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1. Introduction 
 

Novel Microelectromechanical systems (MEMS) and 

related micro-scale actuators are technology of microscopic 

devices, particularly utilized with moving parts of 

mechatronics, composed of arbitrary beam, plate and shell 

structures. However, these structures may be exposed by 

small interactions of internal and external devices, but at the 

micro- scale, these reciprocal actions may lead to create 

undesirable loads to make instability. Therefore, their 

buckling or instable behaviors are interested to make 

reliable or accurate actions. Although, there are so many 

works representing to elastic behaviors of cantilever 

actuators in the micro and nanoscales for various loading 

conditions and geometries. However, there are little efforts 

available for the permanent plastic behavior of the MEMS 

structures and actuators. The observations of experiments 

have shown the features of a case strongly size-dependent 

mechanical behavior at the small scales (Liu et al. 2017). It 

is known that prediction of material behavior in the micro- 

scale deformation to be failed if the classic continuum 

mechanic principles are used alone (Aifantis 2009). 

Examples of these experiments include the wire torsion 

(Fleck et al. 1994) thin-film bulge (Xiang and Vlassak 2006) 

and (Cordill et al. 2004), micro bend (Stölken and Evans 

1998), and the indentation test (Stelmashenko et al. 1993) 

and (Cordill et al. 2004). So, the classic plasticity relations 

should be developed to can explain the behavior of metal in  
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micro and sub-micron scale and include the parameter of 

size effect. So far a particular physical concept that 

describes the length scale parameter and acceptable for the 

researcher has not offered. Indeed, the only thing that we 

can say with certainty that’s the length scale in the form a 

multiple of high-order strain gradient come in equations and 

were trying to help justify behavior is dependent on the size 

of the material. However, efforts to find a physical 

explanation for the length scale of done. Initial efforts have 

tried to the inner length scale be linked micro-structure (Nix 

and Gao 1998). The non-local continuum is provided for the 

gradient formulations as the higher order gradients imply to 

the coefficients representing dependency of the parameters 

on the material dimensions. Particularly, several gradient 

plasticity (SGP) theories have been introduced to related 

problems of the small and large deformations. In this regard, 

comprehensive literature reviewing the SGP variety with 

discussions can be found in (Liu et al. 2017), (Darvishvand 

and Zajkani 2019a) and (Darvishvand and Zajkani 2019b) 

divided into two categories:  

Firstly, the low-order theories were introduced by 

Acharya et al. (Acharya and Beaudoin 2000). Then, Chen 

and Wang (Chen and Wang 2000) proposed a new 

hardening law for the strain gradient plasticity. Huang and 

et al. (Huang et al. 2004) presented the conventional 

mechanism-based strain gradient (CMSG) plasticity theory. 

These theories have the conventional theory of plasticity 

with a plastic strain gradient in the form of quasi their time 

or tangential module. In other words, a consistent term can 

conjugate with the effects of the strain gradient plasticity in 

a yield function as such way that the classical equations 

remain with conventional boundary conditions. Based on 
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the C-W low-order strain gradient theory, a new strain 

gradient theory including damage effect was successfully 

proposed recently (Ban et al. 2017), which could explain 

the coupling effect of size and damage induced by 

deformation on the mechanical behavior of thin-wire 

torsion, thin-beam bending (Ban et al. 2017), and the tensile 

and compressive strength of micro-particle reinforced 

composites (Ban et al. 2019).  

The second type is the high-order theories that they have 

additional boundary conditions with high order stress. 

Firstly, a model based on an inner length scale was 

presented by (Aifantis 1987). Then, Fleck and Hutchinson 

reported alternate model according to considerations bases 

on three inner length scales (Fleck and Hutchinson 1997). 

Moreover, by using a Taylor dislocation model, Gao and et 

al. (Gao et al. 1999; Huang et al. 2000) proposed an 

efficient mechanism-based strain gradient (MSG) plasticity 

theory. This theory is in two frameworks; first, at the micro 

scale, the Taylor formula of the flow strength, suitably 

modified to account for both SSD (statistically stored 

dislocation) and GND (geometrically necessary dislocation) 

and this framework haven’t high order stress (that explained 

in part 2). At the second case for the mesoscale, it is 

sufficiently large to connect the notion of geometrically 

necessary dislocation to the gradient of strain field and to 

institute the constitutive framework based on the Taylor, 

dislocation model. 

Results obtained from MSG model well agree with 

micro-indentation experiments of bulk copper (Elhaney et 

al. 1998), indentation tests of aluminum thin film on a glass 

substrate (Shi et al. 2008), micro-torsion (Fleck et al. 1994), 

micro-bending experiments (Stölken and Evans 1998) and 

on metal matrix composites (Xue et al. 2002b). Also, it has 

been successfully applied to study a few Important 

problems at the micron and submicron scales as the micro-

electro-mechanical systems (Xue et al. 2002a), fracture 

(Jiang et al. 2001; Lü et al. 2000), and plastic flow 

localization (Shi et al. 2000). 

Immeasurable of the micro beam applications in electro-

mechanical microsystems encourage researchers to analyze 

the behavior of that. Micro-beam bending in the elastic and 

plastic are highly regarded research (Challamel and Wang 

2008; Chen and Feng 2011; Park and Gao 2006; Patel et al. 

2017; Wang et al. 2003). Idiart (Idiart et al. 2009) using 

Fleck and Willis gradient plasticity theory (Fleck and Willis 

2009) analyzed the size effects in the curvature of thin 

beams. Shi et al. (Shi et al. 2008) studied the behavior of 

elastoplastic micro beam using couple stress plasticity. Mao 

(Mao et al. 2013) examined the strain gradient effects and 

stress-strain curves on the micro-scale micro-beam bending. 

Arsenlis (Arsenlis 1999) analyzed the elastoplastic micro-

beams made of smart materials using a mechanism-based 

strain gradient plasticity theory. Feng (Chen and Feng 2011) 

did a bending analysis of the micro cantilevers based on the 

Chen-Wang strain gradient plasticity theory. Moreover, 

Lubarda (Lubarda 2017) presented analysis of pure bending 

of rigid-plastic beams in strain gradient plasticity. 

In two past decades, there are so many works around of 

the elastic behavior of the micro and the Nano beams 

founded for various loading, geometries, and conditions. 

But, from author's knowledge, there is a little effort 

available in the plastic area. In this regard, we can refer to 

the references inside (Liu et al. 2017). Therefore, the main 

purpose of the paper is to analyze the plastic buckling 

behavior of the micro beam in three boundary conditions; 

simply supported, cantilever and clamp-simply supported 

micro beams. For each case, we calculate the eigenvalue, 

critical force and get government equation of buckling for 

the micro beams by illustrating the first three modes of the 

buckled micro beams. In addition, the effect of length scale 

on a significant force is determined by using a CMSG 

plasticity model in conjunction with the multiple plastic 

work hardening exponents. This model can be categorized 

as a novel structural work dedicated as the micro devices 

studies when their plastic buckling behavior is especially 

important during their implementation in the microsystems 

applications.  

 

 

2. Conventional Mechanism-based strain gradient 
(CMSG) plasticity 

 

The CMSG plasticity theory is based on the Taylor 

model of dislocation hardening. Taylor explained that the 

Peach-Koehler force caused by the interaction of a pair of 

dislocations is proportional to: 

𝜏 ∝
𝜇𝑏

𝐿0
 (1) 

where 𝜇 is the shear modulus, 𝑏 is the magnitude of 

the Burgers vector, and 𝐿0 is the average of the distance 

between dislocations. The critical resolved shear stress for 

the moving dislocation to overcome this stress field is 

defined as 

𝜏 =
𝛼𝜇𝑏

𝐿0
= 𝛼𝜇𝑏√𝜌 (2) 

That 𝛼 is an empirical coefficient, which takes values 

between 0.3 and 0.5, and 𝜌 is the dislocation density. 

Nix and Gao (Nix and Gao 1998) generalized the 

Taylor's model for the dislocation hardening criterion by 

showing the relation between the dislocation density and 

shear stress as:  

𝜏 = 𝛼𝜇𝑏√𝜌𝑇 = 𝛼𝜇𝑏√𝜌𝑆 + 𝜌𝐺 (3) 

where 𝜌𝑇  is the total dislocation density,  𝜌𝑆  is the 

density of statistically stored dislocations (SSD), 𝜌𝐺  is the 

density of geometrically necessary dislocations (GND), and 

𝜌𝐺  can be related to the effective plastic strain gradient 

𝜌𝐺 = �̅�
𝜂

𝑏
 (4) 

where �̅� is a Nye-factor and is around 1.90 for the face-

centered - cubic (FCC) poly-crystals (Arsenlis 1999). The 
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tensile flow stress flow 𝜎𝑓𝑙𝑜𝑤 is related to the shear flow 

stress 𝜏 by 

𝜎𝑓𝑙𝑜𝑤 = 𝑀𝜏 = 𝑀𝛼𝜇𝑏√ 𝜌𝑠 + �̅�
𝜂

𝑏
 (5) 

𝑀 is Taylor factor and 𝑀 = 3.06 for the FCC metals. 

In the absence of the strain gradient term, the equation (5) 

degenerates to the classical plasticity law 

𝜎𝑓𝑙𝑜𝑤 = 𝑀𝛼𝜇𝑏√𝜌𝑠 = 𝜎𝑌𝑓(휀�̅�) (6) 

where 𝜎𝑌  is an initial yield stress, 𝑓  is a non-

dimensional function of plastic strain 휀�̅� , and 𝜎𝑌𝑓(휀�̅�)  

represents the stress-plastic strain curve in an uniaxial 

tension. The combination of relations (5) and (6) gives the 

flow stress accounting for the non-uniform plastic 

deformation associated with the geometrically necessary 

dislocations as 

𝜎𝑓𝑙𝑜𝑤 = √[𝜎𝑌𝑓(휀�̅�)]
2 +𝑀2�̅�𝛼2𝜇2𝑏𝜂𝑝

= 𝜎𝑌√𝑓
2(휀�̅�) + 𝑙𝜂 

(7) 

which 

𝑙 = 𝑀2�̅�𝛼2 (
𝜇

𝜎𝑌
)
2

𝑏 = 18𝛼2 (
𝜇

𝜎𝑌
)
2

𝑏 (8) 

where 𝑙  is an intrinsic material length in the strain 

gradient plasticity theories. From the uniaxial power law 

stress-strain relationship,  

𝑓(휀�̅�)  = 휀�̅�
𝑁 (9) 

where 𝑁 is a plastic work hardening exponent. The 

flow stress is then obtained from Taylor’s relationship as 

𝜎𝑓𝑙𝑜𝑤 = 𝜎𝑌√휀�̅�
2𝑁 + 𝑙𝜂 (10) 

That 휀�̅� is the effective strain and defined as 

휀�̅� = √
2

3
휀𝑖𝑗
′ 휀𝑖𝑗

′  (11) 

and 휀𝑖𝑗
′  is the deviatoric strain. The components of 

strain gradient corresponding to displacement field are 

given by 

𝜂𝑖𝑗𝑘 = 𝑢𝑘,𝑖𝑗  (12) 

The effective plastic strain gradient 𝜂 in relation (10) 

is: 

𝜂 = √
1

4
𝜂𝑖𝑗
′ 𝜂𝑖𝑗

′  (13) 

where 𝜂𝑖𝑗
′  is the deviatoric strain gradient and defined 

as: 

𝜂𝑖𝑗𝑘
′ = 𝜂𝑖𝑗𝑘 −

1

4
(𝛿𝑖𝑘𝜂𝑗𝑝𝑝 − 𝛿𝑗𝑘𝜂𝑖𝑝𝑝)   (14) 

Substitution of relation (10) into flow rule, a constitutive 

equation of the deformation theory of the CMSG plasticity 

is obtained as 

𝜎𝑖𝑗
′ =

2휀𝑖𝑗

3휀�̅�
𝜎𝑓𝑙𝑜𝑤 =

2휀𝑖𝑗

3휀
𝜎𝑌√휀�̅�

2𝑁 + 𝑙𝜂 (15) 

Also, the effective flow stress is 

𝜎𝑝 = √
2

3
𝜎𝑖𝑗
′ 𝜎𝑖𝑗

′  (16) 

 

 

3. Plastic buckling of micro-beam 
 

Firstly, displacement fields of the beam based on the 

Euler-Bernoulli kinematics are given as 

𝑢1 = −𝑧𝑤
′(𝑥), 𝑢2 = 0,     𝑢3 = −𝑤(𝑥) (17) 

The components of strain corresponding to this 

displacement field are written by  

휀𝑥𝑥 = −𝑧
𝑑2𝑤(𝑥)

𝑑𝑥2
 

(18) 

휀𝑦𝑦 = 휀𝑧𝑧 = 휀𝑥𝑦 = 휀𝑦𝑧 = 휀𝑧𝑥 = 0 

On the other hand, the deviatoric strains can be defined 

as 

휀𝑖𝑗
′ = 휀𝑖𝑗 −

1

3
휀𝑚𝑚𝛿𝑖𝑗  

(19) 

휀𝑥𝑥
′ = −2휀𝑦𝑦

′ = −2휀𝑧𝑧
′ = −

2

3
𝑧
𝑑2𝑤(𝑥)

𝑑𝑥2
 

By substituting relation (19) into (11), the effective 

strain can be obtained as 

휀�̅� =
2

3
𝑧
𝑑2𝑤(𝑥)

𝑑𝑥2
 (20) 

Moreover, the non-vanishing strain gradients in the 

Cartesian reference frame are given by 

𝜂111 = −𝑧
𝑑3𝑤

𝑑𝑥3
 

(21) 

𝜂131 = 𝜂311 = −𝜂113 = −𝑧
𝑑2𝑤

𝑑𝑥2
 

By substitution of relation (21) in Eq. (14) and then 

rearranging the formula (13), we will be able to drive the 

effective strain gradient 𝜂 given by 

𝜂 =
1

2
√
𝑧2

2
(
𝑑3𝑤

𝑑𝑥3
)

2

+ 3(
𝑑2𝑤

𝑑𝑥2
)

2

    (22) 

The non-vanishing stress in formula (15) is given by 

𝜎𝑥
′ =

2휀𝑥
3휀�̅�

𝜎𝑌√휀�̅�
2𝑁 + 𝑙𝜂 (23) 

By substitution relations (18), (20) and (22) into terms 

of relation (23), the 𝜎𝑥
′  is obtained as follows 

𝜎𝑥
′ = −𝜎𝑌√(

2

3
𝑧
𝑑2𝑤

𝑑𝑥2
)

2𝑁

+
𝑙

2
√
𝑧2

2
(
𝑑3𝑤

𝑑𝑥3
)

2

+ 3(
𝑑2𝑤

𝑑𝑥2
)

2

 (24) 
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By multiplying (24) into 휀𝑥
′ , we get the following 

expression 

𝜎𝑥
′휀𝑥
′ =

2𝜎𝑌𝑧

3

𝑑2𝑤

𝑑𝑥2
√(
2

3
𝑧
𝑑2𝑤

𝑑𝑥2
)

2𝑁

+
𝑙

2
√
𝑧2

2
(
𝑑3𝑤

𝑑𝑥3
)

2

+ 3(
𝑑2𝑤

𝑑𝑥2
)

2

 (25) 

Consequently, the strain energy is defined as 

𝑈 =
1

2
∭𝜎𝑖𝑗

′ 휀𝑖𝑗
′

𝑣

𝑑𝑣 =
𝑏

2
∫ ∫ 𝜎𝑥

′휀𝑥
′

𝐿

0

ℎ
2

−
ℎ
2

𝑑𝑥𝑑𝑧 (26) 

By substitution the relations (25) into (26), we can get  

𝑈 = ∫ ∫
𝑏𝜎𝑌𝑧

3

𝑑2𝑤

𝑑𝑥2
√(
2

3
𝑧
𝑑2𝑤

𝑑𝑥2
)

2𝑁

+
𝑙

2
√
𝑧2

2
(
𝑑3𝑤

𝑑𝑥3
)

2

+ 3 (
𝑑2𝑤

𝑑𝑥2
)

2𝐿

0

ℎ
2

−
ℎ
2

𝑑𝑥𝑑𝑧 (27) 

If a twofold Taylor expansion is used, the radical term in 

Eq. (27) can be expressed in the following form 

√(
2

3
𝑧
𝑑2𝑤

𝑑𝑥2
)

2𝑁

+
𝑙

2
√
𝑧2

2
(
𝑑3𝑤

𝑑𝑥3
)

2

+ 3(
𝑑2𝑤

𝑑𝑥2
)

2

 

=
1

(2𝑧2 + 12)
3
2(22𝑁+2 9−𝑁 𝑧2𝑁 + 9𝑙√2𝑧2 + 12)

3
2⁄
  

{(
𝑑3𝑤

𝑑𝑥3
) [𝑙2𝑧4√2𝑧2 + 12 

+15𝑙2𝑧2√2𝑧2 + 12 +
𝑙(𝑁 + 1)22𝑁+2𝑧2𝑁+4

9𝑁

+
6𝑙(𝑁 + 1)22𝑁+2𝑧2𝑁+2

9𝑁
] 

+(
𝑑2𝑤

𝑑𝑥2
) [
𝑁24𝑁+4𝑧4𝑁+2

81𝑁
√2𝑧2 + 12

+
6𝑁24𝑁+4𝑧4𝑁+1

81𝑁
√2𝑧2 + 12

+ 15𝑙2𝑧3√2𝑧2 + 12 

36𝑙2𝑧√2𝑧2 + 12 +
3 𝑙 𝑁22𝑁+2𝑧2𝑁+4

9𝑁

+
6𝑙(5𝑁 + 2)22𝑁+2𝑧2𝑁+2

9𝑁

+
36𝑙(2𝑁 + 1)22𝑁+2𝑧2𝑁

9𝑁
] 

+(
𝑑3𝑤

𝑑𝑥3
𝑑2𝑤

𝑑𝑥2
) [−9𝑙2𝑧2√2𝑧2 + 12 −

 𝑙 𝑁22𝑁+2𝑧2𝑁+4

9𝑁

−
6𝑙(𝑁 + 1)22𝑁+2𝑧2𝑁+2

9𝑁
] 

+ [
(1 − 𝑁)24𝑁+4𝑧4𝑁+2

81𝑁
√2𝑧2 + 12

+
6(1 − 𝑁)24𝑁+4𝑧4𝑁

81𝑁
√2𝑧2 + 12

+ 𝑙2𝑧4√2𝑧2 + 12 

(28) 

+3𝑙2𝑧2√2𝑧2 + 12 + 36𝑙2𝑧√2𝑧2 + 12

+
3𝑙(1 − 𝑁)22𝑁+2𝑧2𝑁+4

9𝑁
 

+
30𝑙(1 − 𝑁)22𝑁+2𝑧2𝑁+2

9𝑁
+
36𝑙(3 − 2𝑁)22𝑁+2𝑧2𝑁

9𝑁
]} 

Using Eq. (28) in relation (27), we can draw the 

following equation 

𝑈 =
1

3
𝑏𝜎𝑌∫ (

𝑑2𝑤

𝑑𝑥2
) {𝛼 (

𝑑3𝑤

𝑑𝑥3
) + 𝛽 (

𝑑2𝑤

𝑑𝑥2
)

𝐿

0

+ 𝜂 (
𝑑3𝑤

𝑑𝑥3
)(
𝑑2𝑤

𝑑𝑥2
) + 𝜓} 𝑑𝑥 

(29) 

where  

𝛼 = 𝑙2𝐼5 + 15𝑙
2𝐼3 +

𝑙(𝑁 + 1)22𝑁+2

9𝑁
𝐾5

+
6𝑙(𝑁 + 1)22𝑁+2

9𝑁
𝐾3 

(30) 

𝛽 =
24𝑁+4

81𝑁
𝑁𝐽3 + 6

24𝑁+4

81𝑁
𝑁𝐽1 + 15𝑙

2𝐼3 + 36𝑙
2𝐼1

+ 3
𝑙𝑁22𝑁+2

9𝑁
𝐾5

+
6𝑙(5𝑁 + 2)22𝑁+2

9𝑁
𝐾3

+
36𝑙(2𝑁 + 1)22𝑁+2

9𝑁
𝐾1 

(31) 

𝜂 = −9𝑙2𝐼3 −
𝑙𝑁22𝑁+2

9𝑁
𝐾5 −

6𝑙(𝑁 + 1)22𝑁+2

9𝑁
𝐾3 

(32) 

𝜓 =
(1 − 𝑁)24𝑁+4

81𝑁
𝐽3 +

6(1 − 𝑁)24𝑁+4

81𝑁
𝐽1 + 𝑙

2𝐼5

+ 3𝑙2𝐼3 + 36𝑙
2𝐼1

+
3𝑙(1 − 𝑁)22𝑁+2

9𝑁
𝐾5

+
30𝑙(1 − 𝑁)22𝑁+2

9𝑁
𝐾3

+
36𝑙(3 − 2𝑁)22𝑁+2

9𝑁
𝐾1 

(33) 

In the above equations, integrals of 𝐼𝑚 , 𝐽𝑚 and 𝐾𝑚 
(𝑚 = 1,3,5) can be obtained as below 

𝐼𝑚 = ∫   
(2𝑧2 + 12)−1 𝑧𝑚  𝑑𝑧

(22𝑁+2 9−𝑁 𝑧2𝑁 + 9𝑙√2𝑧2 + 12)
3
2⁄

ℎ
2

−
ℎ
2

 

(34) 𝐽𝑚 = ∫  
(2𝑧2 + 12)−1 𝑧4𝑁+𝑚𝑑𝑧

(22𝑁+2 9−𝑁 𝑧2𝑁 + 9𝑙√2𝑧2 + 12)
3
2⁄

ℎ
2

−
ℎ
2

 

𝐾𝑚 = ∫  
(2𝑧2 + 12)

−3
2⁄  𝑧2𝑁+𝑚𝑑𝑧

(22𝑁+2 9−𝑁 𝑧2𝑁 + 9𝑙√2𝑧2 + 12)
3
2⁄

ℎ
2

−
ℎ
2
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For the work, we need to calculate the displacement. 

Therefore,  

𝑑𝑠 − 𝑑𝑥 ≈ √𝑑𝑥2 + 𝑑𝑤2 − 𝑑𝑥

= 𝑑𝑥 ((1 + (
𝑑𝑤

𝑑𝑥
)
2

)

1
2⁄

− 1) − 𝑑𝑥 (35) 

Considering 𝑌 = (𝑑𝑤 𝑑𝑥⁄ )2  with the Maclaurin 

expansion of (1 + 𝑌)1 2⁄ , relation (35) get as: 

𝑑𝑠 − 𝑑𝑥 ≈
1

2
(
𝑑𝑤

𝑑𝑥
)
2

𝑑𝑥 (36) 

And the work in buckling is defined as 

𝑊𝑃  =
1

2
∫ 𝑃 (

𝑑𝑤

𝑑𝑥
)
2𝐿

0

𝑑𝑥 (37) 

By using the principle of minimum of potential energy 

and taking the first variation respect to the displacement, 

𝛿𝜋 = 𝛿𝑈 − 𝛿𝑊𝑃 (38) 

By substitution of the relations (29) and (37) into (38), 

the governing equation is given as 

2𝛽′ (
𝑑4𝑤

𝑑𝑥4
) + 𝑃 (

𝑑2𝑤

𝑑𝑥2
) = 0,      𝛽′ =

1

3
𝑏𝜎𝑌𝛽 (39) 

On the other hands, second variation of the potential 

energy for the buckling analysis results the same equation. 

So, the solution of equation (39) is 

𝑤(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3 sin(𝐴𝑥) + 𝑐4 𝑐𝑜𝑠(𝐴𝑥) (40) 

where  

𝐴 =
√6

2
√

𝑃

𝑏𝜎𝑌𝛽
 (41) 

Also, the boundary conditions can be drawn 

[−2𝛽′ (
𝑑3𝑤

𝑑𝑥3
) − 𝑃 (

𝑑𝑤

𝑑𝑥
)] 𝛿𝑤⟧

𝐿

0
 = 0 

(42) [2𝛽 (
𝑑2𝑤

𝑑𝑥2
) + 𝜓] 𝛿

𝑑𝑤

𝑑𝑥
⟧
𝐿

0
 = 0 

[𝛼 (
𝑑2𝑤

𝑑𝑥2
) + 𝜂 (

𝑑2𝑤

𝑑𝑥2
)

2

] 𝛿
𝑑2𝑤

𝑑𝑥2
⟧
𝐿

0
 = 0 

 

 

As explained in the section of the introduction, there are 

additional boundary conditions. Therefore, the essential 

boundary conditions should be chosen for the exact physical 

description of the beam. We investigate the problem in three 

boundary conditions, i.e., the simply supported, cantilever 

and clamp-simply supported micro beam. For each case, we 

calculate the eigenvalue and critical force by obtaining the 

governing equation of buckling micro beam and evaluating 

the appropriate buckled modes.   
 

3.1 Simply-supported micro beam  
 

We know the following boundary conditions are suitable 

for the simply- supported beam 

𝛿𝑤⟧
𝐿

0
 = 0 (43) 

𝛿
𝑑2𝑤

𝑑𝑥2
⟧
𝐿

0
 = 0 

(44) 

By using the boundary conditions 𝑤(0) = 0  and 

𝑤"(0) = 0, the equation (40) converts to equation (45) as 

𝑤(𝑥) = 𝑐2𝑥 + 𝑐3 𝑠𝑖𝑛(𝐴𝑥) (45) 

In addition, by using the boundary condition 𝑤"(𝐿) =
0, the eigenvalue yields  

𝑃 = 2𝛽′ (
𝑛𝜋

𝐿
)
2

=
2

3
𝑏𝜎𝑌𝛽 (

𝑛𝜋

𝐿
)
2

 (46) 

when 𝑛 denote the buckling mode. 

Considering strain hardening caused by the size and 

gradient- dependent flow stress in equation (10), we may 

arrange the eigenvalue by the following dimensionless 

relation:  

Ω =
𝑃

𝜎𝑓𝑙𝑜𝑤ℎ𝑏
=

2𝛽

3ℎ√휀�̅�
2𝑁 + 𝑙𝜂 

(
𝑛𝜋

𝐿
)
2

 
(47) 

which Ω ≥ 1 indicates at least possible mode number 

for the plastic yield exceed in in axial compressive load: 

𝑛𝑐𝑟 ≥
√
3ℎ𝐿2√휀�̅�

2𝑁 + 𝑙𝜂

2𝛽𝜋2
 

(48) 

If relation (46) is rearranged by the initial yield stress, 

the smallest value of 𝑃 is an actual critical force for the 

 

Fig. 1 Schematics of buckling in a micro-beam structure 
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plastic buckling obtained at the critical mode number 

corresponding to Eq. (48): 

𝑃

𝜎𝑌ℎ𝑏
=
2𝛽𝜋2

3ℎ𝐿2
𝑛𝑐𝑟

2 = 𝑝𝑐𝑟  (49) 

Since Ω is always less than 𝑃 𝜎𝑌ℎ𝑏⁄ , thus depending 

to different length scales, strain gradient and hardening, 𝑛𝑐𝑟 
can be achieved in different values 𝑛𝑐𝑟 ≥ 1. Although, in 

particular case of rigid-perfectly plastic without concerning 

hardening and size dependency, the first mode 𝑛 = 1 

cannot represent the desired buckled mode. But, to illustrate 

conventional buckling values, a benchmark dimensionless 

parameter is used ordinary at the prescribed first mode 𝑛 =
1, in order to compare magnitudes of calculated results as  

𝑝𝑐𝑟 =
2𝛽𝜋2

3ℎ𝐿2
 (50) 

The eigenvalue and critical force are related to 𝛽. Thus, 

corresponding to relation (31), they are dependent to length 

scale, plastic work hardening exponent, thickness, and 

height of the micro beam. By using boundary condition 

𝑤(𝐿) = 0, the equation of buckling of simply support micro 

beam is  

𝑤(𝑥) = 𝑐 (𝑠𝑖𝑛(𝐴𝑥) −
𝑠𝑖𝑛(𝐴𝐿)

𝐿
𝑥) (51) 

 

3.2 Cantilever micro beam  
 

The following boundary conditions are suitable for the 

cantilever beam  

[(
𝑑3𝑤

𝑑𝑥3
) + 𝐴2(

𝑑𝑤

𝑑𝑥
)] 𝛿𝑤⟧

𝐿

0
 = 0 

(52) 𝛿
𝑑𝑤

𝑑𝑥
⟧
0
 = 0 

𝛿
𝑑2𝑤

𝑑𝑥2
⟧
𝐿
 = 0 

By using boundary conditions 𝑤(0) = 0 and 𝑤´(0) =
0, the equation (40) may convert to equation (53) as 

𝑤(𝑥) = 𝑐1(𝑐𝑜𝑠(𝐴𝑥) − 1) + 𝑐3(𝑠𝑖𝑛(𝐴𝑥) − 𝐴𝑥) (53) 

The boundary condition (𝑑3𝑤 𝑑𝑥3⁄ ) + 𝐴2(𝑑𝑤 𝑑𝑥⁄ ) 
leads to give 𝑐3 = 0  and use of boundary condition 

𝑤"(𝐿) = 0 gives  

𝑃 = 2𝛽′ (
(2𝑛 + 1)𝜋

2𝐿
)

2

 (54) 

As the same of previous section in equations (47) and 

(48), we have 

𝑛𝑐𝑟 ≥
1

2

(

 
 √

6ℎ𝐿2√휀�̅�
2𝑁 + 𝑙𝜂

𝛽𝜋2
− 1

)

 
 

 (55) 

Also, the dimensionless prescribed critical force for the 

first mode corresponding to 𝑛 = 1 is  

𝑝𝑐𝑟 =
3𝛽𝜋2

2ℎ𝐿2
 (56) 

By using boundary condition 𝑤(𝐿) = 0, the equation of 

buckling of simply supported micro beam is 

𝑤(𝑥) = 𝑐(𝑐𝑜𝑠(𝐴𝑥) − 1) (57) 

 

3.3 Clamped-simply supported micro beam  
 

Boundary conditions (58) are suitable for the beam with 

one end fixed and the another end is the simply supported 

𝛿𝑤⟧
𝐿

0
 = 0 

(58) 𝛿
𝑑𝑤

𝑑𝑥
⟧
0
 = 0 

𝛿
𝑑2𝑤

𝑑𝑥2
⟧
𝐿
 = 0 

By using the boundary conditions 𝑤(0) = 0  and 

𝑤´(0) = 0, the equation (41) converts into equation (59) 

𝑤(𝑥) = 𝑐1(𝑐𝑜𝑠(𝐴𝑥) − 1) + 𝑐3(𝑠𝑖𝑛(𝐴𝑥) − 𝐴𝑥) (59) 

Also, by using boundary condition 𝑤(𝐿) = 0  and 

𝑤"(𝐿) = 0, we may have 

𝑐1(𝑐𝑜𝑠(𝐴𝐿) − 1) + 𝑐3(𝑠𝑖𝑛(𝐴𝐿) − 𝐴𝐿)  = 0 (60) 

𝑐1𝐴
2 𝑐𝑜𝑠(𝐴𝐿) + 𝑐3𝐴

2 𝑠𝑖𝑛(𝐴𝐿)  = 0 (61) 

Equations (59) and (61) denote a system of two 

homogeneous algebraic equations which 𝑐1  and 𝑐3  are 

unknowns. For a nontrivial solution of 𝑐1 and 𝑐3 we set 

determinant of the coefficients of 𝑐1 and 𝑐3 in Eqs. (59) 

and (61) be zero to obtain  

𝑡𝑎𝑛(𝐴𝐿) = −𝐴𝐿 (62) 

Substituting the relation (42) into Eq. (62) gives 

𝑃 = 2𝛽′ (
(2𝑛 − 1)𝜋

𝐿
)

2

 (63) 

Similarly,  

𝑛𝑐𝑟 ≥
1

2

(

 
 √

6ℎ𝐿2√휀�̅�
2𝑁 + 𝑙𝜂

𝛽𝜋2
+ 1

)

 
 

 (64) 

And prescribed critical force for the first mode 

corresponding to 𝑛 = 1 is  

𝑝𝑐𝑟 =
2𝛽𝜋2

3ℎ𝐿2
 (65) 

Equation (60) lead to 

𝑐3  = −𝑐1
(𝑐𝑜𝑠(𝐴𝐿) − 1)

(𝑠𝑖𝑛(𝐴𝐿) − 𝐴𝐿)
 (66) 
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Finally, by substitution of the relation (66) in equation 

(58), we have 

𝑤(𝑥) = 𝑐 [−
(𝑐𝑜𝑠(𝐴𝐿) − 1)

(𝑠𝑖𝑛(𝐴𝐿) − 𝐴𝐿)
(𝑠𝑖𝑛(𝐴𝑥) − 𝐴𝑥)

+ (𝑐𝑜𝑠(𝐴𝑥) − 1)] 
(67) 

 

 

4. Results and discussion 

 

Since there is no experimental or analytical study on 

plastic buckling of micro beam, we should verify these 

results with (Chen and Feng 2011) which have been used 

for the Chen-Wang theory in bending of cantilever micro 

beam in similar way with (Darvishvand and Zajkani 2019a). 

Therefore, we considered a concentrated force (𝐹) at the 

end of the beam that the work in this case is  

𝑊𝐹  = −𝐹𝑤(𝑥 = 𝐿) (68) 

By substitution of relations (29) and (67) into (37), 

governing equation is given for bending as 

2𝛽′ (
𝑑4𝑤

𝑑𝑥4
) = 0 (69) 

The response of the equation (69) is 

𝑤(𝑥) =
𝑐1
6
𝑥3 +

𝑐2
2
𝑥2 + 𝑐3𝑥 + 𝑐4 (70) 

By using the boundary conditions (52) with particular 

details for cantilever micro beam, 

𝑤(0) = 0, 

    𝑤´(0) = 0,     (
𝑑3𝑤

𝑑𝑥3
) + 𝐴2 (

𝑑𝑤

𝑑𝑥
) = 0 

(71) 

So, the constants are getting to obtain response of the 

equation (71) for bending deflection as below 

𝑤(𝑥) = (
𝐹

2𝛽′
) 𝑥3 − (

𝐹𝐿

4𝛽′
) 𝑥2 (72) 

To verify our model, we choose ratio of length to 

thickness; 𝐿 ℎ⁄ = 40,  the ratio of wide to thickness; 

𝑏 ℎ⁄ = 6, the ratio of length scale to thickness 𝑙 ℎ⁄ = 0. 2, 
𝑁 = 0, and 𝐹 𝜎𝑌ℎ𝑏⁄ = 0.0012. 

In Figure 2, the normalized deflections of the beam 

𝑊 ℎ⁄  obtained by two theories of the CMSG and Chen-

Wang (CW) are illustrated.  

In Table 1, the normalized critical forces  𝑝𝑐𝑟  are 

abbreviated for the beam with the simply- supported 

boundary condition. In these results, the normalized 

parameters are: 𝐿 ℎ⁄ = 40 , 𝐿 𝑏⁄ = 10  and 𝑏 ℎ⁄ = 4 . 

These results are obtained for the first mode 𝑛 = 1 and 

listed versus several length scales and the plastic work 

hardening exponent.  

By increasing the length scale and plastic work 

hardening exponent; the crit ical force increase. 

Corresponding to these boundary condition and the  

 
Fig. 2 Normalized deflection in two theories CMSG 

((Darvishvand and Zajkani 2019a)) and CW theory (Chen 

and Feng 2011) 

 

 

Fig. 3 The buckled simply- supported micro beam for first 

three mode 𝑛 = 1, 2 and 3 

 

Table 1 The variety of the normalized (prescribed) critical 

forces in the simply - supported micro-beam; 𝑝𝑐𝑟 is related 

to the first mode with the normalized parameters 𝐿 ℎ⁄ =
40, 𝐿 𝑏⁄ = 10 and 𝑏 ℎ⁄ = 4 

 l/h 

N 0.2 0.4 0.6 0.8 1 

0.1 0.223 0.2231 0.2232 0.2233 0.2234 

0.2 0.1293 0.1294 0.1295 0.1296 0.1297 

0.3 0.0565 0.0567 0.0569 0.0571 0.0573 

0.4 0.0224 0.0230 0.0236 0.0241 0.0246 

0.5 0.0095 0.01 0.012 0.013 0.014 

 

 

geometrical normalized parameters, the buckled micro 

beam are plotted for first three modes; 𝑛 = 1, 2 and 3 in 

Figure 3. 

In Table 2, normalized prescribed critical forces 𝑝𝑐𝑟 are 

abbreviated for the cantilever boundary condition. In these 

results, the normalized parameters are: 𝐿 ℎ⁄ = 40, 𝐿 𝑏⁄ =
10 and 𝑏 ℎ⁄ = 4. These results are obtained for the first 

mode 𝑛 = 1 and listed versus several length scales and the 

plastic work hardening exponent. By increasing length scale  
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Fig. 4 The buckled cantilever micro beam for first three 

mode n=1, 2 and 3 

 

 

Fig. 5 The buckled beam with one end fixed and other end 

be simply supported for first three mode n=1, 2 and 3 
 

 

and plastic work hardening exponent; the critical force 

increase. Corresponding to these boundary condition and 

the geometrical normalized parameters, the buckled micro 

beam are plotted for first three modes; 𝑛 = 1, 2 and 3 in 

Figure 4.  

In Table 3, the normalized (prescribed) critical forces 

𝑝𝑐𝑟  are abbreviated for the beam with one end fixed which 

another end is simply - supported condition. In these results, 

the normalized parameters are: 𝐿 ℎ⁄ = 40  , 𝐿 𝑏⁄ = 10 

and 𝑏 ℎ⁄ = 4. These results are obtained for the first mode 

𝑛 = 1 and listed versus several length scales and the plastic 

work hardening exponent. By increasing length scale and 

plastic work hardening exponent; the critical force increase. 

Corresponding to these boundary condition and the 

geometrical normalized parameters, the buckled micro 

beam are plotted for first three modes; 𝑛 = 1, 2 and 3 in 

Figure 5. 

It is notable that according to experimental research and 

theory in strain gradient elasticity by (Lam et al. 2003), the 

length scale are suggested as 𝑙 = 15 μm and 𝑙 = 8.14 μm. 

Moreover, (Shrotriya et al. 2003) calibrated the intrinsic 

plasticity length scale parameter for LIGA nickel foils by 

means of experimental study to present 𝑙 = 6.5 μm and 

𝑙 = 4.8 μm. We obtained prescribed critical buckling loads 

for various length scales and hardening indexes. These 

prescribed values in Table 1 are lower than unite, while the 

most contents of Table 2 and 3 are larger than unit  

Table 2 The variations of the normalized (prescribed) 

critical forces in the cantilever micro beam; 𝑝𝑐𝑟  related to 

the first mode of the CMSG theory with the normalized 

parameters 𝐿 ℎ⁄ = 40, 𝐿 𝑏⁄ = 10 and 𝑏 ℎ⁄ = 4  

 l/h 

N 0.2 0.4 0.6 0.8 1 

0.1 20.11 20.201 20.32 20.45 20.54 

0.2 11.65 11.75 11.85 11.91 12.10 

0.3 5.15 5.25 5.34 5.46 5.54 

0.4 2.24 2.18 2.27 2.38 2.47 

0.5 0.94 1.52 1.14 1.27 1.38 

 

Table 3 The variations of the normalized critical forces in 

the clamped - simply micro-beam; 𝑝𝑐𝑟; related to the first 

mode of the CMSG theory with the normalized parameters 

𝐿 ℎ⁄ = 40, 𝐿 𝑏⁄ = 10 and 𝑏 ℎ⁄ = 4  

 l/h 

N 0.2 0.4 0.6 0.8 1 

0.1 8.97 9.12 9.15 9.28 9.37 

0.2 5.27 5.38 5.47 5.57 5.64 

0.3 2.31 2.81 2.94 38 3.17 

0.4 1.11 1.16 1.29 1.37 1.48 

0.5 0.41 0.52 0.65 0.76 0.87 

 

 
Fig. 6 The effective plastic stress in buckled simply- 

supported micro beam for first mode n=1 

 

 
(𝑝𝑐𝑟 > 1). On the other hands, to make the sufficient way 

for comparing results and interpreting them with the actual 

size and gradient-dependent plastic buckling amounts for 

the work hardening material, the effective plastic stresses 

are illustrated by contours Figures 6 and 7. 

These illustrations are calculated for the prescribed values 

in the first mode 𝑛 = 1 for the simply- supported and 

cantilever micro beams, respectively. For these results, we 

take some data e.g. ℎ = 25 μm, 𝜎𝑌 = 400 MPa from 

experimental reports by (Shrotriya et al. 2003). In addition, 

other normalized parameters are selected as 𝐿 ℎ⁄ = 40,  
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Fig. 7 The effective plastic stress in the buckled cantilever 

micro beam for first mode n=1 

 

 

𝐿 𝑏⁄ = 10 and 𝑏 ℎ⁄ = 4 as the same of Tables 1-3. To be 

more convenient with contour plots of Figures 6 and 7, we 

select the intrinsic length scale 𝑙/ℎ = 0.6 or 𝑙 = 15 μm 

for the strain hardening exponents of 𝑁 = 0.1, 0.2 and 0.3. 

It is completely clear that results of Figure 7 are upper 

than Figure 6 due to corresponding larger loads in Table 1 

and 2, which can generate larger effective stresses. 

Increasing hardening exponent cause growing up the 

effective flow stresses.  

 

 

5. Conclusions 
 

In this paper, a plastic buckling of the micro-beam was 

studied for three boundary conditions such as the simply- 

supported, cantilever, and clamped - simply supported by 

using the conventional mechanism-based strain gradient 

plasticity theory. The effects of length scale and plastic 

work hardening on the buckling Eigenvalues were 

considered as well as the critical forces. For each case, we 

got the governing equations of the buckling for the micro 

beam obtaining three buckled modes. By increasing the 

length scale and plastic work hardening exponent; the 

critical force increase. We implied that this study might be 

regarded as a novel first work dedicated especially for the 

buckling of a micro beam structure based on a non-classical 

continuum mechanics. It was drawn mentioning that the 

classical continuum theories can’t predict the plastic 

structural behaviour of the material at the microscale. 
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