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1. Introduction 
 

Since the properties of inhomogeneous materials vary 

from place to place in the volume of the body, the 

investigation of fracture behavior of inhomogeneous 

structural members and components is more laborious. 

Typical examples for inhomogeneous materials are the 

functionally graded materials. Due to the gradual variation 

in the composition along one or more spatial coordinates, 

the properties of functionally graded materials can be 

optimized so as to achieve high performance and material 

efficiency (Koizumi 1993, Markworth, Ramesh and Parks 

1995, Mortensen and Suresh 1995, Neubrand and Rödel  

1997, Suresh and Mortensen 1998, Hirai and Chen 1999, 

Gasik 2010, Nemat-Allal et al. 2011, Bohidar, Sharma and 

Mishra 2014). Also, the gradation in material properties 

leads to significant reduction of thermal stresses, residual 

stresses, and stress concentration. Thus, it is not surprising 

that the application of the functionally graded materials in 

complex and sophisticated components which cannot be 

made of the conventional metal structural materials in 

aeronautics, nuclear reactors, turbine rotors, electronics and 

biomedicine has been gradually increasing for the last 

decades. 

The appropriate application of inhomogeneous materials 

demands an adequate understanding of their mechanical 
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properties, and fracture behavior and characteristics. The 

longitudinal fracture behavior of inhomogeneous structural 

members and components is particularly important since 

certain kinds of inhomogeneous materials, such as 

functionally graded materials, can be built up layer by layer 

(Bohidar, Sharma and Mishra 2014) which is a premise for 

appearance of longitudinal cracks between layers. In view 

of the complex character of longitudinal fracture of 

inhomogeneous materials and structures, the development 

of analyses of this fracture phenomenon is of great 

importance. Fracture analyses are very useful for studying 

the effects of various factors such as crack location, 

material inhomogeneity and the non-linear mechanical 

behavior of the material on the longitudinal fracture. The 

information gathered through these analyses can be used to 

develop and improve inhomogeneous materials with respect 

to their longitudinal fracture performance. Thus, it is not 

surprising that fracture in inhomogeneous (functionally 

graded) structural members and components remains a topic 

of active research around the globe (Wang and Noda 2001, 

Carpinteri, Paggi and Pugno 2006, Dong Wei, Yinghua Liu 

and Zhihai Xiang 2012, Mousavi and Paavola 2013, Rekik, 

El-Borgi and Ounaies 2014). 
Fracture behavior of functionally graded composite 

structures under thermal loading has been studied and 
discussed in detail by Wang and Noda (2001). Linear-elastic 
behavior of the functionally graded material has been 
assumed in fracture analysis. Different crack positions and 
material gradients have been investigated in a functionally 
graded material bonded to a metal substrate. 
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Abstract.  Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release 

rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the cross-

section. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous 

material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under 

combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the 

modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution 

is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack 

is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously 

according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by 

applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present 

paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material 

on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design 

of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on 

longitudinal fracture. 
 

Keywords:  inhomogeneous beam; longitudinal fracture; material nonlinearity; strain energy 

 



 

Victor I. Rizov 

 
Fig. 1 Beam portion with the crack front (1 – lower crack 

arm, 2 – upper crack arm and 3 – un-cracked part of the 

beam). The heights of the lower and upper crack arms are 

denoted by h1 and h2, respectively. 

 
 

An approach for studying of brittle cracking in 

functionally graded materials has been developed by 

Carpinteri, Paggi and Pugno (2006). The approach can also 

be applied for fatigue fracture behavior. The methods of 

linear-elastic fracture mechanics have been applied. A 

detailed study of fracture in a three-point bending 

functionally graded beam configuration with an edge crack 

has been carried-out. An edge crack in a functionally graded 

plate loaded in tension has been addressed too. The problem 

of fracture behavior of a two-layer beam with an external 

functionally graded layer subjected to three-point bending 

has also been analyzed.  

 Edge cracks in functionally graded linear-elastic beams 

with axial loading have been investigated by Dong Wei, 

Yinghua Liu and Zhihai Xiang (2012). The rotational spring 

model has been used in order to treat the discontinuity 

caused by the crack. The governing equations of motion 

have been established and solved. Beams with an arbitrary 

number of edge cracks have been analyzed. The influences 

of loading conditions, location and number of cracks and 

end supports have been discussed. 

A cracked functionally graded piezoelectric-

piezomagnetic layer has been investigated by Mousavi and 

Paavola (2013). Problems of arbitrary configurations of 

multiple embedded and edge cracks have been considered. 

Straight and curved cracks have been analyzed.   

The problem of an axisymmetric penny shaped crack 

embedded in functionally graded magneto electro elastic 

medium has been addressed by Rekik, El-Borgi and 

Ounaies (2014). It has been assumed that the linear-elastic 

material is functionally graded in axisymmetric direction. 

The effect of material non-homogeneity and varying crack 

geometry has been investigated.  

Several works concentrated on longitudinal fracture 

behavior of inhomogeneous non-linear elastic beam 

structures loaded in bending have been published recently 

by the author (Rizov 2017a, b, c, d, Rizov 2018a, b, c). 

Particular solutions to the strain energy release rate for 

longitudinal cracks in separate beam configurations of 

rectangular cross-section have been derived (Rizov 2017a, 

b, c, d, Rizov 2018a, b, c).  

The present paper is focused on analysis of longitudinal 

fracture of inhomogeneous beam structures of arbitrary 

cross-section by using the Ramberg-Osgood stress-strain 

relation for modeling the non-linear mechanical behavior of 

the material. The beams considered are under combination 

of axial force and bending moments. Besides, it is assumed 

that the beams exhibit smooth material inhomogeneity 

along the width as well as along the height. The main 

purpose of the present paper is to derive a general solution 

to the strain energy release rate assuming that the modulus 

of elasticity varies continuously in both width and height 

directions of the beam cross-section. It should be mentioned 

that the solution holds for monotonic loading, small strains 

(first order), prismatic beams (Euler-Bernoulli assumption) 

under the exclusion of body forces.  

 The solution is verified by the J-integral approach. Finite 

element simulations are also performed to verify the 

solution.   

 

 

2. Theoretical formulation  
 

A beam portion with the crack front is shown in Fig. 1. 

The longitudinal crack is located arbitrary along the beam 

height. The heights of the lower and upper crack arms are h1 

and h2, respectively. By applying the approach developed in 

(Rizov 2017b), the strain energy release rate, G, for the 

inhomogeneous beam in Fig. 1 can be expressed as 
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where bs is the beam width at the level of the 

longitudinal crack, 𝑢01
∗ , 𝑢02

∗  and 𝑢03
∗  are, respectively, 

the complementary strain energy densities in the cross-

sections of lower and upper crack arms behind the crack 

front and in the beam cross-section ahead of the crack front, 

A1, A2 and A3 are the areas of cross-sections of the crack 

arms behind the crack front and the cross-section of the 

beam ahead of the crack front.  

The Ramberg-Osgood stress-strain relation is written as 

(Dowling 2007) 
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where ε is the longitudinal strain, σ is the longitudinal 

normal stress, E is the modulus of elasticity, H and n are 

material properties. The first term in the right-hand side of 

Eq. (2) describes the linear-elastic strains. The non-linear 

mechanical behavior of the material is described by the 

second term in the right-hand side of Eq. (2). It should be 

noted that the uniqueness of stress for a given strain does 

not hold for the Ramberg-Osgood stress-strain relation 

under unloading conditions. Thus, considering stress-

redistribution effects, unloading might occur during crack 

propagation. Therefore, the solution to the strain energy 

release rate derived in the present paper is restricted to 

crack initiation. 

For the Ramberg-Osgood stress-strain relation, the 

complementary strain energy density in the cross-section of 
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lower crack arm behind the crack front can be expressed as 

(Rizov 2018a) 
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It is obvious that σ cannot be determined explicitly from 

equation Eq. (2). Therefore, the normal stress in the cross-

section of lower crack arm behind the crack front is 

expanded in series Maclaurin by keeping the first six 

members 
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where y1 and z1 are the centroidal axes of the lower crack 

arm cross-section (Fig. 2). Eq. (4) is re-written as  

++++ 2
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(5) 

The Ramber-Osgood Eq. (2) is used to determine the 

coefficients, μ1, μ2, μ3, μ4, μ5 and μ6. By applying the 

Bernoulli’s hypothesis for plane sections, the strains in the 

lower crack arm cross-section are expressed as 

11 111
zy zyC  ++=

 
(6) 

where ε𝐶1
 is the strain in the centre of the lower crack 

arm cross-section, κ𝑦1
and κ𝑧1

are the curvatures of lower 

crack arm in the x1y1 and x1z1 planes, respectively. It should 

be noted that the Bernoulli’s hypothesis can be applied 

since beams of high span to height ratio are under 

consideration in the present paper. By combining of Eqs. 

(5), (6) and (2), one arrives at 
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where 

( )11, zyEE =
 

(8) 

By substituting of y1 = 0 and z1 = 0 in Eq. (7), one 

obtains 
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Further, by substituting of y1 = 0 and z1 = 0 in the first 

derivatives of Eq. (7) with respect to y1 and z1, one arrives 

at 
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Similarly, by substituting of y1 = 0 and z1 = 0 in the 

second derivatives of Eq. (7) with respect to y1 and z1, one 

obtains 
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In Eqs. (9)-(14), E and the derivatives, 
𝜕𝐸

𝜕𝑦1
, 

𝜕𝐸

𝜕𝑧1
, 

𝜕2𝐸

𝜕𝑦1
2, 

𝜕2𝐸

𝜕𝑦1𝜕𝑧1
 and 

𝜕2𝐸

𝜕𝑧1
2, are calculated at y1 = 0 and z1 = 0. 

There are nine unknowns, μ1, μ2, μ3, μ4, μ5, μ6, εc1, κy1 

and κz1, in Eqs. (9)-(14). Three other equations are  
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Fig. 2 Geometry and loading of the lower and upper crack 

arm cross-sections behind the crack front 

 

 

constructed by considering the equilibrium of the 

elementary forces in the lower crack arm cross-section. 

Since the lower crack arm cross-section is under 

combination of axial force, N1, and bending moments, 𝑀𝑦1
 

and 𝑀𝑧1
, (Fig. 2) the equilibrium equations are written as 
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By using the MatLab computer program, Eqs. (9)-(17) 

should be solved with respect to μ1, μ2, μ3, μ4, μ5, μ6, 

ε𝐶1
 , κ𝑦1

and κ𝑧1
, for particular beam configuration, loading 

conditions and material properties. Then, 𝑢01
∗ can be 

obtained by substituting of Eq. (5) in Eq. (3).  

Eq. (3) can also be applied to calculate 𝑢02
∗ . For this 

purpose, σ has to be replaced with σd where σd is the normal 

stress in the cross-section of the upper crack arm behind the 

crack front. Also, μ1, μ2, μ3, μ4, μ5, μ6, y1, z1, N1, 𝑀𝑦1
, 𝑀𝑧1

, 

A1, εc1, κy1 and κz1 have to be replaced, respectively, with  

μd1, μd2, μd3, μd4, μd5, μd6,  y2, z2, N2, 𝑀𝑦2
, 𝑀𝑧2

, A2, 

ε𝐶2
 , κ𝑦2

and κ𝑧2
 in Eqs. (9)-(17). Here, y2 and z2 are the 

centroidal axes of the upper crack arm cross-section, N2, 

𝑀𝑦2
, 𝑀𝑧2

 are the axial force and the bending moments 

(Fig. 2), ε𝐶2
 , κ𝑦2

and κ𝑧2
 are the strain in the centre of the 

upper crack arm cross-section, and the curvatures of upper 

crack arm in the x2y2 and x2z2 planes, respectively.  

The complementary strain energy density in the beam 

cross-section ahead of the crack front can be obtained by 

replacing of σ with σf in Eq. (3). Here, σf is the normal stress 

in the beam cross-section ahead of the crack front. Besides, 

in Eqs. (9)-(17), μ1, μ2, μ3, μ4, μ5, μ6, y1, z1, N1, 𝑀𝑦1
, 𝑀𝑧1

,  

 
Fig. 3 Geometry and loading of the beam cross-section 

ahead of the crack front 

 

 

A1, ε𝐶1
 , κ𝑦1

and κ𝑧1
have to be replaced with μf1, μf2, μf3, μf4, 

μf5, μf6, y3, z3, N3, 𝑀𝑦3
, 𝑀𝑧3

, A3, ε𝐶3
 , κ𝑦3

and κ𝑧3
 

respectively, where y3 and z3 are the centroidal axes of the 

beam cross-section ahead of the front (Fig. 3), N3, 𝑀𝑦3
, 

𝑀𝑧3
 are the axial force and the bending moments, 

ε𝐶3
 , κ𝑦3

and κ𝑧3
are the strain in the centre of the beam 

cross-section and the curvatures, respectively, in the x3y3 

and x3z3 planes.  

The strain energy release rate can be calculated by 

substituting of 𝑢01
∗ , 𝑢02

∗  and 𝑢03
∗  in Eq. (1) (the integration 

in Eq. (1) should be carried-out by using the MatLab 

computer program). 
 
 

3. Numerical example 
 

Longitudinal fracture in the beam configuration shown 

in Fig. 4 is analyzed by applying the solution to the strain 

energy release rate derived in section 2 of the present paper. 

It is assumed that the beam exhibits smooth material 

inhomogeneity in width and height directions. The beam is 

subjected to four-point bending (the external loading 

consists of two vertical forces, F, applied at the beam end 

sections). The beam cross-section is a rectangle of width, b, 

and height, 2h. A vertical notch of depth, h2, is introduced in 

the beam mid-span in order to generate conditions for 

longitudinal fracture. It assumed that a longitudinal crack of 

length, 2a, is located symmetrically with respect to the mid-

span. The heights of the lower and upper crack arms are 

denoted by h1 and h2, respectively. It should be noted that 

the longitudinal crack is located in beam portion, B1B2, that 

is loaded in pure bending (Fig. 4). It is obvious that the 

upper crack arm is free of stresses (Fig. 4). Therefore,  

0*

02 =u
 

(18) 

It should be mentioned that the crack is located in beam 

portion, B1B2, that is loaded in pure bending. Due to 

symmetry, only half of the beam, 𝑙1 + 𝑙2 ≤ 𝑥4 ≤ 2(𝑙1 +
𝑙2), is considered in the analysis (Fig. 4).  
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The continuous variation of the modulus of elasticity in 

the beam cross-section is described by the following cosine 

law: 
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where 
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(20) 

hzh − 4  
(21) 

In Eq. (19), y4 and z4 are the centroidal axes of the beam 

cross-section (Fig.4), Eg is the value of the modulus of 

elasticity in the upper left-hand vertex of the beam cross-

section, m1 and m2 are material properties which govern the 

material inhomogeneity in width and height directions, 

respectively. It should be noted that trigonometric functions 

have been used for describing the material properties 

distribution in functionally graded materials (Arshad, 

Naeem and Sultana 2007). 

Eq. (3) is used to obtain the complementary strain 

energy density in the cross-section of the lower crack arm  

 

 

Fig. 5 Cross-section of the lower crack arm 
 

 

behind the crack front. In order to express the distribution 

of the modulus of elasticity in the lower crack arm cross-

section, Eq. (19) is re-written as 
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Fig. 4 Beam configuration with rectangular cross-section and a longitudinal crack located symmetrically with respect to the 

mid-span 
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where 
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In Eq. (22), y1 and z1 are the centroidal axes of the lower 

crack arm cross-section (Fig. 5).  

Further, by substituting of Eqs. (5) and (22) in Eqs.  

(9)-(17), one arrives at 
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where 𝜂 = ℎ1π/(8ℎ) Figure 4 indicates that 

01 =N
 

(34) 

11
FlM y =  

(35) 
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(36) 

After solving of Eqs. (25)-(33) with respect to μ1, μ2, μ3, 

μ4, μ5, μ6, ε𝐶1
 , κ𝑦1

and κ𝑧1
 by using the MatLab computer 

program, the complementary strain energy density in the 

cross-section of the lower crack arm behind the crack front 

can be obtained by substituting of Eqs. (5) and (22) in Eq. 

(3).  

In order to calculate the complementary strain energy 

density in the beam cross-section ahead of the crack front, 

first, μ1, μ2, μ3, μ4, μ5, μ6, ε𝐶1
 , κ𝑦1

and κ𝑧1
 and h1 have to be 

replaced, respectively, with μf1, μf2, μf3, μf4, μf5, 

μf6, ε𝐶3
 , κ𝑦3

and κ𝑧3
 and 2h in Eqs. (25)-(33). Then, after 

solving Eqs. (25)-(33) by the MatLab computer program, 

the normal stress, σf, can be determined by Eq. (5) and 

substituted in Eq. (3) to obtain 𝑢03
∗ .  

After replacing of bs with b and substituting of 𝑢01
∗ , 𝑢02

∗  

and 𝑢03
∗  in Eq. (1), the strain energy release rate, calculated 

by the MatLab computer program, is doubled in view of the 

symmetry (Fig. 4).  

The solution to the strain energy release rate is verified 

by applying the J-integral approach (Broek 1986) for 

analyzing the longitudinal crack in the beam shown in Fig. 

4. The J-integral is solved along the integration contour, Γ, 

shown by dashed line in Fig. 4. Since the upper crack arm is 

free of stresses, the J-integral value is zero in the upper 

crack arm. Therefore, the J-integral solution is written as 

)(2
21  += JJJ

 
(37) 

In Eq. (37), the J-integral values in segments, Γ1 and Γ2, 

of the integration contour are denoted by 𝐽Γ1
and 𝐽Γ2

, 

respectively. The segments, Γ1 and Γ2, coincide, 

respectively, with the cross-sections of the lower crack arm 

and the beam ahead of the crack front (Fig. 4). It should be 

noted that the term in brackets in Eq. (37) is doubled in 

view of symmetry (Fig. 4).   

The J-integral in segment, Γ1, of the integration contour 

is written as 
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(38) 

where u01 is the strain energy density in the cross-section of 

lower crack arm behind the crack front, 𝛼Γ1
 is the angle 

between the outwards normal vector to the contour of 

integration and the crack direction, 𝑝𝑥Γ1
 and 𝑝𝑦Γ1

 are the 

components of the stress vector, u and v are the components 

of the displacement vector with respect to the coordinate 

system xy, and 𝑑𝑆Γ1
is a differential element along the 

contour of integration. 

The components of Eq. (38) are expressed as 
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1cos
1

−=  
(43) 

In Eqs. (39) and (42), the normal stress, σ, is determined 

by Eq. (5). The coordinate, z1, in Eq. (41) varies in the 

interval [-h1/2; h1/2]. The strain energy density in the cross-

section of lower crack arm is calculated by the following 

formula (Rizov 2017a) 
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where σ is obtained by Eq. (5).    

   The J-integral in segment, Γ2, is expressed as 
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The components of Eq. (45) are determined as 
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where the coordinate, z3, varies in the interval [-h;h]. The 

stress, σf, in Eqs. (46), (50) and (51) is calculated by Eq. (5).  

The average value of the J-integral along the crack front 

is written as 


−

=
2
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(52) 

By substituting of Eqs. (37), (38) and (45) in Eq. (52), 

one arrives at 
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(53) 

The MatLab computer program is used to carry-out the 

integration in Eq. (53). The J-integral values obtained by 

Eq. (53) are exact matches of the strain energy release rates 

calculated by Eq. (1). This fact verifies the fracture analysis 

developed in the present paper. It should be noted that the 

fracture is analyzed also by keeping more than six members 

in the series of Maclaurin Eq. (4). The results are very close 

to these obtained by keeping six members (the difference is 

less than 2 %).   

Influences of material inhomogeneity along the width 

and height of the beam, the crack location along the beam 

height and the non-linear mechanical behaviour of the 

inhomogeneous material on the longitudinal fracture in the 

beam configuration shown in Fig. 4 are investigated. For 

this purpose, calculations of the strain energy release rate 

are performed by Eq. (1). The results obtained are presented 

in non-dimension form by using the formula GN= G/(Egb). 

It is assumed that b = 0.010 m, h = 0.0015 m, l1 = 0.010 m, 

l2 = 0.060 m, a = 0. 0050 m and F = 30 N. Also, it is 

assumed that Eg = 110 GPa. The properties, m1 and m2, 

which characterize the material inhomogeneity along the 

width and height of the beam (refer to Eq. (22)) are varied 

in the analysis in order to evaluate their effect on the 

longitudinal fracture behavior. The crack location along the 

beam height is characterized by h2/2h ratio. 

The strain energy release rate in non-dimensional form 

is presented as a function of m1 in Fig. 6 for three h2/2h 

ratios at m2 = 0.6, H/Eg = 0.7 and n = 0.8. The curves in Fig. 

6 indicate that the strain energy release rate decreases with 

increasing of m1. This finding is attributed to the increase of 

the beam stiffness. One can observe also in Fig. 6 that the 

strain energy release rate decreases with increasing of h2/2h 

ratio. This behavior is due to the increase of the height of 

the lower crack arm.  

The finite element method is used also for verification 

of the solution to the strain energy release rate. For this 

purpose, first, a formula for the strain energy release rate is 

derived by considering the balance of the energy for the 

longitudinal crack in the beam configuration shown in Fig. 

4. In order to determine the strain energy release rate, a 

small increase, δa, of the crack length is assumed. The 

energy balance is expressed as 

aGba
a

U
wF  +




=

 

(54) 

where w is the vertical displacement of the application point 

of the external force, F, ΔU is the change of the strain  

 
Fig. 6 The strain energy release rate in non-dimensional 

form presented as a function of m1 at (curve 1) h1/2h = 

0.30 analytical solution, (curve 2) h1/2h = 0.30 Finite 

Element (FE) analysis, (curve 3) h2/2h = 0.50   

analytical solution, (curve 4) h2/2h = 0.50 FE analysis, 

(curve 5) h2/2h = 0.70 analytical solution and (curve 6) 

h2/2h = 0.70 FE analysis 

 

 

energy cumulated in the beam. Form Eq. (54), one obtains 

the following expression for the strain energy release rate 

where Δw is the change of the vertical displacement due to 
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(55) 

crack increase. It should be noted that the term in brackets 

in Eq. (55) is doubled in view of the symmetry (Fig. 4). In 

order to calculate the strain energy release rate by Eq. (55), 

a three-dimensional finite element model of the beam is 

developed by using the ANSYS computer program. Due to 

the symmetry (Fig. 4), only half of the beam in longitudinal 

direction,  0 ≤ 𝑥4 ≤ 𝑙1 + 𝑙2 , is modeled by the finite 

element method. In order to simulate the symmetry, the 

following boundary conditions are used: the longitudinal 

components (along x4-axis) of the displacements of the 

nodes in the cross-section of the lower crack arm in the 

beam mid-span, 𝑥4 = 𝑙1 + 𝑙2, are set to zero. The external 

loading is presented as a uniformly distributed load across 

the beam width of intensity, F/b, applied at the end section, 

x4 = 0, of the beam. Solid finite elements SOLID45 are used 

to mesh the model. The finite element SOLID45 is defined 

by eight nodal points (one in each vertex). Each nodal point 

has three degrees of freedom (translations in x, y and z 

nodal directions). The finite element mesh is refined in the 

vicinity of the crack front. The total number of finite 

elements used in the simulations is 42600. It should be 

mentioned that this number of elements is chosen after 

performing a mesh sensitivity study to ensure that the mesh 

is fine enough. A typical finite element mesh is shown in 

Fig. 7. The smallest and largest element sizes used are 

0.0002 m and 0.0015 m, respectively. The Poisson’s ratio is 

set to 0.3 in the finite element model. 

The distribution of the modulus of elasticity of the 

inhomogeneous material in the beam cross-section is treated  
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Table 1 Convergence of the strain energy release rate, GN, 

as a function of Δa towards the analytical solution, 𝐺𝑁
𝑎 =

2.657 

Δa, mm GN 

0.0004  2.586 

0.0002  2.650 

0.0001  2.650 

 

 

in the finite element model in the following way. The beam 

cross-section in the finite element model is divided into 

rectangles. The value of the modulus of elasticity calculated 

by Eq. (22) for the coordinates of the centre of a given 

rectangle is assigned to the finite elements located in this 

rectangle. A multi-linear isotropic hardening material model 

is used in the finite element simulations. According to this 

material model, the Ramberg-Osgood stress-strain curve is 

defined point by point. For this purpose, Eq. (2) and the 

modulus of elasticity calculated by Eq. (22) for the centre of 

a given rectangle are used. The multi-linear stress-strain 

curve constructed in this manner is assigned to finite 

elements located in the corresponding rectangle of the beam 

cross-section. In this way, a stepwise distribution of the 

material properties in the cross-section of the 

inhomogeneous beam is realized in the finite element 

analysis since the finite elements located in individual 

rectangles have one and the same properties (modulus of 

elasticity and stress-strain curve). It should be noted that the 

dimensions of the finite element model and the values of 

material properties are identical with these used in the 

analytical solution.  

Application of Eq. (55) for the strain energy release rate 

necessitates calculation of the difference, ΔU, between the 

strain energy cumulated in the beam before and after 

increase of the crack length with Δa by using the finite 

element model. It is necessary to calculate also the 

difference, Δw, between the vertical displacement of the  

 

 

application point of the external force before and after 

increase of the crack length. In the finite element analysis, a 

crack increase of Δa = 0.0002 m is used. This value of the 

crack increase is chosen after performing a sensitivity study 

to ensure that further decreasing of Δa does not affect the 

results of the analysis. The results of the sensitivity study 

are illustrated in Table 1 where the convergence of the strain 

energy release rates as a function of Δa towards the 

analytical solution is presented. One can observe in Table 1 

that the strain energy release rate does not change when Δa 

decreases from 0.0002 m to 0.0001 mm. Therefore, Δa = 

0.0002 m is used in the analysis. The enlarged near crack tip 

mesh is shown in Fig. 8. The strain energy release rate 

obtained by the finite element model via Eq. (55) is 

presented as a function of m1 in Fig. 6. 

One can observe that the results obtained by the solution 

to the strain energy release rate derived in section 2 of the 

present paper are in a very good agreement with these 

obtained by the finite element simulations (Fig. 6). 

 In order to analyze the effect of m2 on the longitudinal 

fracture behavior, the strain energy release rate obtained by 

Eq. (1) is presented in non-dimensional form as a function 

of m2 in Fig. 9 at h2/2h = 0.3 and m1 = 0.5. It can be 

observed in Fig. 9 that the strain energy release rate 

decreases with increasing of m2. The influence of the non-

linear mechanical behavior of the inhomogeneous material 

on the longitudinal fracture is evaluated too. For this 

purpose, the strain energy release rate obtained assuming 

linear-elastic behavior of the inhomogeneous material is 

presented in non-dimensional form as a function of m2 in 

Fig. 9 for comparison with the non-linear solution. It should 

be noted that the linear-elastic solution to the strain energy 

release rate is derived by substituting of H → ∞ in the non-

linear solution Eq. (1) (this is due to the fact that at H → ∞ 

the Ramberg-Osgood stress-strain Eq. (2) transforms into 

the Hooke’s law assuming that E is the modulus of elasticity 

of the inhomogeneous material). One can observe that the 

non-linear mechanical behavior of the material leads to 

increase of the strain energy release rate (Fig. 9) which is  

 

Fig. 7 Three-dimensional mesh used in the finite element simulations 
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Fig. 8 Enlarged near crack tip mesh in deformed state at 

the lateral surface of the beam  

 

 

Fig. 9 The strain energy release rate in non-dimensional 

form presented as a function of m2 at (curve 1) non-linear 

elastic behavior of the material (analytical solution), 

(curve 2) non-linear elastic behavior of the material (FE 

analysis), (curve 3) linear-elastic behavior of the material 

(analytical solution) and (curve 4) linear-elastic behavior 

of the material (FE analysis) 
 

 

due to decrease of the beam stiffness. Results obtained by 

the finite element model are also presented in Fig. 9.  

The curves in Fig. 9 demonstrate a very good agreement 

between the solution derived in section 2 of the present 

paper and the finite element analysis.   

 

 

4. Conclusions 
 

   A solution to the strain energy release rate for 

longitudinal cracks in beam configurations which exhibit 

smooth material inhomogeneity along the width as well as 

along the height of the beam cross-section is derived 

assuming non-linear mechanical behavior of the material. 

Besides, it is assumed that the stiffness properties are 

constant along the beam axis. The beams which are under 

combination of axial force and bending moments may have 

arbitrary cross-section. The Ramberg-Osgood equation is 

applied for treating the material non-linearity. The solution 

derived holds for longitudinal cracks located arbitrary along 

the height of the beam cross-section. Besides, the modulus 

of elasticity may be distributed arbitrary in the beam cross-

section. The solution is used for analyzing the strain energy 

release rate in a beam configuration that contains a 

longitudinal crack located symmetrically with respect to the 

mid-span. The continuous variation of the modulus of 

elasticity in the beam cross-section is described by a cosine 

law. The fracture is studied also by the J-integral for 

verification. The finite element method is also applied for 

verification of the solution to the strain energy release rate. 

Effects of material inhomogeneity in width and height 

direction of the cross-section, material non-linearity and 

crack location along the beam height are investigated. The 

analysis reveals that the strain energy release rate decreases 

with increasing of m1 and m2 (m1 and m2) are material 

properties which control the material inhomogeneity in 

width and height directions, respectively). It is found also 

that the strain energy release rate decreases with increasing 

of the height of the lower crack arm. A comparison with the 

strain energy release rate derived assuming linear-elastic 

mechanical behavior of the inhomogeneous material is 

performed. It is found that the material non-linearity leads 

to increase of the strain energy release rate.  
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