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1. Introduction 
 

Novel class of advanced composites materials (FGMs) 

has been of great importance to several researchers 

worldwide these last years because of their large range of 

applications in structural mechanics (Chen, 2005, Woo et al. 

2006, Efraim and Eisenberger 2007, Zhao et al. 2009, 

Mohammadi and Saidi  2010, Kiani et al.  2011, 

Ghannadpour et al. 2012, Bouderba et al. 2013, Jha et al. 

2013, Bousahla et al. 2014, Mahi et al. 2015, Bourada et al. 

2015, Kar and Panda, 2015, Kolahchi et al. 2016a, Arani 

and Kolahchi, 2016, Madani et al. 2016, Meftah et al. 2017, 

Aldousari, 2017, Avcar and Mohammed 2018, Bouhadra et 

al. 2018, Zine et al. 2018, Karami et al. 2019ab). This 

advanced FG material has gradual variation of the volume 

fraction which gives a non-uniform microstructure with 

continuously macro properties such as density, conductivity 

and elasticity modulus. Three types of volume fraction were 

found in the literature such as exponential model “E-FGM” 

(Ravichandran 1995, Ait Atmane et al. 2010 and 

Chakraborty et al. 2003) power-law model “P-FGM” (Zidi 

et al. 2014, Zemri et al. 2015, Yahia et al. 2015, 
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Ahouel et al. 2016, Abdelaziz et al. 2017, Abualnour et al. 

2018) and Sigmoid model “S-FGM” (Chung and Chi 2001, 

Hamed et al. 2016, Jung et al. 2016, Duc and Cong 2015, 

Bourada et al. 2018). Several research works have been 

published to study the static and dynamic behaviors of 

functionally graded beams and plates. Sankar (2001) 

developed an elasticity solution for flexural FG-beams 

based on Euler–Bernoulli beam theory (EBT). The free and 

forced vibration analysis of FG-Beams under moving load 

has been investigated by Şimşek and Kocaturk (2009) using 

Euler Bernoulli theory. The exact solutions for static and 

dynamic characteristics of FG beams resting elastic 

foundation was presented by Ying et al. (2008). Buckling 

analysis of FG clamped plate under thermal load has been 

published by Kiani et al. (2011). The stability of FG-plates 

under non-uniform compression was investigated by 

Mahdavian (2009) using the classical plate theory (CPT) 

and Fourier solutions. Civalek and Öztürk (2010) examined 

the free vibration response of tapered beam-column with 

pinned ends embedded in Winkler-Pasternak elastic 

foundation by using EBT. Ghomshei and Abbasi (2013) 

examined the thermal buckling of functionally graded 

annular plates with variable thickness using the CPT and 

the FE method. Bilouei et al. (2016) used EBT and 

Differential quadrature method (DQM) is used in order to 

obtain the buckling load of concrete columns retrofitted 

with Nano-Fiber Reinforced Polymer. Avcar (2016a) 
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Abstract.  In this investigation, study of the static and dynamic behaviors of functionally graded beams (FGB) is presented using a 

hyperbolic shear deformation theory (HySDT). The simply supported FG-beam is resting on the elastic foundation (Winkler-

Pasternak types). The properties of the FG-beam vary according to exponential (E-FGB) and power-law (P-FGB) distributions. The 

governing equations are determined via Hamilton’s principle and solved by using Navier’s method. To show the accuracy of this 

model (HySDT), the current results are compared with those available in the literature. Also, various numerical results are discussed 

to show the influence of the variation of the volume fraction of the materials, the power index, the slenderness ratio and the effect of 

Winkler spring constant on the fundamental frequency, center deflection, normal and shear stress of FG-beam. 
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studied the free vibration of non-homogeneous beam 

subjected to axial force resting on Pasternak foundation 

using EBT. Since the EBT and CPT over predicts the 

fundamental frequencies as well as buckling loads 

deflection of short beams and moderately thick plate. 

Reissner (1945) and Mindlin (1951) have extended the 

classical plate theory to the first shear deformation theory 

by introducing the transverse shear effect. Several works 

have been presented to study the bending and the free 

vibration of functionally graded structures with taking into 

account the transverse shear deformation. The static 

bending and transverse vibration of FG-Timoshenko beams 

have been studied by Li (2008). Koochaki (2011) 

investigated on the dynamic response of FG Timoshenko 

beam. A new four variables first shear deformation theory 

for static and vibration analysis of FG- plates has been 

proposed (Xiang and Shi 2011, Meksi et al. 2015, Mantari 

and Granados 2015, Bellifa et al. 2016, Bennoun et al. 

2016, Hadji et al. 2016, Avcar 2016b, Draiche et al. 2016, 

Boukhari et al. 2016, Bousahla et al. 2016, Beldjelili et al. 

2016, Bouderba et al. 2016, El-Haina et al. 2017, Fahsi et 

al. 2017, Chikh et al. 2017, Zamanian et al. 2017, 

Hajmohammad et al. 2018a, Luo et al. 2018, Bouadi et al. 

2018, Fourn et al. 2018, Yazid et al. 2018, Avcar 2019). To 

avoid the limitations of CPT and FSDT, the high order shear 

deformation theory take into account the transverse shear 

effect without using the shear correction factors.  This 

theory (HSDTs) is widely used in many research 

investigations. Şimşek (2010) has studied the dynamic 

analysis of an FG beam using different higher order beam 

theories. The wave propagation of FG porous plate has been 

examined by Yahia et al. (2015) using a high order shear 

deformation theory. Recently, a novel high shear 

deformation theories (HSDT) for vibrational behavior of 

FG-plates has been proposed by Younsi et al. (2018) and 

Zaoui et al. (2019). Also, Bourada et al. (2019a) have 

investigated on the effect of the porosity on fundamental 

frequencies of power law FG-beams using a sinusoidal 

shear deformation theory. Other HSDTs or FSDT can be 

documented in literature (Avcar 2015, Hamidi et al. 2015, 

Kolahchi and MoniriBidgoli 2016, Abdelbari et al. 2016, 

Kolahchi et al. 2016b, Kolahchi et al. 2017abc, Kolahchi 

and Cheraghbak 2017, Bellifa et al. 2017a, Hajmohammad 

et al. 2017, Kolahchi 2017, Hajmohammad et al. 2018bc, 

Fakhar and Kolahchi 2018, Amnieh et al. 2018, Kadari et 

al. 2018, Attia et al. 2018, Bakhadda et al. 2018, Golabchi 

et al. 2018, Karami et al. 2018abcd, Hosseini and Kolahchi 

2018, Abazid et al. 2018, Hadji et al. 2018, Boukhlif et al. 

2019, Khiloun et al. 2019). 

The aim of this paper is to study the bending and free 

vibration responses of functionally graded beams using a 

hyperbolic shear deformation theory (HySDT). The present 

theory involves just three unknowns in which the transverse 

displacement is divided into both bending and shears 

components. It also accounts for a hyperbolic distribution of 

the transverse shear stresses through the thickness that 

satisfies the zero traction boundary conditions on the lower 

and upper beam surfaces without including a shear 

correction factor. The equations of motion of simply 

supported beam subjected to uniform loads are obtained  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Geometry and coordinates of a functionally graded 

beam resting on the elastic foundation 

 

 

using Hamilton’s principle and solved via Navier’s method.  

A parametric study was made to investigate the effect of the 

power-law volume fraction, the material length scale 

parameter and the Winkler parameter on the deflection, 

stresses and natural frequencies. It is concluded that the 

present theory is not only efficient but can achieve the same 

accuracy of the other higher order shear deformation 

theories that contain more number of unknowns. 

 

 

2. Theoretical formulation 
 

In this study, we consider a simply supported 

functionally graded beam of a length L, width b and the 

thickness h subjected to a uniform distributed loads and 

resting on Winkler-Pasternak type elastic foundation as 

shown in Fig.1.  
 

2.1 Effective material properties  

 

The material characteristics of the FGM are assumed to 

vary continuously through the beam thickness based on the 

power-law and exponential forms. For the power law form, 

the volume fraction of the P-FGM beam change smoothly 

through the thickness of the beam with a simple power law 

form, (Bao and Wang 1995, Tounsi et al. 2013, Hebali et al. 

2014, Belkorissat et al. 2015, Al-Basyouni et al. 2015, Attia 

et al. 2015, Larbi Chaht et al. 2015, Houari et al. 2016, 

Menasria et al. 2017, Benahmed et al. 2017, Meksi et al. 

2019) which is stated as follow: 

( ) ( )
k

mcm
h

z
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
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 (1) 

Where P represents the effective material property, Pm  

and Pc denote the Young’s modulus and mass density metal 

and ceramic on the top and bottom surfaces of the beam. k
is the power-law exponent that defines the material 

variation profile within the beam thickness. In the case of 

the exponential variation (Delale and Erdogan 1983), the 

effective Young’s modulus of FG beam can be calculated 

using the exponential form as presented below:  
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Where E0 is the Young’s modulus of homogeneous material. 

The Poisson’s ratio v is considered to be constant.  
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2.2 Kinematic and equations of motion 
 

 Based on the same higher order shear deformation 

theory proposed by Ould Larbi et al. (2013) and Meziane et 

al. (2014), the displacement field of the present model can 

be written as 

x

w
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w
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(3b) 

Where u0 denotes in-plane displacement and the 

transverse displacement w include two components: the 

bending component wb, and shear component ws. In this 

study, a hyperbolic shape function f(z) is used: 
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The corresponding strains-displacement relations are 

given by the following expressions 
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The materials of FG beams are supposed to obey 

Hooke’s Law. So, the beam’s stresses can be expressed as 

xx zQ  )(11=  

xzxz zQ  )(55=  

(7a) 

 

(7b) 

In which, Qij are the elastic coefficients as below 
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55
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zE
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In order to obtain the equations of motion,  Hamilton’s 

principle is used herein as stated in the following analytical 

form (Belabed et al. 2014, Larbi Chaht et al. 2015, Zemri  

et al. 2015, Mahi et al. 2015, Bounouara et al. 2016, Bellifa 

et al. 2017b, Khetir et al. 2017, Klouche et al. 2017, Zidi et 

al. 2017, Hachemi et al. 2017, Belabed et al. 2018, Mokhtar 

et al. 2018, Cherif et al. 2018, Kaci et al. 2018, Semmah et 

al. 2019, Bourada et al. 2019b, Tlidji et al. 2019) 
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T
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where U  is the virtual variation of the strain energy, 

V is the virtual variation of the potential energy and K  

is the virtual variation of the kinetic energy. 

The variation of strain energy of the FG beam is given 

by 
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Where the stress resultants xN , ,b

xM s

xM  and 
s

xzQ  

are determined by 
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The variation of the potential energy of external load 

can be stated by 

dxwqV

L

−=
0

0    (12) 

The variation of kinetic energy of the beam can be written 

as (Mouffoki et al. 2017, Sekkal et al. 2017ab, Benadouda 

et al. 2017, Besseghier et al. 2017, Bouafia et al. 2017, 

Youcef et al. 2018) 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; ρ(z) is the 

mass density; and (
iI ,

iJ ,
iK ) are mass inertias defined as 
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Substituting Eqs. (10), (12), and (13) into Eq. (9), 

integrating by parts, and collecting the coefficients of
0 u , 

 bw  and 
s ,w  the equations of motion are obtained in 

terms of efforts as given below 
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Substituting Eq. (5) into Eq. (7) and the subsequent 

results into Eq. (11), the stress resultants can be expressed 

in terms of generalized displacements ( 0u , 0w , ) as  
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Where ,A ,D ,sB ,sD etc… are the stiffnesses of the 

FG beam given by 
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Substituting Eqs. (16) into Eqs. (15), the equations of 

motion of the can be expressed in terms of displacements 

( 0u , bw , sw ) as  
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3. Closed-form solutions 
 

The equations of motion have been solved by using 

Navier’s procedure to satisfy the boundary conditions. The 

solution of the displacement variables are expanded in the 

double-Fourier sine series as (Benchohra et al. 2018):  
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Where ( mU , bmW , smW ) are unknown functions to be 

determined,   is the natural frequency and   is 

expressed as 

Lm / =  (20) 

The transverse load q  is also expanded in the double-

Fourier sine series as 
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Where mq is the intensity of the load calculated from 

the Eq. (22) 
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For sinusoidal distributed load 
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For uniform distributed load 
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Substituting Eqs. (19) and (21) into equations of motion 

(18), the closed-form solutions can be obtained from the 

following equations: 

















=
















































−

















m

m

sm

bm

m

q

q

W

W

U

mmm

mmm

mmm

sss

ss

ss 0

0

0

332313

232212

131211

2

332313

2322

1311

  (25) 

Where 

2 3

11 11 13 11

4 4

22 11 23 11

4 2

33 11 55

11 0 12 1 13 1

2 2 2

22 0 2 23 0 2 33 0 2

, ,

, ,

, , ,

, ,

s

s

s s

s A s B

s D s D

s H A

m I m I m J

m I I m I J m I K

 

 

 

 

  

= = −

= =

= +

= = − = −

= + = + = +

 

(26a) 
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4. Numerical results and discussions 
 

In this section, a number of numerical examples are 

presented to check the accuracy of the present theory and to 

examine the influences of material index, side-to-thickness 

ratio and the elastic foundation parameter on the axial 

displacement, deflection, stresses and the natural 

frequencies of the FG beams. The FG beams studied in this 

paper are made of metal (Aluminum) and ceramics 

(Alumina) which their mechanical properties are listed in 

Table 1. For convenience, the following non-dimensional 

parameters are used: For the interpretation of the results, the 

following non-dimensional parameters were used: 
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Table 1Material properties of metal and ceramic 

Material 

Properties 

Young’s 

modulus (GPa) 

Poisson’s 

ratio 

Mass density 

(kg/m3) 

Aluminium (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 
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4.1 Bending analysis  
 

Example 1. The objective of this example is to 

investigate the accuracy of the proposed theory in 

predicting the bending response of simply supported FG 

beams using a power law variation of Young’s modulus. 

The dimensionless center deflection, axial displacements 

and stresses of thick and thin FG beam under a uniform 

distributed load for different power-law index “k” and side-

to-thickness ratio “L/h” are carried out in Table 2. The 

calculated values are compared with those of Li et al. (2010) 

and Ould Larbi et al. (2013) based on 2D shear deformation 

theories. Form this table, it can be seen that results are close 

to each other which means that the proposed hyperbolic 

higher order shear theory can predict the static response of 

simply supported FG beams. To check the effect of power 

law index on the bending response, Fig. 2 presents the axial 

displacement and stresses distributions through the 

thickness of simply supported 
2 3/Al Al O  FG beam. From 

these results, it can be noticed that the axial displacement ū, 

in-plane stress 
x and shear stress xz  increase with the 

increasing value of power law index “k”.  
 

Example 2. This example is performed to analyze a simply 

supported beam using an exponential form (see Eq. 2) to 

define the material properties of the beam. Table 3 shows 

the non-dimensional deflection of FG beam with different 

values of span-to-depth ratio “L/h” and power law index “k”.  

It can be seen that, the increasing values of power law index 

and side-to-thickness ratio lead to a decreasing in deflection. 

It is means that the elastic modulus increases with the 

increase of the value of exponent index. And consequently, 

the FG beam becomes stiffer. 
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Fig. 2 Variation of displacements and stresses through the 

thickness of P-FGM beam (L/h = 10) 
 

Example 3. To illustrate the effect of the Winkler and 

Pasternak foundation parameters on the beam deflection, 

Fig. 3 depicts the variation of non-dimensional deflection 

within foundation parameters and power law index. From  
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these figures, it can be observed that the dimensionless 

deflection diminishes with the increasing of the foundation 

parameters. This indicates that the inclusion of foundation 

parameters will increase the rigidity of the beam, and thus, 

lead to a decrease of deflection. Also, it can be noticed that 

the effect of the shear foundation parameter is more 

significant than the Winkler foundation parameter. 
 

4.2 free vibration analysis 
 

Example 4. This example is conserved to illustrate the 

exactitude of the present hyperbolic shear deformation 

theory for dynamic analysis of simply supported FG-beams. 

From Table 4, the actual results are compared with those 

obtained by Şimşek (2010) based on Timoshenko beam 

theory and given by Ould Larbi et al. (2013) based on high 

order shear deformation theory. It can be seen that the 

results obtained by the proposed model are in good 

agreement with those found in the literature for slender and 

short FG-beams. 

 

Example 5. Fig.4 Show the variation of fundamental 

natural frequency ϖ versus power-law index “k” for  

different side-to-thickness ratio “L/h” of simply supported  

 

 

 

Power law FG-beam.it can be noted from the fig.4 that the 

fundamental natural frequency ϖ decreases with increasing 

of material index “k”. It can be seen also that the natural 

frequency ϖ is in direct correlation relation with 

slenderness ratio “L/h”. 
 

 

5. Conclusions 
 

In this paper, a static and free vibration behavior of 

functionally graded beams has been analyzed by using a 

two dimensional higher order shear deformation theory. The 

equations of motion of the present model are obtained 

through the Hamilton’s principle. These equations are 

analytically solved by utilizing Navier’s procedure. The 

obtained results were compared with the solutions of 

several theories such as Timoshenko beams theory (Li et al. 

2010), higher order shear deformation theory (Şimşek 2010 

and Ould Larbi et al. 2013), its remarkable that the different 

results of the proposed model has an excellent agreement 

with the other theories existing in the literature. In 

conclusion, it can be said that the present theory (HySDT) 

is not only accurate but also efficient in predicting the 

deflection, axial displacement, in-plane stress, shear stress 

and fundamental frequency of functionally graded beams. 

Table 2 Non-dimensional deflections and stresses of P-FGM beams under uniform load 

k Method 
5/ =hL  20/ =hL  

w  u  x  xz  w  u  x  xz  

0 

Li et al. (2010) 3.1657 0.9402 3.8020 0.7500 2.8962 0.2306 15.0130 0.7500 

Ould Larbi et al. (2013) 3.1651 0.9406 3.8043 0.7489 2.8962 0.2305 15.0136 0.7625 

Present 3.1581 0.9434 3.8128 0.8285 2.8962 0.2305 15.0138 0.7692 

0.5 

Li et al. (2010) 4.8292 1.6603 4.9925 0.7676 4.4645 0.4087 19.7005 0.7676 

Ould Larbi et al. (2013) 4.8282 1.6608 4.9956 0.7660 4.4644 0.4087 19.7013 0.7795 

Present 4.8188 1.6649 5.0074 0.8459 4.4638 0.4087 19.7042 0.8662 

1 

Li et al. (2010) 6.2599 2.3045 5.8837 0.7500 5.8049 0.5686 23.2054 0.7500 

Ould Larbi et al. (2013) 6.2590 2.3052 5.8875 0.7489 5.8049 0.5685 23.2063 0.7625 

Present 6.2472 2.3100 5.9019 0.8285 5.8041 0.5686 23.2099 0.8491 

2 

Li et al. (2010) 8.0602 3.1134 6.8812 0.6787 7.4415 0.7691 27.0989 0.6787 

Ould Larbi et al. (2013) 8.0683 3.1146 6.8878 0.6870 7.4421 0.7691 27.1005 0.7005 

Present 8.0566 3.1202 6.9071 0.7692 7.4414 0.7692 27.1053 0.7897 

5 

Li et al. (2010) 9.7802 3.7089 8.1030 0.5790 8.8151 0.9133 31.8112 0.5790 

Ould Larbi et al. (2013) 9.8345 3.7128 8.1187 0.6084 8.8186 0.9134 31.8151 0.6218 

Present 9.8378 3.7230 8.1488 0.6979 8.8189 0.9135 31.8226 0.7186 

10 

Li et al. (2010) 10.8979 3.8860 9.7063 0.6436 9.6879 0.9536 38.1372 0.6436 

Ould Larbi et al. (2013) 10.9413 3.8898 9.7203 0.6640 9.6907 0.9537 38.1408 0.6788 

Present 10.9205 3.9019 9.7484 0.7482 9.6895 0.9539 38.1477 0.7703 

Table 3 Non-dimensional deflections of an E-FGM beams under sinusoidal load 

L/h 
Exponent index k 

0.1 0.3 0.5 0.7 1 1.5 

2 4.3839 3.9656 3.5862 3.2422 2.7853 2.1587 

4 3.1536 2.8544 2.5845 2.3408 2.0187 1.5788 

5 3.0043 2.7197 2.4630 2.2315 1.9257 1.5084 

10 2.8048 2.5394 2.3005 2.0853 1.8013 1.4142 
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Fig. 3 Effect of the elastic foundation parameters (K̅w, K̅s) 

on the non-dimensional deflection of FG beam 
 
 

References 
 

Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), “A novel shear 

and normal deformation theory for hygrothermal bending 

response of FGM sandwich plates on Pasternak elastic 

foundation”, Struct. Eng. Mech., 67(3), 219-232. 

http://dx.doi.org/10.12989/scs.2017.25.6.693. 

Abdelaziz, H.H., Meziane, M.A.A, Bousahla, A.A., Tounsi, A., 

Mahmoud, S.R. and Alwabli, A.S. (2017), “An efficient 

hyperbolic shear deformation theory for bending, buckling and 

free vibration of FGM sandwich plates with various boundary 

conditions”, Steel Compos. Struct., 25(6), 693-704. 

http://dx.doi.org/10.12989/sem.2018.67.3.219. 

Abdelbari, S., Fekrar, A., Heireche, H., Said, H., Tounsi, A. and 

Adda Bedia, E.A. (2016), “An efficient and simple shear 

deformation theory for free vibration of functionally graded 

rectangular plates on Winkler-Pasternak elastic foundations”,  

 

0 1 2 3 4 5 6 7 8 9 10

3,0

3,5

4,0

4,5

5,0

5,5

 

 



Power law index k

 L/h=5

 L/h=10

 L/h=20

 

Fig. 4 Variation of fundamental natural frequency ϖ 

versus power-law index (k) for differentside-to-thickness 

ratio L/h of P-FGM beam 
 

 

Wind Struct., 22(3), 329-348. 

https://doi.org/10.12989/was.2016.22.3.329. 

Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2018), “A novel quasi-3D trigonometric plate 

theory for free vibration analysis of advanced composite plates”, 

Compos. Struct., 184, 688-697. 

https://doi.org/10.1016/j.compstruct.2017.10.047. 

Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. 

(2016), “Size-dependent mechanical behavior of functionally 

graded trigonometric shear deformable nanobeams including 

neutral surface position concept”, Steel Compos. Struct., 20(5), 

963-981. http://dx.doi.org/10.12989/scs.2016.20.5.963. 

Ait Atmane, H., Tounsi, A., Meftah, S.A. and Belhadj, H.A. 

(2010),  “Free Vibration Behavior of Exponential Functionally 

Graded Beams with Varying Cross-section”, J. Vib. Control, 

17(2), 311–318. https://doi.org/10.1177/1077546310370691. 

Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), “Size 

dependent bending and vibration analysis of functionally graded 

micro beams based on modified couple stress theory and neutral 

surface position”, Compos. Struct., 125, 621-630. 

https://doi.org/10.1016/j.compstruct.2014.12.070. 

Aldousari, S.M. (2017), “Bending analysis of different material 

distributions of functionally graded beam”, Appl. Phys. A, 123, 

296. https://doi.org/10.1007/s00339-017-0854-0. 

Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), “Dynamic 

analysis of non-homogeneous concrete blocks mixed by SiO2 

nanoparticles subjected to blast load experimentally and 

theoretically”, Construct. Build. Mater., 174, 633-644. 

Table 4 non-dimensional frequencies ϖ of P-FGM beams 

L/h Method 
Power-law index k 

0 0.5 1 2 5 10 

5 

Present 5.1633 4.4180 3.9963 3.6303 3.4004 3.2846 

Ould Larbi et al. (2013) 5.1529 4.4108 3.9905 3.6263 3.4001 3.2812 

TBT (Şimşek 2010) 5.1527 4.4111 3.9904 3.6264 3.4012 3.2816 

20 

Present 5.4657 4.6546 4.2076 3.8378 3.6491 3.5395 

Ould Larbi et al. (2013) 5.4603 4.6511 4.2051 3.8361 3.6484 3.5389 

TBT (Şimşek 2010) 5.4603 4.6511 4.2051 3.8361 3.6485 3.5390 

191



 

Lynda Amel Chaabane et al. 

https://doi.org/10.1016/j.conbuildmat.2018.04.140. 

Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. 

(2015), “Free vibration analysis of functionally graded plates 

with temperature-dependent properties using various four 

variable refined plate theories”, Steel Compos. Struct., 18(1), 

187-212. http://dx.doi.org/10.12989/scs.2015.18.1.187. 

Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, 

A.S. (2018), “A refined four variable plate theory for 

thermoelastic analysis of FGM plates resting on variable elastic 

foundations”, Struct. Eng. Mech., 65(4), 453-464. 

http://dx.doi.org/10.12989/sem.2018.65.4.453. 

Avcar, M. (2019), “Free vibration of imperfect sigmoid and power 

law functionally graded beams”, Steel Compos. Struct., 30(6), 

603-615. http://dx.doi.org/10.12989/scs.2019.30.6.603. 

Avcar, M. and Mohammed, W.K.M. (2018), “Free vibration of 

functionally graded beams resting on Winkler-Pasternak 

foundation”, Arab. J. Geosci., 11, 232. 

https://doi.org/10.1007/s12517-018-3579-2. 

Avcar, M. (2016a), “Free vibration of non-homogeneous beam 

subjected to axial force resting on Pasternak foundation”, J. 

Polytechnic, 19(4), 507-512. 

Avcar, M. (2016b), “Effects of material non-homogeneity and two 

parameter elastic foundation on fundamental frequency 

parameters of Timoshenko beams”, Acta Physica Polonica A, 

130(1), 375-378. http://dx.doi.org/10.12693/APhysPolA.130.375. 

Avcar, M. (2015), “Effects of rotary inertia shear deformation and 

non-homogeneity on frequencies of beam”, Struct. Eng. Mech., 

55(4), 871-884. http://dx.doi.org/10.12989/sem.2015.55.4.871. 

Arani, A.J., Kolahchi, R. (2016), “Buckling analysis of embedded 

concrete columns armed with carbon nanotubes”, Comput. 

Concrete, 17(5), 567-578. 

http://dx.doi.org/10.12989/cac.2016.17.5.567 

Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., 

Tounsi, A., Mahmoud, S.R. (2018), “Dynamic and bending 

analysis of carbon nanotube-reinforced composite plates with 

elastic foundation”, Wind Struct., 27(5), 311-324. 

http://dx.doi.org/10.12989/was.2018.27.5.311. 

Bao, G. and Wang, L. (1995), “Multiple cracking in functionally 

graded ceramic/metal coatings”, J. Solids Struct., 32(19), 2853-

2871. https://doi.org/10.1016/0020-7683(94)00267-Z. 

Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and 

Mahmoud, S.R. (2018), “A new 3-unknown hyperbolic shear 

deformation theory for vibration of functionally graded sandwich 

plate”, Earthq. Struct., 14(2), 103-115. 

http://dx.doi.org/10.12989/eas.2018.14.2.103. 

Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Bég, 

O.A. (2014), “An efficient and simple higher order shear and 

normal deformation theory for functionally graded material 

(FGM) plates”, Compos. Part B, 60, 274-283. 

https://doi.org/10.1016/j.compositesb.2013.12.057. 

Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), “Hygro-

thermo-mechanical bending of S-FGM plates resting on variable 

elastic foundations using a four-variable trigonometric plate 

theory”, Smart Struct. Syst., Int. J., 18(4). 755-786. 

http://dx.doi.org/10.12989/sss.2016.18.4.755. 

Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2015), “On vibration properties of functionally 

graded nano-plate using a new nonlocal refined four variable 

model”, Steel Compos. Struct., 18(4), 1063-1081. 

http://dx.doi.org/10.12989/scs.2015.18.4.1063. 

Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, 

S.R. (2017a), “An efficient and simple four variable refined plate 

theory for buckling analysis of functionally graded plates”, Steel 

Compos. Struct., 25(3), 257-270. 

http://dx.doi.org/10.12989/scs.2017.25.3.257. 

Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2017b), “A nonlocal zeroth-order shear 

deformation theory for nonlinear postbuckling of nanobeams”, 

Struct. Eng. Mech., 62(6), 695-702. 

http://dx.doi.org/10.12989/sem.2017.62.6.695. 

Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, 

A. (2016), “Bending and free vibration analysis of functionally 

graded plates using a simple shear deformation theory and the 

concept the neutral surface position”, J Braz. Soc. Mech. Sci. 

Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-

0. 

Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F., 

Mahmoud, S.R. (2017), “An efficient shear deformation theory 

for wave propagation in functionally graded material beams with 

porosities”, Earthq. Struct., 13(3), 255-265. 

http://dx.doi.org/10.12989/eas.2017.13.3.255. 

Benahmed, A., Houari, M.S.A, Benyoucef, S, Belakhdar, K. and 

Tounsi, A. (2017), “A novel quasi-3D hyperbolic shear 

deformation theory for functionally graded thick rectangular 

plates on elastic foundation”, Geomech. Eng., 12(1), 9-34. 

http://dx.doi.org/10.12989/gae.2017.12.1.009. 

Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. 

and Mahmoud, S.R. (2018), “A new quasi-3D sinusoidal shear 

deformation theory for functionally graded plates”, Struct. Eng. 

Mech., 65(1), 19-31. http://dx.doi.org/10.12989/sem.2018.65.1.019. 

Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), “A novel five 

variable refined plate theory for vibration analysis of 

functionally graded sandwich plates”, Mech. Adv. Mater.Struct., 

23(4), 423 - 431. https://doi.org/10.1080/15376494.2014.984088. 

Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. 

(2017), “Free vibration analysis of embedded nanosize FG plates 

using a new nonlocal trigonometric shear deformation 

theory”, Smart Struct. Syst.., 19(6), 601-614. 

http://dx.doi.org/10.12989/sss.2017.19.6.601. 

Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), “Buckling 

of concrete columns retrofitted with Nano-Fiber Reinforced 

Polymer (NFRP)”, Computers Concrete, 18(5), 1053-

1063.  http://dx.doi.org/10.12989/cac.2016.18.6.1053. 

Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and 

Tounsi, A. (2018), “A new nonlocal HSDT for analysis of 

stability of single layer graphene sheet”, Adv. Nano Res., 6(2), 

147-162. http://dx.doi.org/10.12989/anr.2018.6.2.147. 

Bouafia, K., Kaci, A., Houari, M. S. A., Benzair, A., Tounsi, A. 

(2017), “A nonlocal quasi-3D theory for bending and free 

flexural vibration behaviors of functionally graded 

nanobeams”, Smart Struct. Syst.., 19(2), 115-126. 

http://dx.doi.org/10.12989/sss.2017.19.2.115. 

Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. 

(2016), “Thermal stability of functionally graded sandwich 

plates using a simple shear deformation theory”, Struct. Eng. 

Mech., 58(3), 397-422. 

http://dx.doi.org/10.12989/sem.2016.58.3.397. 

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), 

“Thermomechanical bending response of FGM thick plates 

resting on Winkler-Pasternak elastic foundations”, Steel Compos. 

Struct.,14(1), 85-104. 

http://dx.doi.org/10.12989/scs.2013.14.1.085. 

Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S., 

Mahmoud, S.R. (2018), “Improved HSDT accounting for effect 

of thickness stretching in advanced composite plates”, Struct. 

Eng. Mech., 66(1), 61-73. 

http://dx.doi.org/10.12989/sem.2018.66.1.061. 

Boukhari, A., AitAtmane, H., Houari, M.S.A., Tounsi, A., Adda 

Bedia, E.A. and Mahmoud, S.R. (2016), “An efficient shear 

deformation theory for wave propagation of functionally graded 

material plates”, Struct. Eng. Mech., 57(5), 837-859. 

http://dx.doi.org/10.12989/sem.2016.57.5.837. 

Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., 

Bourada, M., Tounsi, A., Al-Osta, M.A. (2019), “A simple quasi-

192



 

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation 

 

3D HSDT for the dynamics analysis of FG thick plate on elastic 

foundation”, Steel Compos. Struct., 31(5), 

http://dx.doi.org/10.12989/scs.2019.31.5.503. 

Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. 

(2016), “A nonlocal zeroth-order shear deformation theory for 

free vibration of functionally graded nanoscale plates resting on 

elastic foundation”, Steel Compos. Struct., 20(2), 227-249. 

http://dx.doi.org/10.12989/scs.2016.20.2.227. 

Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., 

Tounsi, A. (2019a), “Dynamic investigation of porous 

functionally graded beam using a sinusoidal shear deformation 

theory”, Wind Struct., 28(1), 19-

30.  http://dx.doi.org/10.12989/was.2019.28.1.019. 

Bourada, M., Bouadi, A., Bousahla, A.A., Senouci, A., Bourada, 

F., Tounsi, A., Mahmoud, S.R. (2019b), “Buckling behavior of 

rectangular plates under uniaxial and biaxial compression”, 

Struct. Eng. Mech., 70(1). 

http://dx.doi.org/10.12989/sem.2019.70.1.113. 

Bourada, F., Amara, K., Bousahla, A.A., Tounsi ,A. and Mahmoud, 

S.R. (2018), “A novel refined plate theory for stability analysis 

of hybrid  and symmetric S-FGM plates”, Struct. Eng. Mech., 

68(6), 661-675. http://dx.doi.org/10.12989/sem.2018.68.6.661. 

Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), “A 

new simple shear and normal deformations theory for 

functionally graded beams”, Steel Compos. Struct., 18(2), 409-

423. http://dx.doi.org/10.12989/scs.2015.18.2.409. 

Bousahla, A.A., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A., 

(2014), “A novel higher order shear and normal deformation 

theory based on neutral surface position for bending analysis of 

advanced composite plates”, J. Comput. Methods, 11(6), 

https://doi.org/10.1142/S0219876213500825. 

Bousahla, A.A., Benyoucef, S. Tounsi, A. and Mahmoud, S.R. 

(2016), “On thermal stability of plates with functionally graded 

coefficient of thermal expansion”, Struct. Eng. Mech., 60(2), 

313-335. https://doi.org/10.1142/S0219876213500825. 

Chakraborty, A., Gopalakrishnan, S. and Reddy, J. (2003), “A new 

beam finite element for the analysis of functionally graded 

materials”, J. Mech. Sci., 45, 519-539. 

https://doi.org/10.1016/S0020-7403(03)00058-4. 

Chen, C.S. (2005), “Nonlinear vibration of a shear deformable 

functionally graded plate”, Compos Struct., 68(3), 295-302. 

https://doi.org/10.1016/j.compstruct.2004.03.022. 

Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H., 

Bensattalah, T. (2018), “Vibration analysis of nano beam using 

differential transform method including thermal effect”, J. Nano 

Res., 54, 1-14. 

https://doi.org/10.4028/www.scientific.net/JNanoR.54.1. 

Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), 

“Thermal buckling analysis of cross-ply laminated plates using a 

simplified HSDT”, Smart Struct. Syst., 19(3), 289-297. 

http://dx.doi.org/10.12989/sss.2017.19.3.289. 

Chung, Y. and Chi, S. (2001), “The residual stress of functionally 

graded materials”, J. Chin. Inst. Civil Hydraulic Eng., 13, 1-9. 

Civalek, Ö.,Öztürk, B, (2010) “Free vibration analysis of tapered 

beam-column with pinned ends embedded in Winkler-Pasternak 

elastic foundation”, Geomech. Eng., 2(1), 45-56. 

http://dx.doi.org/10.12989/gae.2010.2.1.045. 

Delale, F, Erdogan, F. (1983), “The crack problem for a 

nonhomogeneous plane”, ASME J Appl. Mech., 50, 609-614. 

https://doi.org/ 10.1115/1.3167098. 

Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), “A refined 

theory with stretching effect for the flexure analysis of laminated 

composite plates”, Geomech. Eng., 11(5), 671-690. 

https://doi.org/10.12989/gae.2016.11.5.671. 

Duc, N.D and P.H. Cong, (2015), “Nonlinear dynamic response of 

imperfect symmetric thin sigmoid-functionally graded material 

plate with metal-ceramic-metal layers on elastic foundation”, J. 

Vib. Control., 21, 637-646. 

https://doi.org/10.1177/1077546313489717. 

Efraim, E., Eisenberger, M.(2007), “Exact vibration analysis of 

variable thickness thick annular isotropic and FGM plates”. J 

Sound Vib, 299(4-5),720-738. 

https://doi.org/10.1016/j.jsv.2006.06.068. 

El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “A simple analytical approach for 

thermal buckling of thick functionally graded sandwich plates”, 

Struct. Eng. Mech., 63(5), 585-595. 

http://dx.doi.org/10.12989/sem.2017.63.5.585. 

Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and 

Mahmoud, S.R. (2017), “A four variable refined nth-order shear 

deformation theory for mechanical and thermal buckling analysis 

of functionally graded plates”, Geomech. Eng., 13(3), 385-

410.  http://dx.doi.org/10.12989/gae.2017.13.3.385. 

Fakhar, A., Kolahchi, R. (2018), “Dynamic buckling of 

magnetorheological fluid integrated by visco-piezo-GPL 

reinforced plates”, J. Mech. Sci., 144, 788-799. 

https://doi.org/10.1016/j.ijmecsci.2018.06.036. 

Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, 

A., Mahmoud, S.R. (2018), “A novel four variable refined plate 

theory for wave propagation in functionally graded material 

plates”, Steel Compos. Struct., 27(1), 109-122. 

http://dx.doi.org/10.12989/scs.2018.27.1.109. 

Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), 

“Buckling analysis of functionally graded plates under thermal 

loadings using the finite strip method”., Comput. Struct., 108- 

109, 93-99. https://doi.org/10.1016/j.compstruc.2012.02.011. 

Ghomshei, M. and Abbasi, V. (2013), “Thermal buckling analysis 

of annular FGM plate having variable thickness under thermal 

load of arbitrary distribution by finite element method”, J. 

Mech.Sci. Technol., 27(4), 1031-1039. 

https://doi.org/10.1007/s12206-013-0211-y. 

Golabchi, H., Kolahchi, R., Rabani Bidgoli, M. (2018), “Vibration 

and instability analysis of pipes reinforced by SiO2 nanoparticles 

considering agglomeration effects”, Comput. Concrete, 21(4), 

431-440. http://dx.doi.org/10.12989/cac.2018.21.4.431. 

Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. 

and Mahmoud, S.R. (2017), “A new simple three-unknown shear 

deformation theory for bending analysis of FG plates resting on 

elastic foundations”, Steel Compos. Struct., 25(6), 717-726. 

http://dx.doi.org/10.12989/scs.2017.25.6.717. 

Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y. 

and Adda Bedia, E.A. (2016), “Analysis of functionally graded 

beam using a new first-order shear deformation theory”, Struct. 

Eng. Mech., Int. J., 57(2), 315-325. 

http://dx.doi.org/10.12989/sem.2016.57.2.315. 

Hadji, L., Meziane, M. A.A. and Safa, A. (2018), “A new quasi-3D 

higher shear deformation theory for vibration of functionally 

graded carbon nanotube-reinforced composite beams resting on 

elastic foundation”, Struct. Eng. Mech., 66(6), 771-781. 

http://dx.doi.org/10.12989/sem.2018.66.6.771. 

Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. 

(2017), “Dynamic buckling of sensor/functionally graded-carbon 

nanotube-reinforced laminated plates/actuator based on 

sinusoidal-visco-piezoelasticity theories”, J. Sandwich Struct. 

Mater. https://doi.org/10.1177/1099636217720373.  

Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018a), 

“Smart control and vibration of viscoelastic actuator-multiphase 

nanocomposite conical shells-sensor considering hygrothermal 

load based on layerwise theory”, Aerosp. Sci. Technol., 78, 260-

270. https://doi.org/10.1016/j.ast.2018.04.030. 

Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), 

“Seismic response of underwater concrete pipes conveying fluid 

covered with nano-fiber reinforced polymer layer”, Soil Dynam. 

Earthq. Eng., 110, 18-27. 

193



 

Lynda Amel Chaabane et al. 

https://doi.org/10.1016/j.soildyn.2018.04.002. 

Hajmohammad, M. H., Kolahchi, R., Zarei, M. S. and Maleki, M. 

(2018c), “Earthquake induced dynamic deflection of submerged 

viscoelastic cylindrical shell reinforced by agglomerated CNTs 

considering thermal and moisture effects”, Compos. Struct., 187, 

498-508. https://doi.org/10.1016/j.compstruct.2017.12.004. 

Hamed, M., Eltaher, M., Sadoun, A. and Almitani, K. (2016), 

“Free vibration of symmetric and sigmoid functionally graded 

nanobeams”, Appl. Physics A, 122, 829. 

https://doi.org/10.1007/s00339-016-0324-0. 

Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. 

(2015), “A sinusoidal plate theory with 5-unknowns and 

stretching effect for thermomechanical bending of functionally 

graded sandwich plates”, Steel Compos. Struct., 18(1), 235-253. 

http://dx.doi.org/10.12989/scs.2015.18.1.235. 
Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and 

AddaBedia, E.A. (2014), “A new quasi-3D hyperbolic shear 

deformation theory for the static and free vibration analysis of 

functionally graded plates”, ASCE J. Eng. Mech., 140(2), 374-

383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665. 

Hosseini, H. and Kolahchi, R. (2018), “Seismic response of 

functionally graded-carbon nanotubes-reinforced submerged 

viscoelastic cylindrical shell in hygrothermal environment”, 

Physica E: Low-dimensional Systems and Nanostructures, 102, 

101-109. https://doi.org/10.1016/j.physe.2018.04.037. 

Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. 

(2016), “A new simple three-unknown sinusoidal shear 

deformation theory for functionally graded plates”, Steel 

Compos. Struct., 22(2), 257-

276.  http://dx.doi.org/10.12989/scs.2016.22.2.257. 

Jha, D.K., Kant, T. and Singh, R.K. (2013), “Free vibration 

response of functionally graded thick plates with shear and 

normal deformations effects”, Compos Struct., 96,799-823. 

https://doi.org/10.1016/j.compstruct.2012.09.034. 

Jung, W.Y., Han, S.C. and Park, W.T. (2016), “Four-variable 

refined plate theory for forced vibration analysis of sigmoid 

functionally graded plates on elastic foundation”, J. Mech. Sci.., 

111, 73-87. https://doi.org/10.1016/j.ijmecsci.2016.03.001. 

Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and 

Mahmoud, S.R. (2018), “Post-buckling analysis of shear-

deformable composite beams using a novel simple two-unknown 

beam theory”, Struct. Eng. Mech., 65(5), 621-631. 

http://dx.doi.org/10.12989/sem.2018.65.5.621. 

Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. 

and Houari, M.S.A. (2018), “Buckling analysis of orthotropic 

nanoscale plates resting on elastic foundations”, J. Nano Res., 55, 

42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42. 

Kar, V.R. and Panda, S.K. (2015), “Nonlinear flexural vibration of 

shear deformable functionally graded spherical shell panel”, 

Steel Compos. Struct., 18(3), 693-709. 

http://dx.doi.org/10.12989/scs.2015.18.3.693. 

Karami, B., Janghorban, M. and Tounsi, A. (2019a), “Wave 

propagation of functionally graded anisotropic nanoplates resting 

on Winkler-Pasternak foundation”, Struct. Eng. Mech., 

7(1).  http://dx.doi.org/10.12989/sem.2019.70.1.055. 

Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. 

(2019b), “Resonance behavior of functionally graded polymer 

composite nanoplates reinforced with graphene nanoplatelets”, J. 

Mech. Sci., 156, 94-105. 

https://doi.org/10.1016/j.ijmecsci.2019.03.036 

Karami, B., Janghorban, M. and Tounsi, A. (2018a), “Variational 

approach for wave dispersion in anisotropic doubly-curved 

nanoshells based on a new nonlocal strain gradient higher order 

shell theory”, Thin-Walled Structures, 129, 251-264. 

https://doi.org/10.1016/j.tws.2018.02.025. 

Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. 

(2018b), “A size-dependent quasi-3D model for wave dispersion 

analysis of FG nanoplates”, Steel Compos. Struct., 28(1), 99-110. 

http://dx.doi.org/10.12989/scs.2018.28.1.099. 

Karami, B., Janghorban, M. and Tounsi, A. (2018c), “Nonlocal 

strain gradient 3D elasticity theory for anisotropic spherical 

nanoparticles”, Steel Compos. Struct., 27(2), 201-216. 

http://dx.doi.org/10.12989/scs.2018.27.2.201. 

Karami, B., Janghorban, M. and Tounsi, A. (2018d), “Galerkin’s 

approach for buckling analysis of functionally graded anisotropic 

nanoplates/different boundary conditions”, Eng. Comput. 

https://doi.org/10.1007/s00366-018-0664-9. 

Khetir, H., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A., S.R. 

Mahmoud, (2017), “A new nonlocal trigonometric shear 

deformation theory for thermal buckling analysis of embedded 

nanosize FG plates”, Struct. Eng. Mech., 64(4), 391-

402.  http://dx.doi.org/10.12989/sem.2017.64.4.391. 

Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A., 

Mahmoud, S.R. (2019), “Analytical modeling of bending and 

vibration of thick advanced composite plates using a four-

variable quasi 3D HSDT”, Eng. Comput.. 

https://doi.org/10.1007/s00366-019-00732-1. 

Kiani, Y., Bagherizadeh, E. and Eslami, M.R. (2011), “Thermal 

buckling of clamped thin rectangular FGM plates resting on 

Pasternak elastic foundation (Three approximate analytical 

solutions)”, J. Appl. Math. Mech/Z Angew. Math. Mech., 

91(7),581-93. https://doi.org/10.1002/zamm.201000184. 

Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A., and Mahmoud, 

S.R. (2017), “An original single variable shear deformation 

theory for buckling analysis of thick isotropic plates”, Struct. 

Eng. Mech., 63(4), 439-446. 

http://dx.doi.org/10.12989/sem.2017.63.4.439. 

Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), ‘‘Dynamic 

stability analysis of temperature-dependent functionally graded 

CNT-reinforced visco-plates resting on orthotropic elastomeric 

medium’’, Compos. Struct., 150, 255-265. 

https://doi.org/10.1016/j.compstruct.2016.05.023. 

Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), 

“Differential cubature and quadrature-Bolotin methods for 

dynamic stability of embedded piezoelectric nanoplates based on 

visco-nonlocal-piezoelasticity theories”, Compos. Struct., 157, 

174-186. https://doi.org/10.1016/j.compstruct.2016.08.032. 

Kolahchi, R., Moniri and Bidgoli, A.M. (2016), “Size-dependent 

sinusoidal beam model for dynamic instability of single-walled 

carbon nanotubes”, Appl. Math. Mech., 37(2), 265-274. 

https://doi.org/10.1007/s10483-016-2030-8. 

Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Oskouei, A.N. 

(2017a), “Visco-nonlocal-refined Zigzag theories for dynamic 

buckling of laminated nanoplates using differential cubature-

Bolotin methods”, Thin-Walled Struct., 113, 162-169. 

https://doi.org/10.1016/j.tws.2017.01.016. 

Kolahchi, R., Cheraghbak, A. (2017), “Agglomeration effects on 

the dynamic buckling of viscoelastic microplates reinforced with 

SWCNTs using Bolotin method”, Nonlinear Dyn, 90, 479-492. 

https://doi.org/10.1007/s11071-017-3676-x. 

Kolahchi, R. (2017), “A comparative study on the bending, 

vibration and buckling of viscoelastic sandwich nano-plates 

based on different nonlocal theories using DC, HDQ and DQ 

methods”, Aerosp. Sci. Technol., 66, 235-248. 

https://doi.org/10.1016/j.ast.2017.03.016. 

Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. 

(2017b), “Wave propagation of embedded viscoelastic FG-CNT-

reinforced sandwich plates integrated with sensor and actuator 

based on refined zigzag theory”, J. Mech. Sci., 130, 534-545. 

https://doi.org/10.1016/j.ijmecsci.2017.06.039. 

Kolahchi, R., Keshtegar, B., Fakhar, M.H. (2017c), “Optimization 

of dynamic buckling for sandwich nanocomposite plates with 

sensor and actuator layer based on sinusoidal-visco-

piezoelasticity theories using Grey Wolf algorithm”, Journal of 

194



 

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation 

 

Sandwich Struct. Mater. https://doi.org/10.1177/1099636217731071. 

Koochaki, G.R. (2011), “Free vibration analysis of functionally 

graded beams”, World Acad. Sci., Eng. Technol., 74, 366-369. 

https://doi.org/10.1016/j.matdes.2006.02.007. 

Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Bég, 

O. and Mahmoud, S.R. (2015), “Bending and buckling analyses 

of functionally graded material (FGM) size-dependent nanoscale 

beams including the thickness stretching effect”, Steel. Compos. 

Struct., 18(2), 425-442.  http://dx.doi.org/10.12989/scs.2015.18.2.425. 

Luo, W. L., Xia, Y. and Zhou, X. Q. (2018), “A general closed-

form solution to a Timoshenko beam on elastic foundation under 

moving harmonic line load”, Struct. Eng. Mech., 66(3), 387-

397.  http://dx.doi.org/10.12989/sem.2018.66.3.387. 

Li, X.F. (2008), “A unified approach for analyzing static and 

dynamic behaviors of functionally graded Timoshenko and 

Euler-Bernoulli beams”, J. Sound Vib., 318, 1210-1229. 

https://doi.org/10.1016/j.jsv.2008.04.056. 

Li, X.F., Wang, B.L. and Han, J.C. (2010), “A higher-order theory 

for static and dynamic analyses of functionally graded beams”, 

Arch. Appl. Mech., 80(10), 1197-1212. 

https://doi.org/10.1007/s00419-010-0435-6. 

Madani, H., Hosseini, H. and Shokravi, M. (2016), “Differential 

cubature method for vibration analysis of embedded FG-CNT-

reinforced piezoelectric cylindrical shells subjected to uniform 

and non-uniform temperature distributions”, Steel Compos. 

Struct., 22(4), 889-913. 

http://dx.doi.org/10.12989/scs.2016.22.4.889. 

Mahdavian, M. (2009), “Buckling analysis of simply-supported 

functionally graded rectangular plates under nonuniform In-

plane compressive loading”, J. Solid Mech., 1(3), 213-225. 

Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), “A new 

hyperbolic shear deformation theory for bending and free 

vibration analysis of isotropic, functionally graded, sandwich and 

laminated composite plates”, Appl. Math. Modell., 39, 2489-

2508. https://doi.org/10.1016/j.apm.2014.10.045. 

Mantari, J.L. and Granados, E.V. (2015), “A refined FSDT for the 

static analysis of functionally graded sandwich plates”, Thin-

Walled Structures, 90, 150-158. 

https://doi.org/10.1016/j.tws.2015.01.015. 

Meftah, A., Bakora, A., Zaoui, F. Z., Tounsi, A. and Adda Bedia, 

E.A. (2017), “A non-polynomial four variable refined plate 

theory for free vibration of functionally graded thick rectangular 

plates on elastic foundation”, Steel Compos. Struct., 23(3), 317-

330. http://dx.doi.org/10.12989/scs.2017.23.3.317. 

Meksi, A, Benyoucef, S, Houari, M.S.A. and Tounsi, A. (2015), “A 

simple shear deformation theory based on neutral surface 

position for functionally graded plates resting on Pasternak 

elastic foundations”, Struct. Eng. Mech., 53(6), 1215-1240. 

http://dx.doi.org/10.12989/sem.2015.53.6.1215. 

Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, 

E.A. and Mahmoud, SR. (2019), “An analytical solution for 

bending, buckling and vibration responses of FGM sandwich 

plates”, J. Sandw. Struct. Mater., 21(2), 727-757. 

ttps://doi.org/10.1177/1099636217698443. 

Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and 

Mahmoud, S.R. (2017), “A new and simple HSDT for thermal 

stability analysis of FG sandwich plates”, Steel Compos. Struct., 

25(2), 157-175. http://dx.doi.org/10.12989/scs.2017.25.2.157. 

Meradjah, M., Bouakkaz, K., Zaoui, F.Z., and Tounsi, A. (2018), 

“A refined quasi-3D hybrid-type higher order shear deformation 

theory for bending and Free vibration analysis of advanced 

composites beams”, Winds Structures, 27(4), 269-282. 

http://dx.doi.org/10.12989/was.2018.27.4.269. 

Meziane, M.A.A, Abdelaziz, H.H. and Tounsi, A. (2014), “An 

efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under various 

boundary conditions”, J. Sandw. Struct. Mater., 16(3), 293-318. 

https://doi.org/10.1177/1099636214526852. 

Mindlin, R.D. (1951), “Influence of rotary inertia and shear on 

flexural motions of isotropic elastic plates”, J. Appl. Mech., 

18(1), 31-38. 

Mohammadi, M., Saidi, AR., Jomehzadeh, E. (2010), “Levy 

solution for buckling analysis of functionally graded rectangular 

plates”, Appl. Compos. Mater., 17(2), 81-93. 

https://doi.org/10.1007/s10443-009-9100-z. 

Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., 

Tounsi, A. and Mahmoud, S.R. (2018), “A novel shear 

deformation theory for buckling analysis of single layer 

graphene sheet based on nonlocal elasticity theory”, Smart 

Struct. Syst., 21(4), 397-405. 

http://dx.doi.org/10.12989/sss.2018.21.4.397. 

Mouffoki, A., AddaBedia, E.A., Houari, M.S.A., Tounsi, A. and 

Mahmoud, S.R. (2017), “Vibration analysis of nonlocal 

advanced nanobeams in hygro-thermal environment using a new 

two-unknown trigonometric shear deformation beam theory”, 

Smart Struct. Syst., 20(3), 369-383. 

http://dx.doi.org/10.12989/sss.2017.20.3.369. 

Ould larbi L., Kaci A., Houari M.S.A. and Tounsi A. (2013), “An 

efficient shear deformation beam theory based on neutral surface 

position for bending and free vibration of functionally graded 

beams”, Mech. Based Des. Struct. Mach., 41(4), 421-433. 

https://doi.org/10.1080/15397734.2013.763713. 

Ravichandran, K. (1995), “Thermal residual stresses in a 

functionally graded material system”, Mater. Sci. Eng. A., 201, 

269-276. https://doi.org/10.1016/0921-5093(95)09773-2. 

Reissner, E. (1945), “The effect of transverse shear deformation on 

the bending of elastic plates”, J. Appl. Mech., 12(2), 69-77. 

https://doi.org/10.1177/002199836900300316. 

Sankar, B.V. (2001). “An elasticity solution for functionally 

graded beams”, Compos. Sci. Technol., 61, 689-696. 

https://doi.org/10.1016/S0266-3538(01)00007-0. 

Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017a), “A 

novel and simple higher order shear deformation theory for 

stability and vibration of functionally graded sandwich plate”, 

Steel Compos. Struct., 25(4), 389-

401.  http://dx.doi.org/10.12989/scs.2017.25.4.389. 

Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017b), “A 

new quasi-3D HSDT for buckling and vibration of FG plate”, 

Struct. Eng. Mech., 64(6), 737-749. 

http://dx.doi.org/10.12989/.2017.64.6.737. 

Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), 

“Thermal buckling analysis of SWBNNT on Winkler foundation 

by non local FSDT”, Adv. Nano Res., 

7.  http://dx.doi.org/10.12989/anr.2019.7.2.089. 

Şimşek M. (2010), “Fundamental frequency analysis of 

functionally graded beams by using different higher order beam 

theories”, Nuclear Eng. Design, 240(4), 697-705. 

https://doi.org/10.1016/j.nucengdes.2009.12.013. 

Şimşek, M. and Kocaturk, T. (2009), “Free and forced vibration of 

a functionally graded beam subjected to a concentrated moving 

harmonic load”, Compos. Struct., 90(4), 465-473. 

https://doi.org/10.1016/j.compstruct.2009.04.024. 

Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, 

A., Bousahla, A.A. and Mahmoud, S.R. (2019), “Vibration 

analysis of different material distributions of functionally graded 

microbeam”, Struct. Eng. Mech., 69(6), 637-649. 

http://dx.doi.org/10.12989/sem.2019.69.6.637. 

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. 

(2013), “A refined trigonometric shear deformation theory for 

thermoelastic bending of functionally graded sandwich plates”, 

Aerosp. Sci. Technol., 24(1), 209-220. 

https://doi.org/10.1016/j.ast.2011.11.009. 

Woo, J., Meguid, S.A. and Ong, L.S. (2006), “Nonlinear free 

vibration behavior of functionally graded plates”, J. Sound Vib., 

195



 

Lynda Amel Chaabane et al. 

289(3), 595-611. https://doi.org/10.1016/j.jsv.2005.02.031. 

Xiang, H.J. and Shi, Z.F., (2011), “Vibration attenuation in 

periodic composite Timoshenko beams on Pasternak 

foundation”, Struct. Eng. Mech., 40(3), 373-392. 

http://dx.doi.org/10.12989/sem.2011.40.3.373. 

Yahia, S.A, Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), 

“Wave propagation in functionally graded plates with porosities 

using various higher-order shear deformation plate theories”, 

Struct. Eng. Mech., 53(6), 1143-1165. 

http://dx.doi.org/10.12989/sem.2015.53.6.1143. 

Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, 

M.S.A. (2018), “A novel nonlocal refined plate theory for 

stability response of orthotropic single-layer graphene sheet 

resting on elastic medium”, Smart Struct. Syst., 21(1), 15-25. 

http://dx.doi.org/10.12989/sss.2018.21.1.015. 

Ying, J., Lü, C.F. and Chen, W.Q. (2008), “Two-dimensional 

elasticity solutions for functionally graded beams resting on 

elastic foundations”. Compos. Struct., 84, 209-219. 

https://doi.org/10.1016/j.compstruct.2007.07.004. 

Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. 

(2018), “Dynamic analysis of nanoscale beams including surface 

stress effects”, Smart Struct. Syst., 21(1), 65-74. 

http://dx.doi.org/10.12989/sss.2018.21.1.065. 

Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, 

S.R. (2018), “Novel quasi-3D and 2D shear deformation theories 

for bending and free vibration analysis of FGM plates”, 

Geomech. Eng., 14(6), 519-532. 

http://doi.org/10.12989/gae.2018.14.6.519. 

Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), 

“Agglomeration effects on the buckling behaviour of embedded 

concrete columns reinforced with SiO2 nano-particles”, Wind 

Struct., 24(1), 43-57. http://doi.org/10.12989/was.2017.24.1.043. 

Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), “New 2D and 

quasi-3D shear deformation theories for free vibration of 

functionally graded plates on elastic foundations”, Compos. Part 

B Eng., 159, 231-247. 

https://doi.org/10.1016/j.compositesb.2018.09.051. 

Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), 

“A mechanical response of functionally graded nanoscale beam: 

an assessment of a refined nonlocal shear deformation theory 

beam theory”, Struct. Eng. Mech., 54(4), 693-710. 

http://dx.doi.org/10.12989/sem.2015.54.4.693. 

Zhao, X., Lee, Y.Y. and Liew KM. (2009), “Free vibration analysis 

of functionally graded plates using the element-free kp-Ritz 

method”, J. Sound Vib., 319(3-5), 918-939. 

https://doi.org/10.1016/j.jsv.2008.06.025. 

Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, 

S.R. (2017), “A novel simple two-unknown hyperbolic shear 

deformation theory for functionally graded beams”, Struct. Eng. 

Mech., 64(2), 145-153. 

http://dx.doi.org/10.12989/sem.2017.64.2.145. 

Zidi, M., Tounsi, A., Houari M.S.A., Adda Bedia, E.A. and Anwar 

Bég, O. (2014), “Bending analysis of FGM plates under hygro-

thermo-mechanical loading using a four variable refined plate 

theory”, Aerosp. Sci. Technol., 34, 24-34. 

https://doi.org/10.1016/j.ast.2014.02.001. 

Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. 

(2018), “A novel higher-order shear deformation theory for 

bending and free vibration analysis of isotropic and multilayered 

plates and shells”, Steel Compos. Struct., 26(2), 125-137. 

http://dx.doi.org/10.12989/scs.2018.26.2.125. 

 

 

CC 

196




