 Effective load-carrying ratio of stay cables 
 

As the length of the stay cable increases, its self-weight 

synchronously increases and the proportion of cable tension 

used to carry its own weight increases as well. The effective 
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carrying capacity of stay cables ηeff is defined as 

D L
eff

0

W W

W


+
=

 

(49) 

This expression represents the proportion of the external 

load (girder, secondary dead load, and live load) carried by 

the stay cable in the total cable force. 

The relationship between effective load-carrying ratio 

and cable horizontal projection under different height-to-

span ratios and load weights (Eqs. (46) and (49)) is shown 

in Fig. 11. The solid line marks the relationship between 

effective load-carrying ratio and cable horizontal projection 

at the same height-to-span ratio but different load weights 

and the dotted line shows the relationship between effective 

load-carrying ratio and cable horizontal projection at the 

same load weight but different height-to-span ratios. Similar 

to the law of cable vertical support efficiency, the effective 

load-carrying ratio of the cable decreases as horizontal 

projection length increases. When the horizontal cable 

projection is constant, the effective load-carrying ratio of 

the cable increases with load weight and height-to-span 

ratio, which is mainly affected by load weight. 

When the load weight on the girder is 5.55 MN (gD = 

3×105 N/m) and the height-to-span ratio is 0.2, the effective 

load-carrying ratio with a 1,485.5 m external cable 

horizontal projection length is 70.72%; that is, the 

proportion of cable tension used to carry its own weight is 

about 29.3%. When the girder load weight is 7.05 MN (gD = 

4×105 N/m) and the height-to-span ratio is 0.24, the 

horizontal projection length is 1,475.6 m (i.e., close to 

1,485.5 m) and the effective load-carrying ratio of external 

cable increases to 75%. When the girder load weight is 4.05 

MN (gD = 2×105 N/m) and the height-to-span ratio is 0.25, 

the effective load-carrying ratio with a 2,408 m horizontal 

projection length for the external cable is only 51.1%; that 

is, upon reaching the engineering span limit, the weight of 

the cable comprises nearly 50% of the cable force. 
 

 

5. Conclusions 
 

The results of this study can be summarized as follows: 

• Cable-stayed bridges have theoretical span limits that 

can be determined only by the strength-to-density ratio and 

height-to-span ratio. However, the assumptions of the 

theoretical span limit for cable-stayed bridges do not apply 

to actual projects. The engineering span limit must be 

rationally used to estimate the span limit of cable-stayed 

bridges. 

• The engineering span limit of a cable-stayed bridge is 

not only related to its height-to-span ratio and strength-to-

density ratio of its material but also to the actual loading 

conditions and structural design (e.g., dead and live loads 

on the girder and the cross-sectional area of the cable and 

girder). 

• Approaches to increasing the engineering span limit 

include increasing the strength-to-density ratio of the cable 

and girder materials of the bridge, decreasing the cable 

spacing on the girder, and increasing the height-to-span 

ratio appropriately. 

• Current technological, economic, and functional 

indices allow for cable-stayed bridges with an engineering 

span limit of about 2,200 m based on the allowable steel 

stress. (That is, assuming the girder adopted is Q420qD 

steel and the typical values of height-to-span ratio n = 0.2 

and load weight Wλ = 5.55 MN (gD = 3×105 N/m,  λ = 15 

m). The girder is the critical member which determines the 

span limit owing to the substantial axial pressure caused by 

stay cables. 

• The stiffness and stability (including aerodynamic 

stability) of cable-stayed bridges which are also key factors 

in determining the span limit must be technically resolved 

to ensure that the span lengths approach the engineering 

span limit. 
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Notation 
 

The following symbols are used in this paper: 

0A
 

= cross-sectional area of the girder at the pylon; 

cA
 

= cross-sectional area of the cable; 

c

dA
 

= cross-sectional area of the girder at midspan; 

cE
 

= elastic modulus of the cable; 

HF
 

= horizontal component of cable force; 

TF
 

= cable force at the upper supporting point; 

VF
 

= vertical component of cable force; 

V0F
 

= vertical force component of the cable without sag; 

VcF
 

= vertical force component of sagging cable; 

L  = engineering span limit of the cable-stayed bridge; 

cL
 

= engineering span limit determined by the cable; 

c, maxL
 

= theoretical maximum span length of the cable-stayed 

bridge determined by the cable; 

dL
 = engineering span limit determined by the girder; 

d, lL
 

= span limit of the cable-stayed bridge assuming linear 

increase in girder cross-sectional area; 

d, maxL
 

= theoretical maximum span length of the cable-stayed 

bridge determined by the girder; 

d, pL
 

= span limit of the cable-stayed bridge assuming 

parabolic increase in girder cross-sectional area; 

maxL
 

= theoretical maximum span length of the cable-stayed 

bridge; 

0N
 

= axial pressure of the girder at the pylon; 

cS
 

= strength-to-density ratio of the cable material; 

dS
 

= strength-to-density ratio of the girder material; 

0W
 

= total cable tributary weight of the girder within the 

cable spacing; 

DW
 

= dead load within the cable spacing; 

LW
 

= live load within the cable spacing; 

cW
 

= cable self-weight within the cable spacing; 

W  
= load weight on the girder within the cable spacing; 

0a
 

= horizontal projection length of the external cable; 

maxa
 

= theoretical maximum horizontal projection of the 

external cable; 

Dg
 

= dead load of the girder; 

cg
 

= dead load per unit length of the cable; 

IIg
 

= secondary dead load; 

h  = height of the pylon; 

2h
 = length of cable-pylon anchorage zone; 

k  = girder-to-pylon ratio of the cable spacing; 

n  = height-to-span ratio of the cable-stayed bridge; 

p
 = live load intensity on the girder; 

q
 = vertical load intensity along the cable curve; 

0s
 = non-stress length of external cable; 

  = inclination of the chord linking the two cable ends; 

0  = angle of the chord of the inclined cable; 
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A  = cable angle at the girder anchorage point; 

B  = cable angle at the pylon anchorage point; 

c[ ]
 = allowable stress of the cable; 

d[ ]
 = allowable stress of the girder; 

A  
= ratio of girder cross-sectional area at the pylon to 

that of girder at midspan; 

eff
 = effective carrying capacity of stay cables; 

ev
 = vertical support efficiency of sagging cable; 

c  = weight per unit volume of the cable; 

d  = weight per unit volume of the girder; 

d   
= equivalent additional weight of the girder per unit 

volume; 

d  = cable spacing of the girder; 

p
 = cable spacing of the pylon; 

  = load of the girder per meter of track; and 

x  
= angle between the tangent line of the curve and the 

ground 
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