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1. Introduction 
 

Due to having intrinsic coupling effects and adaptive 

properties, smart structural elements such as beams and 

plates constructed from the intelligent materials play a 

major role in different fields of science. The magneto-

electro-elastic (MEE) materials are a class of new smart 

materials which have attracted intense attention of 

investigators in recent years. Since these materials consist 

of both piezoelectric and piezomagnetic phases, their 

mechanical properties can be influenced by exerting 

magnetic and electric potentials. In the other words, they 

can exhibit coupling effects between magnetic, electric and 

thermo-mechanical fields. Analysis of scale-free plates has 

been performed widely in the literature employing classical 

theories. But, such theories are not able to examine the scale 

effects on the nanostructures with small size (Ebrahimi and 

Salari 2015). Therefore, the nonlocal elasticity theory of 

Eringen (Eringen and Edelen 1972, Eringen 1983) is 

developed taking into account small scale effects. Contrary 

to the local theory in which the stress state at any given 

point depends only on the strain state at that point, in the 

nonlocal theory, the stress state at a given point depends on 

the strain states at all points. The nonlocal elasticity theory 

has been broadly applied to investigate the mechanical 

behavior of nanoscale structures (Ebrahimi and Barati 

2016a, b, c, d, e, f) 

Pradhan and Murmu (2009) examined nonlocal 

influences on buckling behavior of a single-layer nanoplate 

subjected to uniform in-plane loadings. Also, Pradhan and 

Kumar (2011) performed vibration study of orthotropic 

nanoplates incorporating nonlocal effects using a semi-

analytical approach. Application of Levy type method in  
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stability and vibrational investigation of nanosize plates 

including nonlocal effects is examined by Aksencer and 

Aydogdu (2011). Mohammadi et al. (2014) performed shear 

buckling analysis of orthotropic nanoplates on elastic 

substrate including thermal loading effect. In another work, 

Mohammadi et al. (2013) examined the effect of in-plane 

loading on nonlocal vibrational behavior of circular 

nanoplates. Also, Ansari et al. (2011) explored vibration 

response of embedded nonlocal multi-layered nanoplates 

accounting for various boundary conditions. Shen et al. 

(2012) studied vibration behavior of nanomechanical mass 

sensor based on nonlocal nanoplate model. They showed 

that vibration response of nanoplates is significantly 

influenced by the mass of attached nanoparticle. Farajpour 

et al. (2012) examined static stability of nonlocal plates 

subjected to non-uniform in-plane edge loads. Also, Ansari 

and Sahmani (2013) employed molecular dynamics 

simulations to examine biaxial buckling behavior of single-

layered graphene sheets based on nonlocal elasticity theory. 

They matched the results obtained by molecular dynamics 

simulations with those of nonlocal plate model to extract 

the appropriate values of nonlocal parameter. Murmu et al. 

(2013) explored the influence of unidirectional magnetic 

fields on vibrational behavior of nonlocal single-layer 

graphene sheets resting on elastic substrate. Bessaim et al. 

(2015) presented a nonlocal quasi-3D trigonometric plate 

model for free vibration behavior of micro/nanoscale plates. 

Hashemi et al. (2015) studied free vibrational behavior of 

double viscoelastic graphene sheets coupled by visco-

Pasternak medium.  Arani et al. (2016) examined nonlocal 

vibration of axially moving graphene sheet resting on 

orthotropic visco-Pasternak foundation under longitudinal 

magnetic field. Also, Zenkour (2016) performed transient 

thermal analysis of graphene sheets on viscoelastic 

foundation based on nonlocal elasticity theory. Ke et al. 

(2015) examined free vibrational response of nonlocal 

piezoelectric nanoplates considering different boundary 
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conditions. Also, Li et al. (2014) investigated stability and 

vibrational behavior of magneto-electro-elastic nanoplate 

according to the nonlocal theory. Farajpour et al. (2016) 

presented a nonlocal plate model for nonlinear vibration 

investigation of magneto-electro-elastic nanoplates. 

However, effect of viscoelasticity is neglected in these 

works. Most recently, Ansari and Gholami (2016) explored 

nonlocal vibrational response of buckled magneto-electro-

thermo-elastic nanoplates considering different boundary 

conditions.  

It is clear that all of previous papers on nanoplates 

applied only the nonlocal elasticity theory to capture small 

scale effects. However, nonlocal elasticity theory has some 

limitations in accurate prediction of mechanical behavior of 

nanostructures. Because, nonlocal elasticity theory is unable 

to examine the stiffness increment observed in experimental 

works and strain gradient elasticity (Lam et al. 2003). 

Recently, Lim et al. (2015) proposed the nonlocal strain 

gradient theory to introduce both of the length scales into a 

single theory. The nonlocal strain gradient theory captures 

the true influence of the two length scale parameters on the 

physical and mechanical behavior of small size structures 

(Li and Hu, Li et al. 2016). Recently, Ebrahimi and Barati 

(2016g, e, 2017a, b) applied the nonlocal strain gradient 

theory in analysis of nanobeams. They mentioned that 

mechanical characteristics of nanostructures are 

significantly affected by stiffness-softening and stiffness-

hardening mechanisms due to the nonlocal and strain 

gradient effects, respectively. Most recently, Ebrahimi et al. 

(Ebrahimi et al. 2016) extended the nonlocal strain gradient 

theory for analysis of nanoplates to obtain the wave 

frequencies for a range of two scale parameters. So, it is 

crucial to incorporate both nonlocal and strain gradient 

effects in analysis of graphene sheets for the first time. 

Based on newly developed nonlocal strain gradient 

theory, damping vibration behavior of smart magneto-

electro-viscoelastic nanoplates resting on viscoelastic 

medium is examined. The theory introduces two scale 

parameters corresponding to nonlocal and strain gradient 

effects to capture both stiffness-softening and stiffness-

hardening influences. Hamilton’s principle is employed to 

obtain the governing equation of a nonlocal strain gradient 

nanoplate. These equations are solved via Galerkin’s 

method to obtain the natural frequencies. It is shown that 

damping vibration behavior of nanoplates is significantly 

influenced by nonlocal parameter, length scale parameter, 

viscoelasticity, applied voltage and magnetic potential. 

 

 

2. Theoretical formulations 
 

The classical plate theory has the following 

displacement field as: 

( ) ( )1 , , , , ,u x y z t u x y t z
w

x
= −



  

(1) 

( ) ( )2 , , , , ,u x y z t v x y t z
w

y
= −




 

(2) 

3( , , , ) ( , , )u x y z t w x y t=
 

(3) 

in which u and v are displacement of mid-plane along x, y-

axis and w is the bending component of transverse 

displacement. The electric potential and magnetic potential 

distributions across the thickness are approximated via a 

combination of a cosine and linear variation to satisfy 

Maxwell’s equation in the quasi-static approximation as 

follows: 

2
( , , , ) cos ( ) ( , , )

z
x y z t z x y t V

h
  = − +

 

(4) 

2
( , , , ) cos ( ) ( , , )

z
x y z t z x y t

h
  = − + 

 
(5) 

where ζ = π / h. Also, V and Ω are the external electric 

voltage and magnetic potential applied to the nanoplate. 

Nonzero strains of the present plate model are expressed by: 
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(6) 

According to Eq. (4), the relation between electric field 

(Ex, Ey, Ez) and electric potential (Ф), can be obtained as: 

, cos( ) ,x xE z
x





= − =

  
(7) 

, cos( ) ,y yE z
y





= − =

  
(8) 

,

2
sin ( )z z

V
E z

h
  = − = − −

 
(9) 

Also, the relation between magnetic field (Hx, Hy, Hz) 

and magnetic potential (ϒ) can be expressed from Eq. (5) 

as: 

, cos( ) ,x xH z
x





= − =

  

(10) 

, cos( ) ,y yH z
y





= − =


 

(11) 

,

2
sin ( )z zH z

h
  


= − = − −

 

(12) 

Through extended Hamilton’s principle, the equation of 

motion can be derived by: 

0
( ) 0

t

S K W dt  − + =
 

(13) 
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Here ∏S is strain energy, ∏W is work done by external 

forces and ∏K is kinetic energy. The virtual variation of 

strain energy can be written as: 

(

)

S

ij ij
v

x x y y xy xy yz yz xz xz
v

x x y y z z x x y y z z

dV

D E D E D E B H B H B H dV



  

              

     



=

= + + + +

− − − − − −





 

(14) 

Substituting Eq. (6) into Eq. (14) yields: 
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(15) 

in which the variables at the last expression are expressed 

by: 

( , ) (1, ) , ( , , )i i i
A

N M z dA i x y xy= =
 

(16) 

The variation of the work done by applied loads can be 

written as: 

0 0

0 0

0

(

2
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where 𝑁𝑥
0, 𝑁𝑦

0 , 𝑁𝑥𝑦
0  are in-plane applied loads; kw, kp and 

cd are Winkler, Pasternak and damping constants. The 

variation of the kinetic energy is calculated as: 

0
0 0

1

2
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in which: 

/2 /2
2

0 2 1
/2 /2

( , ) (1, ) , 0
h h

h h
I I z dz I zdz 

− −
= = =   (19) 

The following Euler–Lagrange equations are obtained 

by inserting Eqs. (14)-(18) in Eq. (13) when the coefficients 

of δu, δv, δw, δϕ and δγ are equal to zero: 

2
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2.1 Nonlocal strain gradient theory for the 
magneto-electro-elastic materials 

 

The newly developed nonlocal strain gradient theory 

(Ebrahimi et al. 2016) takes into account both nonlocal 

stress field and the strain gradient effects by introducing 

two scale parameters. This theory defines the stress field as: 

(1)
(0) ij

ij ij

d

dx


 = −

 

(25) 

in which the stresses 𝜎𝑥𝑥
(0)
 and 𝜎𝑥𝑥

(1)
are corresponding to 

strain εxx and strain gradient εxx,x, respectively as: 

(0)
0 0

0
( , , ) ( )

L

ijkl klij x x e a x dxC     = 
 

(26) 

(1) 2
1 1 ,

0
( , , ) ( )

L

ijkl kl xij l x x e a x dxC     = 
 

(27) 

in which Cijkl are the elastic coefficients and e0a and e1a 

capture the nonlocal effects and l captures the strain 

gradient effects. When the nonlocal functions α0(x, x′, e0a) 

and α1(x, x′, e1a) satisfy the developed conditions by 

Eringen (Eringen 1983), the constitutive relation of 

nonlocal strain gradient theory has the following form:  

2 2 2 2

1 0

2 2 2 2 2 2

1 0

[1 ( ) ][1 ( ) ]

[1 ( ) ] [1 ( ) ]ijkl kl ijkl kl

ije a e a

e a l e aC C 

−  − 

= −  − −  
 (28) 

in which 2 denotes the Laplacian operator. Considering e1 

= e0 = e, the general constitutive relation in Eq. (22a) 

becomes 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC −  = − 
 

(29) 

The nonlocal strain gradient theory can be extended for the 
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MEE nanoplates as: 

2 2 2 2( ) (1 )[ ]ij ij ijkl kl mij m nij nea l C e E q H  −  = −  − −  (30a) 

2 2 2 2( ) (1 )[ ]i i ikl kl im m in nD ea D l e s E d H−  = −  + +  (30b) 

2 2 2 2( ) (1 )[ ]i i ikl kl im m in nB ea B l q d E H −  = −  + +  (30c) 

where 2 is the Laplacian operator. The stress-strain 

relations can be expressed by: 
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where μ = (ea)2 and λ = l2. Also, �̃�𝑖𝑗 , �̃�𝑖𝑗 , �̃�𝑖𝑗 , �̃�𝑖𝑗 , �̃�𝑖𝑗   and 

𝜒𝑖𝑗  are reduced constants for the plate under the plane 

stress state which are given as 
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Inserting Eqs. (31)-(39) in Eq. (16) and considering 

Kelvin-Voigt viscoelastic model gives: 
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Also, normal forces and moments due to magneto-

electrical field in Eqs. (40) and (41) can be defined by: 
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The governing equations of nonlocal strain gradient 
nanoplate under magneto-electrical coupling in terms of the 
displacement can be derived by substituting Eqs. (41)-(46), 
into Eqs. (20) -(24) as follows:  
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It is assumed that the nanoplate is exposed to external 

electric voltage, magnetic potential and the shear loading is 

ignored. So 𝑁𝑥𝑦
0 = 0 and 𝑁𝑥

0, 𝑁𝑦
0  are the normal forces 

induced by external electric voltage V and external 

magnetic potential Ω, respectively and are defined as 

0 0 E H

x yN N N N= = +
 

(59) 
/2 /2

31 31
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2 2
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3. Solution by Galerkin’s method 
 

In this section, Galerkin’s method is implemented to 

solve the governing equations of smart nonlocal strain 

gradient nanoplates. Thus, the displacement field can be 

calculated as: 
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(64) 

where (Umn, Vmn, Wbmn, Φmn, ϒmn) are the unknown 

coefficients. Inserting Eqs. (60) - (64) into Eqs. (54) -(58) 

respectively, leads to:  
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where 

{𝑟3, 𝑟4, r12}

=  ∫ ∫
𝑋(𝑥)𝑌(1)(𝑦){𝑋(2)(𝑥)𝑌(1)(𝑦), 𝑋(𝑥)𝑌(3)(𝑦),

𝑋(𝑥)𝑌(1)(𝑦)}𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

 (70) 

{𝑟1, 𝑟2, r11} =  ∫ ∫
𝑋(1)(𝑥)𝑌(𝑦){𝑋(3)(𝑥)𝑌(𝑦), 𝑋′(𝑥)𝑌′′(𝑦),

𝑋′(𝑥)𝑌(𝑦)}𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

 (71) 

{𝑟5, 𝑟6, r7} =  ∫ ∫
𝑋(𝑥)𝑌(𝑦){𝑋(4)(𝑥)𝑌(𝑦), 𝑋(2)(𝑥)𝑌(2)(𝑦),

𝑋(𝑥)𝑌(4)(𝑦)}𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

 (72) 

{𝑟8, 𝑟9, r10} =  ∫ ∫
𝑋(𝑥)𝑌(𝑦){𝑋(𝑥)𝑌(𝑦), 𝑋(𝑥)𝑌(2)(𝑦),

𝑋(2)(𝑥)𝑌(𝑦)}𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

 (73) 

{𝑟12, 𝑟13, r14}

=  ∫ ∫
𝑋(1)(𝑥)𝑌(𝑦){𝑋(5)(𝑥)𝑌(𝑦), 𝑋(3)(𝑥)𝑌(2)(𝑦),

𝑋(1)(𝑥)𝑌(4)(𝑦)}𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

 (74) 
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{𝑟15, 𝑟16, r17}

=  ∫ ∫
𝑋(𝑥)𝑌(1)(𝑦){𝑋(4)(𝑥)𝑌(1)(𝑦), 𝑋(2)(𝑥)𝑌(3)(𝑦),

𝑋(𝑥)𝑌(5)(𝑦)}𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

 (75) 

{𝑟18, 𝑟19, r20}

=  ∫ ∫
𝑋(𝑥)𝑌(𝑦){𝑋(4)(𝑥)𝑌(2)(𝑦), 𝑋(6)(𝑥)𝑌(𝑦),

𝑋(2)(𝑥)𝑌(4)(𝑦)}𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

 (76) 

The function X for simply-supported boundary 

conditions is defined by: 

SS: 

X𝑚(𝑥) = sin(𝜆𝑚𝑥) 

𝜆𝑚 =
𝑚𝜋

𝑎
 

(77) 

The function Y can be obtained by replacing x, m and a, 

respectively by y, n and b. By finding determinant of the 

coefficient matrix of the following equations and setting 

this multinomial to zero, we can find vibration frequencies. 
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(78) 

In which [K], [C] and [M] are stiffness, damping and 

mass matrices, respectively. It should be noted that 

calculations are performed based on the following 

dimensionless quantities: 
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4. Numerical results and discussions 
 

This section is devoted to study the damping vibration 

behavior of nonlocal strain gradient magneto-electro-

viscoelastic nanoplates on viscoelastic substrate based on 

classical plate theory. The model introduces two scale 

coefficients related to nonlocal and strain gradient effects 

for more accurate analysis of smart nanoplates. Material 

properties of the nanoplate are presented in Table 1. 

Configuration of nanoplate on viscoelastic medium is 

shown in Fig. 1. The nanoplate geometry has the following 

dimensions: a (length) = 10 nm and h (thickness) = varied.  

Natural frequencies of a piezoelectric nanoplate are 

validated with those obtained by Ke et al. (2015) for 

various nonlocal parameters (µ=0, 0.1, 0.2, 0.3, 0.4, 0.5). 

Obtained frequencies via present Galerkin method are in  

Table 1 Magneto-electro-elastic coefficients of material 

properties 

Properties 3 2 4BaTiO CoFe O−  

11 22 (GPa)c c=  266 

33c  216 

13 23c c=  124 

12c  125 

55c  44.2 

66c  50.5 

-2
31 (Cm )e  -2.2 

33e  9.3 

15e  5.8 

31 (N/Am)q  290.1 

33q  349.9 

15q  275 

9 2 -2 -1
11 (10 C m N )k −  5.64 

33k  6.35 

6 2 2
11(10 C /2)Ns − −

 -297 

33
 

83.5 

11 22d d=  5.367 

33d  2737.5 

-3(kgm )
 

5550 

 

Table 2 Comparison of non-dimensional frequency of 

piezoelectric nanoplates with simply-supported and 

clamped boundary conditions (V=0) 

 Nonlocal parameter (µ)     

 0 0.1 0.2 0.3 0.4 0.5 

Ke et al. 
(2015) 

0.5453 0.5102 0.4352 0.3609 0.3011 0.2553 

present 0.54663 0.511391 0.436224 0.361772 0.301781 0.25587 

 

 

Fig. 1 Configuration of nanoplate resting on viscoelastic 

substrate 
 

 

excellent agreement with those of exact solution presented 

by Ke et al. (2015), as tabulated in Table 1. For comparison 

study, the strain gradient parameter is set to zero (λ=0). 

Examination of nonlocal and strain gradient effects on 

the real and imaginary parts of vibration frequencies with 

respect to damping coefficient (Cd) is presented in Fig. 2 
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Fig. 2 Variation of real and imaginary parts of 

eigenfrequency versus damping coefficient for different 

elasticity theories (µ=2 nm2, λ=1 nm2, Kw=5, Kp=0.5, 

V=Ω=0, Gd=0.01). 

 

 

when Kw=5, Kp=0.5. When µ=0 and λ=0, the results based 

on classical continuum mechanics are rendered. It is 

observed that frequency of magneto-electro-viscoelastic 

nanoplate reduces by inclusion of nonlocal parameter. This 

observation indicates that nonlocal parameter exerts a 

stiffness-softening effect which leads to lower vibration 

frequencies. But, effect of nonlocal parameter on the 

magnitude of frequencies depends on the value of strain 

gradient or length scale parameter. In fact, frequency of 

nanoplate increases with increase of length scale parameter 

which highlights the stiffness-hardening effect due to the 

strain gradients. It should be pointed out that increase of 

damping coefficient degrades the plate stiffness and 

imaginary eigenfrequencies reduce until a critical point in 

which the frequencies become zero. At this point, the 

nanoplate is critically damped and does not oscillate. 

However, obtained critical damping coefficients (C cr)  

 

 

Fig. 3 Variation of real and imaginary parts of 

eigenfrequency versus damping coefficient for different 

electric voltages (µ=1 nm2, λ=0.5 nm2, Kw=5, Kp=0.5, 

Gd=0.01). 

 

 

depend on the value of length scale parameter. In fact, 

inclusion of length scale parameter in nonlocal strain 

gradient theory leads to higher critical damping coefficients 

compared with nonlocal theory. So, it can be concluded that 

critical damping coefficients obtained by nonlocal elasticity 

theory are underestimated. As a consequence, it is very 

important to consider both nonlocal and length scale 

parameters in analysis of smart nanoplates. However, real 

part of eigenfrequency is not affected by the nonlocal and 

strain gradient effects at small damping coefficients. But, 

effect of scale parameters on real part of eigenfrequency 

becomes important after the critical damping coefficient. 

Effects of applied voltage and magnetic potential on 

damping vibration behavior of smart magneto-electro-

viscoelastic nanoplates are respectively shown in Figs. 3 

and 4 when µ=1 nm2, λ=0.5 nm2, Kw=5, Kp=0.5 and 

Gd=0.01. It is seen that magnitude and sign of applied  
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Fig. 4 Variation of real and imaginary parts of 

eigenfrequency versus damping coefficient for different 

magnetic potentials (µ=1 nm2, λ=0.5 nm2, Kw=5, Kp=0.5, 

Gd=0.01). 

 

 

voltage and magnetic potential have a great effect on critical 

damping coefficients of nanoplates. In fact, negative 

voltages provide larger critical damping coefficients 

compared with positive voltages. In contrast, negative 

magnetic potentials give smaller critical damping 

coefficients. In other words, increasing magnetic potential 

from negative to positive values leads to enlargement of 

critical damping coefficients. This observations are due to 

the compressive and tensile loads exerted by electric and 

magnetic fields, respectively. So, vibration behavior of 

nanoplates can be controlled by exerting appropriate 

magnetic and electric fields to the nanoplate. 

Fig. 5 presents the variation of imaginary part of 

eigenfrequency versus magnetic potential for different 

electric voltages and structural damping coefficients (Gd) at 

µ=1 nm2, λ=0.5 nm2, Kw=5, Kp=0.5, Cd=2. It is found that 

increase of structural damping coefficients leads to  

 
(a) Gd=0.01 

 
(b) Gd=0.05 

 
(c) Gd=0.1 
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(d) Gd=0.2 

Fig. 5 Variation of imaginary part of eigenfrequency 

versus magnetic potential for different electric voltages 

and structural damping coefficients (µ=1 nm2, λ=0.5 nm2, 

Kw=5, Kp=0.5, Cd=2) 
 

 

vibration damping of nanoplate at small values of magnetic 
potential. For example, when V=-0.5, vibration of system is 
underdamped for Gd=0.01, 0.05 and 0.1. But, vibration of 
nanoplate becomes damped when V=-0.5 and Gd=0.2. 
However, by increasing in magnetic potential, vibration of 
nanoplate becomes undamped. In fact, higher values of 
magnetic potential lead to postponement in vibration 
damping of nanoplates. 

In Fig.6, variation of imaginary part of eigenfrequency 
versus electric voltage for different Winkler and Pasternak 
parameters is plotted at µ=1 nm2, λ=0.5 nm2, Gd=0.01 and 
Cd=2. It is found that increase of applied voltage from 
negative to positive values may results in vibration damping 
on nanoplate. In fact, at a certain value of applied voltage 
the system becomes damped and does not oscillate. These 
observations are significantly affected by the values of 
Winkler and Pasternak parameters. In fact, Pasternak layer 
provides a continuous interaction with graphene sheet, 
while Winkler layer has a discontinuous interaction with the 
nanoplate. Increasing Winkler and Pasternak parameters 
leads to larger frequencies by enhancing the bending 
rigidity of nanoplates. But, Pasternak layer shows more 
increasing effect on the frequencies compared with Winkler 
layer. It is found that increasing foundation parameters 
yields larger critical voltages. In fact, higher values of 
foundation parameters lead to a significant delay in 
vibration damping of nanoplates. 

Time response of nonlocal strain gradient nanoplates for 
different damping coefficients is plotted in Fig. 7 when µ=2 
nm2, λ=1 nm2, Kw=5 and Kp=0.5. It is seen that with the 
time increment, amplitude of system reduces. This 
reduction in amplitude of system depends on the value of 
damping coefficient. As the value of damping coefficient 
increases, vibration of magneto-electro-viscoelastic 
nanoplate becomes damped with higher rates. At larger 
damping coefficients, vibration of nanoplate is damped after 
a few number of oscillation. 

 
(a) Kp=0 

 
(b) Kp=0.5 

 
(c) Kp=1 
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(d) Kp=2 

Fig. 6 Variation of imaginary part of eigenfrequency 
versus electric voltage for different Winkler and Pasternak 
parameters (µ=1 nm2, λ=0.5 nm2, Gd=0.01, Cd=2) 

 

 
(a) Cd=0 

 
(b) Cd=0.5 

 
(c) Cd=1 

 
(d) Cd=2 

Fig. 7 Time response of nonlocal strain gradient MEE 

nanoplate for different damping coefficients (µ=2 nm2, 

λ=1 nm2, Kw=5, Kp=0.5, Gd=0.01) 
 

 

5. Conclusions 
 

In this paper, nonlocal strain gradient theory is 

employed to investigate damping vibration behavior of 

magneto-electro-viscoelastic nanoplates resting on 

viscoelastic medium. The theory introduces two scale 

parameters corresponding to nonlocal and strain gradient 

effects to capture both stiffness-softening and stiffness-

hardening influences. Hamilton’s principle is employed to 

obtain the governing equation of a nonlocal strain gradient 

nanoplate. These equations are solved via Galerkin’s 

method to obtain the frequencies. It is observed that 

frequency of nanoplate reduces with increase of nonlocal 

parameter. In contrast, frequency increases with increase of 

length scale parameter which highlights the stiffness-

hardening effect due to the strain gradients. Also, increase 
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of damping coefficient degrades the plate stiffness and 

vibration frequencies reduce until a critical point in which 

the frequencies become zero. It is seen that nonlocal strain 

gradient theory provides larger critical damping coefficient 

than nonlocal elasticity theory. In fact, considering strain 

gradient effects leads to postponement is damping of smart 

nanoplates. All these observations are affected by the 

magnetic and electrical loading which enhances/decreases 

the plate stiffness and increases/ decreases the critical 

damping coefficient. 
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