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1. Introduction 
 

The use of concrete or steel jackets around RC columns 

is a widespread technique for static and seismic retrofitting 

applications (Yuce et al. 2007, Di Ludovico et al. 2008). 

Several literature studies proved that the structural 

performances of beams (Ahmedt et al. 2000, Oehlers et al. 

2000) and columns can be enhanced in terms of achievable 

load carrying capacity, deformation capacity and stiffness. 

Steel jackets can be applied to existing RC columns by two 

possible configurations (Thermou and Elnashai 2006), 

depending on the connection given to the angle chords as 

they cross the floors. If end-connections are provided, the 

jacket is considered directly loaded and the axial load is 

transferred to the whole section, the latter acting as a whole 

steel-concrete composite element (Fig. 1a). In this way, the 

complete increase of axial capacity can be exploited and the 

contribution of the steel angles to the strength is directly 

related to their effective area. Consequently, the application 

of directly loaded angles should be the most convenient 

method for a retrofit intervention due to its theoretical 

maximum effectiveness. Despite this advantage, detailing of 

connections is a difficult task due to the introduction of 

plates and bars, which should be well anchored to the slabs. 

For this reason, the most of technical codes allows the 

installation of the jacket only by indirect loading.  

In this last case, steel angles have no-end connections, 

and a gap of few centimetres is left between the jacket and 
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(a) (b) 

Fig. 1 Steel jacketed columns. a) Directly loaded jacket; 

b) Indirectly loaded jacket. (Redrawn from Campione et 

al. 2017) 
 

 

the top and bottom extremities of the column (Fig 1b). 

The axial load acting on the column is then transferred 

to the jacket through shear stresses along the interface 

between the concrete surface of the column and the steel 

angles. This load sustained by the external jacket is not 

simple to be calculated, due to the involvement of several 

parameters, such as the geometry, the non-linear 

constitutive laws of materials and load conditions of the 

column. Technical standards indicate to assess the 

efficiency of the technique only by considering confinement 

effects induced by the external jacket to the inner column 

(CEN 2005a), and usually the contribution of jacket is 

neglected (CEN 2005b) in the case of indirectly loading. 
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Several works were developed in the literature to study 

the efficiency of steel jacketing in enhancing the structural 

performances of weak columns, and most of these studies 

investigated the case of jackets with pinned ends (Montuori 

and Piluso 2009; Nagaprasad et al. 2009; Tarabia and 

Albakry 2014), while few studies focused on the load 

transfer at the core-to-jacket interface in indirectly loaded 

members. Among these last, the most of studies in the 

literature focused only on members with reinforced 

concrete jacketing (Vandoros and Dritsos 2006, 

Achillopoulou 2017). 

Adam et al. (2009) presented a parametric study 

performed by non-linear finite element (FE) simulations, 

the latter carried out with the aim of analysing the 

behaviour of RC columns strengthened by steel caging. 

Researchers modelled force transmission at steel-to-

concrete interface via contact elements with Coulomb’s 

friction and validated their models with experimental data 

of Gimenez et al. (2009). 

Badalamenti et al. (2010) proposed an analytical model 

able to take into account the variation of confinement 

pressure as a function of the axial shortening. In this model, 

relative slip of the steel jacket is taken into account by 

limiting the confinement pressure to a maximum value, 

which depends by the friction coefficient. Belal et al. 

(2015) tested seven RC columns with different steel jacket’s 

configurations. Specimens were retrofitted with angles, 

channels or plates and they were indirectly loaded. 

Researchers found increases of the axial strength up to 20%, 

but their FE simulations overestimated the load-carrying 

capacity of jacketed specimens up to 58% of the 

experimentally recorded data. 

A recent experimental study on the compressive 

behaviour of RC columns with indirectly loaded jackets was 

performed by Campione et al. (2017). Two series of RC 

columns with different concrete grade and retrofitted by 

steel jackets with no-end connections applied by mortar 

were tested under axial or eccentrical compression. Tests 

have shown that the behaviour of retrofitted columns in 

terms of axial load vs. shortening curve was intermediate 

between the analytical prediction under the assumptions of 

only confinement and that of overall contribution of the 

external jacket.  

Based on obtained results, Campione et al. (2017) 

proposed a fictitious constitutive law of the angles in 

compression. It was a bilinear elastoplastic law, in which 

peak stress was calculated by considering the maximum 

load transferred at interface under the assumption of Mohr-

Coulomb friction criterion, while the strain corresponding 

to peak stress was set arbitrarily equal to strain 

corresponding to peak stress of concrete in compression. 

Despite this approach allows easy calculations, it is clear 

that it is based on empirical assumptions, and it is not able 

to predict the stress state along the interface, but only the 

macroscopic behaviour in terms of load capacity. 

Literature review highlights that mechanically-based 

analytical models are still missing in this field, and no 

analytical model is available to study load transmission 

mechanisms in steel jacketed members. Previous studies 

proposed some models based on simplified or empirical 

assumptions, or on FE simulations, which require the 

calibration of several parameters and a great computational 

effort. In this work, the problem is investigated through an 

analytical model, which idealized the interaction of three 

plane elements connected by a non-linear interface. Closed 

form solution of the model is given under the assumption of 

elastic behaviour of constituent materials, allowing to make 

some considerations for low levels of axial shortening. 

Aiming to extend the model to materials with non-linear 

behaviour, a more reliable constitutive law of the steel-to-

concrete interface is proposed, based on a plasticity 

approach, simplified in a bilinear law for practical 

implementation. Finally, an algorithm is proposed for RC 

members, accounting for the non-linear behaviour of 

concrete, by a piece-wise subdivision of the member in 

small portions, and considering a proper constitutive law of 

the concrete core and steel jacket in compression and 

interface. Results achieved by proposed model are then 

compared with experimental data available in the literature, 

showing good agreement. The proposed approach could be 

an alternative tool to more complex FE simulations for 

calculating the complete response of RC members 

strengthened by steel jackets. 

 
 
2. Elastic analysis 

 

The case study refers to a model of column subjected to 

an imposed axial shortening , with an indirectly loaded 

jacket placed adjacently at the sides (Fig. 2). Preliminary 

assumptions are made for the geometry. In particular, a 

plane model with two axes of symmetry is considered, in 

which the half-length of the column is denoted as “l”. The 

column -layer c- is assumed to be made with a different 

material from the jacket (layer j), and the two layers are 

connected to each other with an interface, whose properties 

are defined in the following.  

In this section, materials are assumed to behave linearly 

in compression with an indefinite strength limit, while 

modulus of elasticity are labelled as Ec and Ej for core and 

jacket respectively. Force is transferred between the two 

layers by means of an interface, the latter assumed to 

transfer only shear stresses τ on the basis of relative slip s 

between core and jacket. The constitutive law of the 

interface defines a relationship between τ and s, and it is 

here assumed as linear elastic with stiffness equal to ktt. It 

should be considered that this assumption can be not always 

reliable. In fact, usually a “stick” phase in which no slips 

occur is likely to occur at low stress levels. However, the 

solution of the problem under the hypotheses of linear 

elastic interface can be useful for extending the solution to 

more complex constitutive laws. A more detailed discussion 

on interface properties is made on the next section with a 

proposal of possible constitutive law. 

The equilibrium equation along x-axis of layer j can be 

written as 

j

x

dN (x)
p (x)

dx
=

 

(1) 
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(a) geometry 

 

(b) interface scheme 

Fig. 2 Proposed model 

 

 

where px(x) is the distribution of shear forces transferred 

through the interface and Nj is the axial force in the layer 

“j”. As it is well-known, internal congruence relates the 

normal strain ε to the axial shortening uj, and considering 

the hypothesis of linear elasticity, it can be written as it 

follows 

j j

j

j j

du (x) N (x)
(x)

dx E A
 = =


 

(2) 

where Aj is the transverse area of the jacket. 

The first order derivative of Eq.(2) can be introduced in 

Eq.(1), and the following relationship holds 

2

j x

2

j j

d u (x) p (x)

dx E A
=


 

(3) 

where Ej and Aj are assumed constant along the column. 

Generally, the constitutive law of the interface allows 

relating the shear forces as a function of relative 

displacement between the two layers. If uc(x) is the 

displacement of the core, generally the shear force at the 

interface can be written as  

( ) ( )( )x c jp x u x u x( ) f= −
 

(4) 

In particular, the constitutive law of a linear pure brittle 

interface is written as 

( ) ( )( )x tt c j ip x k u x u x t( ) =  − 
 

(5) 

where ti is the depth of the interface. 
Therefore, if Eq.(5) is introduced in Eq.(3) the first 

governing equation of the problem is obtained 

( ) ( )( )
2

j tt
c j i2

j j

d u (x) k
u x u x t

dx E A
= −  − 


 

(6) 

Similarly, the equilibrium of the “c” layer can be 

expressed as 

c
x

dN (x)
2 p (x)

dx
= − 

 

(7) 

doing the substitutions similar to that written for layer 

“j”, the second governing equation can be written 

( ) ( )( )
2

c tt
c j i2

j j

d u (x) 2 k
u x u x t

dx E A


=  − 


 

(8) 

Eqns.(6) and (8) express a coupled system of two 

second order differential equations, ruling the force 

transmission in a system of three elastic beams connected 

by a linear interface. Two further parameters are now 

introduced conveniently 

tt i
j

j j

tt i
c

c c

k t

E A

k t

E A


 =




 =


 

(9a) 

(9b) 

βj and βc are the relative stiffness parameters between 

interface and jacket or core respectively. Considering the 

positions of Eq.(9), the system of the two governing 

equations is now re-written as 

2

j 2

j c j2

2
2c
c c j2

d u (x)
(u (x) u (x)) 0

dx

d u (x)
2 (u (x) u (x)) 0

dx


+   − =





−   − =
  

(10a) 

(10b) 

The solution of the system can be obtained more easily 

if the system is usefully uncoupled, aiming to find a unique 

governing equation. The field of displacement in the core 

uc(x) can be explicited by Eq.(10 a) 

2

j

c j 2 2

j

d u (x)1
u (x) u (x)

dx
= −


 (11) 

and the second order derivative of Eq.(11) holds 

2 42
j jc

2 2 2 4

j

d u (x) d u (x)d u (x) 1

dx dx dx
= −


 

(12) 

c jj
k k
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Eq.(12) can be introduced in Eq.(10 b), and the short 

form of the governing equation is finally obtained by 

multiplying both sides for βj
2. 

4 2 2
j j2 c

j4 2 2

j

d u (x) d u (x)
1 2 0

dx dx

 
−  + =     

(13) 

Eq.(13) represents the uncoupled system, which allows 

finding the field of displacements in the jacket and 

consequently that in the core by means of Eq.(12). Involved 

parameters are represented by the relative stiffness 

parameter interface-to-jacket and interface-to-core. It can be 

observed that when the interface is infinitely deformable 

(i.e. βj=βc=0), Eq. (13) is the differential equation of axial 

elastic line in an axially loaded beam element.  

The solution of this homogeneous fourth-order 

differential equation is written in the form 

2 2 2 2
c j c jx 2 x 2

j 1 2 3 42 2 2 2

c j c j

e e
u (x) c c c x c

2 2

 + −  +

=  +  +  +
 +  +

 

(14) 

where c1,c2,c3 and c4 are the unknown constants to be 

calculated by enforcing the boundary conditions. These last 

can be written as it follows 

uj(0)=0 (15a) 

2

j

c 2

x 0

d u (x)
u (0) 0

dx
=

= =

 

(15b) 

2

j

c 2 2

j x l

d u (x)1
u (l)

dx
=

= − = 


 

(15c) 

j

j

x l

du (x)
N (l) 0

dx
=

= =

 

(15d) 

where Eqs.(15a,b) are the symmetry conditions in x=0, 

Eq.(15c) is the compatibility condition at the top section of 

the core (x=l) and Eq.(15d) represents the equilibrium of 

the jacket for x=l. 

Eqs.(15) is the set of equations which allows finding the 

constants appearing in Eq.(14) and solving the elastic 

problem. After constants are known, the expression of uj(x) 

is found and it is expressed as 

( ) ( )( )
( ) ( )

2

j

j 2 2

j c

x Cosh l Sinh x
u (x)

l Cosh l 2 Sinh l

   − 
=

    +   
 

(16) 

where 2 2

c j2 =  +   , while the field of displacements 

in the core uc(x) is evaluated by means of Eq.(11) and 

second order derivative of Eq.(16), leading to the following 

function 

( ) ( )( )
( ) ( )

2 2

j c

c 2 2

j c

x Cosh l 2 Sinh x
u (x)

l Cosh l 2 Sinh l

    +   
=

    +   
 

(17) 

Axial forces in each layer are therefore evaluated by the 

first order derivative of Eqs.(16) and (17) 

( ) ( )( )
( ) ( )

2

j

j j j 2 2

j c

Cosh l Cosh x
N (x) E A

l Cosh l 2 Sinh l

   − 
=

   +   
 

(18) 

( ) ( )( )
( ) ( )

2 2

j c

c c c 2 2

j c

Cosh l 2 Cosh x
N (x) E A

l Cosh l 2 Sinh l

    +   
=

   +   
 

(19) 

It is noted that this approach is similar to the elastic 

method for predicting the load-displacement behaviour of a 

single pile (Goel and Patra 2007). The boundary conditions 

are different and the friction law on the boundary between 

the pile and the soil more complicated. 

Fig. 3 shows an example of application of the elastic 

solution, assuming βj=0.00123 and βc=0.00140, and a 

normalised imposed shortening equal to δ/l=0.001%. Values 

of relative stiffness parameters were set assuming a possible 

example of a square column with side equal to 250 mm, 

strengthened with four steel angles with side equal to 60 

mm and thickness of 8 mm and interface stiffness equal to 

30 N/mm3. Fig. 3a shows the trend of the axial force in both 

layers as along the normalised abscissa x/l of the column. It 

can be noted that the application of the external layer 

modifies the trend of the axial force, being the latter not 

constant along the member. Axial force in the core Nc(x) 

reaches its maximum value at the extremities, while that in 

the jacket Nj(x) increases up to the middle section of the 

member. This fact is due to the absence of slip in 

correspondence of the axis of symmetry x=0, which means 

that the two elements are perfectly connected in the middle 

section. The increase of relative slip at the interface 

s(x)=uc(x)-uj(x) (Fig. 3b) tends to reduce the axial load in 

the external jacket up to the bottom and top sections, in 

which the external layer is totally unloaded and the force is 

sustained only by the core. 

The trend of functions plotted in Fig. 3 are coherent with 

the symmetry conditions of the model, being axial forces 

symmetric and slippage anti-symmetric. The trend of shear 

stresses (Fig. 3c) can be considered almost linear in the 

central zone of the member (i.e. -0.5<x/l<0.5), while an 

intensification in the range 0.5<x/l<1 - or -1<x/l<-0.5 for 

symmetry- is observed. This fact highlights that the most 

stressed parts of interface are those located at about one-

fourth of the total length from the extremities of the 

column, and these zones are those more subjected to 

possible detachment during the loading process. 

 

 

3. Application to RC members: assumptions and 
constitutive relationships 

 

In this section, an algorithm is presented for extending 

the above presented elastic analysis to RC columns. Aiming 

to this target, some preliminary assumptions are here made: 

the lateral expansion of the core is neglected; bending 

effects on the external jacket are assumed to be negligible; 

buckling of external angles is neglected. Additionally, the 

element is considered monotonically loaded which means 

that the existing stress state of the column at the moment of 

jacketing is not considered and as a consequence the  
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(a) 

 

(b) 

 

(c) 

Fig. 3 Elastic solution. a) Trend of axial force; b) 

shortenings and relative slip at interface; c) shear forces 

along the interface. 
 

 

proposed procedure can be applied for low values of 

preload. Further studies should investigate on this aspect. 

Aiming to take into account the non-uniformity of 

concrete behaviour along the member due to the variable 

distribution of axial force, the previously presented model 

of column is divided in “n” parts with equal length “Δ” 

(Fig. 4) and the axial strain is assumed to be constant along 

each segment “i”. 

Transverse and longitudinal rebars inside the column are 

modelled through an elastic perfectly plastic law, the latter 

defined by means of yield stress fy,i, elastic modulus Es,i and 

ultimate axial strain εsu,i. Similarly, the stress-strain relation 

of the jacket is assumed to be elastic plastic with strain 

hardening. Properties of steel jacket are labelled as it 

follows: a yield stress fy,e, elastic modulus Es,e, ultimate 

axial strain εsu,e and hardening modulus Esh. 

 

Fig. 4 Column subdivided in layers 
 

 

The compressive behaviour of the RC core confined by 

the steel jacket and internal stirrups is modelled through the 

confinement model proposed by Montuori and Piluso 

(2009). In this model, the confinement ratios of steel battens 

and stirrups along the two axis of the section, ρz and ρy, are 

calculated in the following form: 

( )

( )( )

( )

( )( )

z s,z b,e

z

s c b c

y s,y c b,e c

y

s c b c

n A b-2c 2A b
ρ = +

s b-2c h -2c s bh

n A h -2c 2A h
ρ = +

s b-2c h -2c s bh
 

(20) 

where As,z and As,y are the areas of a stirrup’s arms in z and 

y directions; nz and ny are the respective numbers; b and hc 

are the dimensions of the cross section; ss and sb are the 

pitches of stirrups and battens; c is the concrete cover and 

Ab is the cross section’s area of the steel battens. In general, 

the yield stress of steel of battens is different to that of 

stirrups, consequently the volumetric ratio refers to an 

equivalent transverse area of the battens Ab,e, defined as 

y,e

b,e b

y,i

f
A =A

f
 

(21) 

The lateral confinement pressures are calculated as follows: 

le,z e z y,i

le,y e y y,i

f =k ρ f

f =k ρ f

 

 
 (22) 

being ke the efficiency coefficient of confinement 

( ) ( )

   
   

   

b st b st

e

c

s - s -
k = 1- 1-

2 b-2c 2 h -2c

 

 

(23) 

while st the diameter of the stirrups. Finally, the stress-

strain law of confined concrete in compression is evaluated 

by the expression given by Mander et al. (1988), which 

calculation is here omitted for the sake of brevity. Reference 

can be made to works of Montuori and Piluso (2009) for its 

complete definition. 

axial shortening r

xj,i+1



l xj,i
iß ji i

1

n

ßci
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4. Steel-to-concrete interface model 
 

In the previous section, the constitutive law of the 

interface –i.e. the shear stress vs. slip relation- was assumed 

to be linear, purely brittle. It is evident that this 

approximation cannot be accepted for the case under 

consideration, in which the steel-to-concrete interaction 

needs to be modelled. In fact, a reliable interface law should 

consider the effect of normal stresses acting on its plane, i.e. 

the confinement pressure due to angles and battens. It is 

clear that a reliable interface model to be implemented in a 

numerical code should combine damage and friction for a 

cohesive zone model. However, the approach here proposed 

is more simplified with respect to FE simulations, and 

consequently a more easy law of interface is developed, 

reminding to literature studies (Alfano and Sacco 2006) for 

a more complete studies on the subject.  

The basic assumption of interface models is that the 

thickness of the layer is so small that it can be neglected in 

a mathematical model. As a consequence, the layer is 

replaced with an interface model where displacement 

discontinuity can occur. In the following, the steel-to-

concrete interface is studied as a zero-thickness element for 

which two adherents are connected through an interaction 

surface (i.e. a mortar layer). The following hypotheses are 

made: -the strain state is uniform through the contact layer; 

- the continuity of contact tractions occurs at the interface; - 

the additive decomposition in the elastic and inelastic parts 

is assumed for the total relative displacement. 

The constitutive law of the interface relate the contact 

tractions to the displacement discontinuities, and the 

evolution of the mechanical state of the interface requires 

the introductions of some internal variables and the 

expression of relations in rate form (Cottone and 

Giambanco 2009). In case of detachment, the following 

general form of the Helmotz free energy density can be 

considered 

( ) ( ) ( ), = +e e e iU U    
 

(24) 

where e is the elastic component of the free energy and i 
is the internal one stored at the interface and related to the 
changes of the interface internal properties and  is the 
kinematic internal variable. Ue is the vector with 
components of elastic relative displacements, while the total 
displacement vector is written as 

  
= + = +  

  

e p

t te p

e p

n n

u u
U U U

u u
 

(25) 

where ut and un are tangential and normal components of 
the relative displacement, while the superscript “e” denoted 
the elastic part and “p” the plastic part. Eq.(24) can be 
expressed in the following form 

( ) ( )21
,

2
= +

Te e

e
u U KU h  

 

(26) 

being 

0

0


= 

 

tt

nn

k
K

k
 

(27) 

the stiffness matrix of the interface and h the 

hardening/softening parameter (negative for softening 

behaviour). 

On these bases, the rate of the free energy is written as 

= + +e e e e

tt t t nn n n
k u u k u u h 

 
(28) 

while the interface dissipation density assumes the 

following form 

= −
T

D U 
 

(29) 

where   is the vector of interface tractions. 


= 

 

t

n

q

q


 

(30) 

The second principle of thermodynamics, taking into 

account the balance equation, can be written as the 

Clausius-Duhem inequality, which reads 

0= − = + − 
T p p p

t t n n
D U h q u q u h  

 
(31) 

in which, Eqs.(25) and (30) were introduced. 

It is worth to note that Eq.(31) is valid for every 

incremental deformation process, including the purely 

elastic ones and from the position Eq.(26) it follows that 


= =



e

e

tt t te

t

k u q
u



 

(32a) 


= =



e

e

nn n ne

n

k u q
u



 

(32b) 

The remaining partial derivative appearing in Eq.(29) 

allows the definition of a static internal variable 

energetically conjugate to . 


= =



e

h


 
  

(33) 

Eqs. (32) and (33) define the interface state in both 

states elastic and plastic. The inelastic dissipative 

mechanism follows a simple linear activation function, 

defined in the space of static variables, which includes 

frictional effects 

( ) ( )0
0= + − + 

t n
q q Tan a  

 
(34) 

where  is the friction angle and a0 is the initial adhesion. 

The maximum dissipation theorem i.e. maximization of 

the functional Eq. (31) under the admissibility conditions 

Eq. (34) allows to obtain the complete set of variable 

constitutive relations. This maximization problem can be 

expressed by adopting the Lagrange multiplier method, 

equivalent to the following unconstrained stationarity 

problem 

( )
,

,min max = −  L D
  

  
 

(35) 

where 𝜆𝑝̇ is the plastic multiplier. Kuhn-Tucker conditions 
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provide the elasto-plastic laws 

( )0


= → =


p

t p t

t

L
u sign q

q


 

(36a) 

( )0 tan


= → =


p

n p

n

L
u

q
 

 

(36b) 

0


= → =


p

L
 

  

(36c) 

with the following loading-unloading conditions 

0, 0, 0  =
p p

    
 (37) 

Eqs. (32), (33), (36) and (37) describe the response of 

the interface. If the displacement history is monotonic 

(u>0), the following assumptions can be made 

= =p p

p
u  

 (38) 

The interface constitutive law reads 

( )= − pK U U
 (39) 

Therefore, the activation function in this stage is equal 

to zero, and it assumes the following form 

( )

( ) ( ) ( )0
0

= − +

+ − − + =

tt t p

nn n p p

k u

k u Tan a h

 

  

 
(40) 

Eq. (40) represents an equation which allows calculating  

𝜆𝑝. It assumes the following form: 

0
tan( )

tan( )

+ −
=

+ +
tt t nn n

p

tt nn

k u k u a

k k h





 

(41) 

If Eq. (41) is introduced in Eq. (39), the following 

expression holds 

0
tan( )

( )
tan( )

+ −
= −

+ +
tt t nn n

t tt t

tt nn

k u k u a
q k u

k k h




 

(42) 

It can be observed that as expected the response of the 

interface depends on the values of stiffness ktt and knn and 

on internal parameters a0 and . Additionally, if knn is set 

equal to zero, Eq.(42) provides the constitutive law 

proposed by Cottone and Giambanco (2009) for FRP-

concrete joints in absence of normal stress. The calibration 

of parameters for the interface constitutive law is a difficult 

task, which requires experimental tests with complex set-up 

for considering the effect of the normal stress. In the 

following, some assumptions are made in order to simplify 

the interface model : no relative normal displacement 

occurs at the steel-to-concrete interface (i.e. un=0); the 

interface stiffness normally to its plane tends to infinitive  

– i.e. knn-->. Under these assumptions, the interface  

 

Fig. 5 Constitutive model of the interface 

 

 

constitutive law Eq. (38) becomes a linear function 

=
t tt t

q k u . 

As a consequence in the following the assumed shear 

stress-slip law is that presented in Fig. 5. It is represented 

by the following equations: 

0

0
(

0

 =  


=  


= 

tt t t t

ts tf t t t tf

t tf

k u   for  0 u u

k u -u )  for  u u u

  for  u u






 

(43) 

that is the simplified bilinear function suggested in Chen 

and Teng (2001) for steel-to-concrete interfaces. According 

to the approximation of a no-thick layer, the interface 

stiffness ktt can be calculated as 

= i

tt

i

G
k

t
 

(44) 

where Gi is the minimum shear modulus of the mortar used 

for placing the angles – ti is the thickness of the interface.  

The maximum shear strength is calculated by the Mohr-

Coulomb criterion, where the normal stress acting at the 

interface can be imposed equal to the confinement pressure 

max
= +

le
c f 

 (45) 

where the cohesion strength c can be assumed equal to 0.1, 

as suggested in Adam et al. (2009) and the friction 

coefficient  can vary in the range 0.2-0.6 as reported in 

Campione et al. (2017). Finally, fle is the effective 

confinement pressure calculated as the minimum value 

between flx and fly, according to Eqs. (22). 

 

 

5. Numerical procedure 

 

Equations developed for the elastic model are 

introduced into an incremental procedure by following a 

tangent approach and solving the problem in a partitioned 

domain. 
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An axial shortening δr is assigned to the core and at each 

analysis step and a system of non-linear equations is solved 

through a number of iterations.  

Considering the generic r-th step and its k-th iteration, 

the coordinates of all the portions dividing the member are 

resumed in the following vectors: 

 
T

r,k r,k r,k r,k

c c,1 c,i c,n+1

T
r,k r,k r,k r,k

j j,1 j,i j,n+1

x = x ...x ...x

x = x ...x ...x    

(46a) 

(46b) 

It is observed that for the first step (r=1), 𝑥𝑐,𝑙
𝑟,𝑘

 and 𝑥𝑗,𝑙
𝑟,𝑘

 

represent the coordinates of the origin of the reference 

system, while the remaining components are the positions 

of the portions in the undeformed configuration of the 

column.  

Stiffness parameters Ec,i
rk , Ej,i

rk and ktti
rk can be assigned 

for each part “i” to the concrete core, steel jacket and 

interface, on the basis of adopted constitutive laws of 

materials, which are known at first iteration from the elastic 

solution. The stiffness parameters are resumed by the 

coefficients βc e βj defined by Eqns. (9a, b), which can be 

written into the following vectors: 

 

T
r,k r,k r,k r,k

j j,1 j,i j,n

T
r,k r,k r,k r,k

c c,1 c,i c,n

= ... ...

= ... ...

   

   

  

 

(47a) 

(47b) 

The governing equation ruling the response of the “i-th” 

jacket’s portion is therefore written with reference to its 

domain 

 

r,k r,k r,k r,k

c,i j,i c,i j,ix 2 + -x 2 +
r,k
j,i 1,i 2,i 3,i 4,ir,k r,k r,k r,k

c,i j,i c,i j,i

r,k r,k
j,i j,i+1

e e
u (x)=c +c +c x+c  

2 + 2 +

x x x ,i [ 1,n ]

   

  
   

  
 

(48) 

being 𝑥𝑗,𝑖
𝑟,𝑘 and 𝑥𝑗,𝑖+1

𝑟,𝑘
 are the coordinates at the extremities 

of the “i-th” jacket’s segment. 

It is noted that Eq. (48) is applied to determine the 

distribution of incremental relative displacement induced by 

imposed “shortening”. Consequently, the incremental 

symbol should be added to uj,i
r,k, but it is here omitted for 

the sake of clarity in the notation. 

The trend of axial shortening in the core is obtained by 

the following relation 

 

2 r,k
j,ir,k r,k

c,i j,i 2 r,k 2
j,i

r,k r,k
c,i c,i+1

d u (x )1
u (x ) = u (x ) - 

d x

x x x ,i [ 1,n ]



  
 

(49) 

where 𝑥𝑐,𝑖
𝑟,𝑘  and 𝑥𝑐,𝑖+1

𝑟,𝑘
 are the coordinates at the 

extremities of the “i-th” core’s piece. Integration constants 

appearing in Eq. (46) are calculated by enforcing boundary 

conditions for each portion. In particular, four compatibility 

equations can be imposed on the contact surface between 

the two adjacent segments 

r,k r,k

j,i j,i

r,k

c,i

r,k r,k r,k r,k
j,i j,i j,i+1 j,i

r,k r,k
j,i j,i+1r ,k r ,k

j,i j j,i+1 j

x=x x=x

r,k r,k r,k r,k
c,i c,i c,i+1 c,i+1

r,k
c,ir ,k r ,

c,i c c,i+1

x=x

u (x ) - u (x ) =  0

du (x) du (x)
E A  - E  A  = 0

dx dx

u (x ) - u (x ) =0

du (x)
E  A  - E

dx
r,k

c,i

r,k
c,i+1k

c

x=x

du (x )
 A  = 0

dx
 

(50a) 

 

(50b) 

 

(50c) 

 

(50d) 

Constants are finally calculated by solving the previous 

system of Eqs. (50). The updated positions of the ends of all 

the column’s pieces can be now calculated 

)

)

r,k+1 r,k r,k r,k

c,i c,i c,i c,i

r,k+1 r,k r,k r,k

j,i j,i j,i j,i

x = x + u (x

x = x + u (x
 

(51a) 

(51b) 

The length of each piece Δ is now reduced due to the 

vertical displacements. It can be computed as 

r,k+1 r,k+1 r,k+1

c,i c,i c,i-1

r,k+1 r,k+1 r,k+1

j,i j,i j,i-1

x x

x x

 = −

 = −
 

(52a) 

(52b) 

and the lengths obtained are subsequently resumed in the 

following vectors 

Tr,k+1 r,k+1 r,k+1 r,k+1

c c,1 c,i c,n

T
r,k+1 r,k+1 r,k+1 r,k+1

j j,1 j,i j,n

= ... ...

= ... ...

     

       

(53a) 

(53b) 

Finally, the axial strain along each layer can be 

calculated as ratio between the shortening of each layer by 

the initial length 

r,k+1

r,k+1 c,i

c,i

r,k+1

j,ir,k+1

j,i

=

=





 − 



 − 

  

(54a) 

(54b) 

assuming that axial strain is constant along each column’s 

piece. Once that axial strains are known by Eqs.(54), the 

updated values of stiffness moduli in the vectors Eqs.(47) 

are evaluated on the basis of adopted constitutive laws. 

Axial forces in all core and jacket’s layers are computed 

from these updated values of stiffness moduli, by evaluating 

the first order derivative of axial shortening laws. Similarly, 

the shear stress at the interface of each layer is calculated by 

means of relative slippage between core and jacket 

r,k+1 r,k+1 r,k+1 r,k+1
i i c,i j,i(x) = k  u (x) u (x)  −

   
(55) 

where the shear stiffness of the interface ki
r,k+1 is updated at 

each step.  

Afterwards, equilibrium conditions are verified at the 

generic k-th iteration by checking that the unbalanced 
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residual respected a selected tolerance 

( ) ( )

( )

r,k

c,i+1

r,k

c,i

r,k r,k r,k r,k
c,i+1 c,i+1 c,i c,i

x

r,k r,k
c,i i

x

N x -N x +

+2 t Δ τ x  dx < tol2

 
 


 (56) 

where the second addend indicates the total shear force 

acting along the interface of a layer, while the first term is 

the difference between the axial forces acting to the end of 

the same. 

Afterwards, a successive iteration –i.e. the (k+1)-th 

iteration- is carried out by solving the system (48) on the 

basis the new values of tangent stiffness moduli and the 

new position of the ends of all the column’s pieces (50a,b). 

The iterations of each load step concludes when the residual 

of axial strain for each layer is less than a selected tolerance 

r,k+1 r,k

c,i c,i

r,k+1 r,k

j,i j,i

ε - ε < tol

ε - ε < tol
 

(57a) 

(57b) 

These last equations represent the convergence criteria 

to be applied to find the numerical solution. This task was 

achieved by adopting chord method and updating at each 

step the tangent stiffness vectors represented by Eqns.(47). 

The increments of displacement δ are stopped when the 

ultimate axial strain of the confined concrete is achieved 

into a generic portion of the column. 
 

 

6. Parametric analysis 

 

A parametric analysis on obtained results is performed 

in order to study the influence of all parameters on the 

results given by the algorithm.  

Constitutive laws and properties of materials are 

considered equal for all cases examined. In particular, all 

examples assume concrete compressive strength equal to 15 

MPa, while the yield and ultimate stress of the steel jacket 

are equal to 275 MPa and 430 MPa, respectively. The 

constitutive law of steel is assumed to be elastoplastic with 

Young’s modulus equal to 210000 MPa and hardening 

modulus 5000 MPa. 

 

6.1 Effect of interface’s stiffness 
 

A square column with size b equal to 300 mm is 

considered. The overall length of the column is 2l = 820 

mm, and it was divided in 12 segments. The width of the 

external jacket wj is equal to 10 mm and the interface depth 

t is 200 mm; two values of interface stiffness ktt are 

considered equal to 1.25 and 5.00 N/mm3, simulating a 

weak interface with low grade mortar and a rigid interface 

with an high strength mortar. A large variation of these 

parameters is choose in order to check the influence of ktt 

on the compressive response of the jacketed column.  

Fig. 6 shows the trend of the axial load as a function of 

the axial strain, and compares the response of the retrofitted 

member with the two boundary cases of directly loading  

 

Fig. 6 Compressive behavior of steel-jacketed columns 

with different interface stiffness ktt 

 

 
(a) 

 
(b) 

Fig. 7 Effect of interface’s stiffness on the distribution of 

shear stresses: (a) ktt=1.25 N/mm3; (b) ktt=5.00 N/mm3 

 

 

and only confinement of the RC core. The compressive 

response of the retrofitted column increases for increasing 

values of the interface stiffness, due to the greater amount 

of shear stress, developed at the interface and consequently 

due to the greater axial force sustained by the jacket. This 

fact is more evident from Fig. 7, which shows the trend of 

interface shear stress (τ) as a function of the normalized  
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(a) 

 
(b) 

 
(c) 

Fig. 8 Effect of jacket’s width (a) axial strains along the 

core; (b) stiffness modulus; (c) Normalized axial 

shortening vs. axial load; 

 

 

abscissa (x/l) and for the two values of interface’s stiffness 

analysed. Considered functions are plotted for four analysis 

steps, corresponding to the imposed shortenings (δ/l) equal 

to 0.0016, 0.003, 0.004 and 0.006.  

It is observed as similarly to the case of elastic interface, 

shear stresses are greater for the case of stiff interface. 

Shear stress increases from the centre of the member up to  

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Effect of interface depth: (a) axial strains along the 

core; (b) stiffness moduli; (c) Normalized axial shortening 

vs. axial load; 
 
 

the maximum value, which is always achieved in 

correspondence of a normalized abscissa equal to x/l=0.8. It 

is worth to observe that interface stiffness does not affect 

the location of the maximum stress but only its value. After 

the maximum stress demand is achieved, the interface zone 

in the range 0.8<x/l<1 is subjected to detachment, meaning 

that the slip reaches higher values and the trend of the shear 

stresses follows the softening branch of the constitutive law. 
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6.2 Effect of jacket’s width 
 

Column examined in the second example has square 

cross section (b=400 mm) and height equal to 2l = 2500 

mm, partitioned in 50 portions. The interface stiffness ktt is 

4.44 N/mm3 and the interface depth t is 200 mm, while 

three different widths wj were considered for the jacket, 

equal to 20, 30 and 40 mm. Fig. 8 shows the results in terms 

of axial strains, stiffness modulus of the core and the load-

shortening curves calculated by proposed model. It can be 

observed that the width of the jacket has a small influence 

on the trend of axial strains, as shown in Fig. 8a, with the 

exception of the maximum value reached for x/l=1. In this 

last case, the increase of the jacket’s width induces an 

amplification of the axial strain at the top of the column, 

and as a consequence the ultimate strain of the concrete is 

reached in an earlier step. This can be observed from the 

trend of stiffness moduli (Fig. 8b), and from the load-

shortening curves (Fig. 8c), highlighting as the peak load of 

the retrofitted member is similar, but it is reached for 

slightly lower values of axial shortening for increasing 

values of wj. 

 

6.3 Effect of interface’s depth 
 

The last example refers to a column with the same 

geometrical features of the core of Example B. In this case, 

the width of steel angles is kept constant and equal to 30 

mm, while three values of interface depth t, equal to 200, 

300 and 400mm, are examined. Finally, in example C the 

width of steel angles is kept constant and equal to 30 mm, 

while three values of interface depth t, equal to 200, 300 

and 400mm, are examined. 

Fig. 9 shows the trend of axial strains, stiffness moduli 

and the load-shortening curves computed by the proposed 

approach. It is noted as the influence of the interface depth 

is similar to that achieved by the width. In fact, the 

distribution of axial strains and stiffness moduli is similar 

observed in Fig. 9a and b is similar to that shown in Fig.8. 

Greater axial strains are obtained at the top of the member 

for t=400 mm (Fig. 9a), especially for large values of 

shortening; on other hand,  a deeper interface induces 

higher stiffness moduli at the centre (Fig. 9b), while the 

damage is concentrated at the top of the member. 

Consequently, also in this case the ultimate shortening of 

columns with larger core-to-jacket interface tends to be 

lower (Fig. 9c).  
 

 

7. Experimental comparison 

 

The proposed model is validated through comparisons 

with experimental data obtained by Campione et al. (2017). 

In this last study, two columns with rectangular cross 

section were considered with dimensions equal to 220x300 

mm and total length 2l = 810mm. The external jacket was 

made by four 50x50x5 mm steel angles of grade S275; 

therefore, data assumed in the algorithm were thickness of 

the jacket equal to wj=5 mm, interface depth t=200 mm, 

fy=275 MPa, fsu=430 MPa, Es=210000 MPa and Esh=50000 

MPa. The two columns were created concrete of different 

 

(a) 

 

(b) 

Fig. 10 Comparison between predictions of the proposed 

algorithm and experimental data by Campione et al. 

(2017); a) Column A; b) Column B 

 

 

compressive strength. In particular, the column “A” was 

made with concrete grade fc=12.65 MPa, instead, the 

concrete of the column “B” was grade fc=24.00 MPa. The 

value adopted for the interface stiffness was ktt=50 N/mm3 

for both columns. The latter are divided in 15 layers, that is 

each layer of the columns is high 6.66%l. 

Fig. 10 shows the comparison experimental data and 

theoretical predictions. In particular, the axial strain vs. 

axial load curves of the specimens A and B obtained in 

Campione et al. (2017) are compared with the analytical 

predictions achieved by the proposed algorithm. 

Additionally, the theoretical response of the directly loaded 

member and that achievable only by confinement are 

reported. It can be observed that the proposed model is able 

to predict the axial capacity and the initial stiffness. The 

latter is overestimated in the column A due to the great 

initial stiffness of the constitutive law adopted for the 

confined core. Furthermore, the algorithm reveals a good 

accuracy in predicting of the post-peak branch. It is also 

clear that the response of the member jacketed with end 

connections and the response of the confined column are 

substantially different from the experimental result, as they 

represent the upper and lower bound of the compressive 

behaviour of the jacketed member. 
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8. Conclusions 
 

This paper presented a novel analytical algorithm for 

predicting the compressive response of RC columns 

retrofitted with external jackets with no-end connections. 

The proposed model is based on the closed form solution 

valid under the assumption of linear elastic behaviour of 

constituent materials and of the interface. Finally, the non-

linear response of RC member is taken into account 

partitioning the column into layers and assuming the elastic 

solution in each portion and introducing a possible bilinear 

law of the steel-to-concrete interface. From the application 

of the proposed approach and for the range of examined 

variables, the following conclusions can be drawn: 

• results of parametric analysis stressed that a more rigid 

interface increases the axial capacity of the column. 

However, it is important to note that an increase of the 

interface stiffness leads to the intensification of the axial 

strain at the extremities of the column and so the overall 

ultimate shortening is lower; 

• the increase of depth and thickness of the interface is 

not influent on the axial capacity of the column, but it 

allows to reduce shear stresses along the concrete-to-steel 

interface; 

• the experimental validation was made by comparing 

analytical predictions with experimental results obtained by 

Campione et al. (2017), showing a broad good agreement. 

However, the comparison is limited to two results due to the 

lack of experimental data available in the literature. More 

experimental works should be addressed in the future for a 

correct validation of the proposed approach. 
 
 

References 
 

Achillopoulou, D.V. (2017), “Investigation of load transfer along 

interfaces of jacketed square columns”, Struct. Eng. 

Mech., 63(3), 293-302. 

https://doi.org/10.12989/sem.2017.63.3.293. 

Ahmedt, M., Oehlers, D.J. and Bradford, M.A. (2000), 

“Retrofitting reinforced concrete beams by bolting steel plates to 

their sides. Part 1. Behaviour and experiments”, Struct. Eng. 

Mech., 10(3), 211-226. 

https://doi.org/10.12989/sem.2000.10.3.211 

Adam, J.M., Ivorra, S., Pallarés, F.J., Giménez, E. and Calderón, P. 

A. (2009), “Axially loaded RC columns strengthened by steel 

caging. Finite element modelling”, Construct. Build. 

Mater., 23(6), 2265-2276. 

https://doi.org/10.1016/j.conbuildmat.2008.11.014. 

Alfano, G. and Sacco, E. (2006), “Combining interface damage 

and friction in a cohesive-zone model”, J. Numeric. Methods. 

Eng., 68, 542-582. https://doi.org/10.1002/nme.1728. 

Badalamenti, V., Campione, G. and Mangiavillano, M.L. (2010), 

“Simplified model for compressive behaviour of concrete 

columns strengthened with steel angles and strips”, J. Eng. 

Mech., 136(2). https://doi.10.1061/(ASCE)EM.1943-

7889.0000069, 230-238. 

Belal, M.F., Mohamed, H.M. and Morad, S.A. (2015), “Behavior 

of reinforced concrete columns strengthened by steel jacket”, HBRC 

J., 11(2),201-212. https://doi.org/10.1016/j.hbrcj.2014.05.002. 

Campione, G., Cavaleri, L., Di Trapani, F. and Ferrotto, M.F. 

(2017), “Frictional effects in structural behavior of no-end-

connected steel-jacketed RC columns: experimental results and 

new approaches to model numerical and analytical response”, J. 

Struct. Eng., 143(8). https://doi.org/10.1061/(ASCE)ST.1943-

541X.0001796. 

CEN (European Committee for Standardization) (2005a), “Design 

of composite steel and concrete structures. Part 1: General rules 

for buildings”, Eurocode 4, Brussels, Belgium. 

CEN (European Committee for Standardization) (2005b), “Design 

of structures for earthquake resistance. Part 1: General rules, 

seismic actions and rules for buildings”, Eurocode 4, Brussels, 

Belgium. 

Chen, J.F. and Teng, J.G. (2001), “Anchorage strength models for 

FRP and steel plates bonded to concrete”, J. Struct. Eng., 127(7), 

784-791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784). 

Cottone, A. and Giambanco, G. (2009), “Minimum bond length 

and size effects in FRP–substrate bonded joints”, Eng. Fracture 

Mech., 76(13), 1957-1976. 

https://doi.org/10.1016/j.engfracmech.2009.05.007. 

Di Ludovico, M., Balsamo, A., Prota, A. and Manfredi, G. (2008), 

“Comparative assessment of seismic rehabilitation techniques on 

a full scale 3-story RC moment frame structure”, Struct. Eng. 

Mech., 28(6), 727-

747. https://doi.org/10.12989/sem.2008.28.6.727. 

Giménez, E., Adam, J.M., Ivorra, S., Moragues, J.J. and Calderón, 

P.A. (2009), “Full-scale testing of axially loaded RC columns 

strengthened by steel angles and strips”, Adv. Struct. Eng., 12(2), 

169-181. https://doi.org/10.1260%2F136943309788251704. 

Goel, S. and Patra, N.R. (2007), “Prediction of load displacement 

response of single piles under uplift load”, Geotech. Geol. Eng., 

25, 57. https://doi.org/10.1007/s10706-006-0006-3. 

Mander, J.B., Priestley, M.J.N. and Park, R. (1988), “Theoretical 

stress-strain model for confined concrete”, ASCE J. Struct. Eng., 

114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-

9445(1988)114:8(1804). 

Montuori, R. and Piluso, V. (2009), “Reinforced concrete columns 

strengthened with angles and battens subjected to eccentric 

load”, Eng. Struct., 31(2), 539-550. 

https://doi.org/10.1016/j.engstruct.2008.10.005. 

Nagaprasad, P., Sahoo, D.R. and Rai, D.C. (2009), “Seismic 

strengthening of R.C. columns using external steel cage”, 

Earthq. Eng. Struct. Dyn., 38(14), 1563-1586. 

https://doi.org/10.1002/eqe.917. 

Oehlers, D.J., Nguyen, N.T. and Bradford, M.A. (2000), 

“Retroffitting by adhesive bonding steel plates to the sides of RC 

beams. Part 1: Debonding of plates due to flexure”, Struct. Eng. 

Mech., 9(5), 491-504. https://doi.org/10.12989/sem.2000.9.5.491. 

Tarabia, A.M. and Albakry, H.F. (2014), “Strengthening of RC 

columns by steel angles and strips”, Alexandria Eng. J., 53(3), 

615-626. https://doi.org/10.1016/j.aej.2014.04.005. 

Thermou, G.E., and Elnashai, A.S. (2006), “Seismic retrofit 

schemes for RC structures and local–global consequences”, 

Prog. Struct. Engng. Mater., 8(1), 1-15. 

https://doi.org/10.1002/pse.208. 

Vandoros, K.G. and Dritsos, S.E. (2006), “Interface treatment in 

shotcrete jacketing of reinforced concrete columns to improve 

seismic performance”, Struct. Eng. Mech., 23(1), 43-61. 

https://doi.org/10.12989/sem.2006.23.1.043. 

Yuce, S.Z., Yuksel, E., Bingol, Y., Taskin, K. and Faruk 

Karadogan, H. (2007), “Local thin jacketing for the retrofitting 

of reinforced concrete columns”, Struct. Eng. Mech., 27(5), 589-

607. https://doi.org/10.12989/sem.2007.27.5.589. 

 

 

CC 

244




