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1. Introduction 
 

Laterally loaded piles are members prevalently 

subjected to bending. So, even if in Geotechnics and in 

Foundation Structure Design they are currently called 

“laterally loaded piles” (Poulos and Davis 1980, Bowles 

1996), they can be considered to behave as beams. Actually, 

in a number of engineering cases, axial loads of laterally 

loaded piles are negligible, as in many cases of retaining 

walls, harbour embankments, wind wheels and bridge 

abutments. Although in engineering practice they are 

considered as “piles in bending”, in the following, when 

describing their mechanical behaviour and the optimization 

of their shape and length, we will refer to them as “beams”.    

In many real cases, such as in integral abutment bridges 

(Lan et al. 2017), the pile lateral displacement is to be 

minimized (Fenu and Serra 1995, Fenu et al. 2006), or on 

the contrary maximized (Lan et al. 2017), depending on the 

control of the pile head flexibility. Optimizing the pile 

shape and length (Fenu et al. 2018) is therefore of concern 

(Caner and Zia 1998, Zordan and Briseghella 2007, 

Briseghella and Zordan 2007-2015, Zordan et al. 2011, 

Zordan et al. 2011, Kim et al. 2013, Kim et al. 2014, Xu et 

al. 2017, Lavorato et al. 2015). Of course, while in general 

cylindrical piles are used (sometimes truncated-conical, or 

at most made of two or three cylindrical segments with 

d i ffe ren t  d iameters  (Fenu  and  Madama 2006 ) , 

 

Corresponding author, Professor 

E-mail: bruno@fzu.edu.cn 
a Researcher 
b Professor 

 

 
in this research the shape of optimum piles varies with the 

bending moment, whose distribution along the pile depends 

on the applied load as well as on the soil reaction.  

Nakhaee and Johari (2013) optimised the lateral load 

bearing capacity of piles through genetic algorithms 

assuming diameter, length and mechanical properties as 

design variables. Gandomi and Alavi (2012) implemented a 

neural network algorithm for designing laterally loaded 

piles, thus reliably predicting their performances. Imancli et 

al. (2009) defined some performance functions of laterally 

loaded piles in concrete driven in homogeneous clays. 

Since laterally loaded piles are bended elements that 

behaves as beams, their optimum shape depends on the 

bending moment along them, as in any optimized beam 

(Haftka and Gürdal 1993). Moreover, since they are only 

laterally constrained by the surrounding soil without a point 

constraint at their lower end, an optimum length value can 

be obtained. Some authors faced the problem of how to 

optimise laterally loaded piles (Fenu and Serra 1995) and 

Fenu (2005) through variational calculus. Fenu et al. (2018) 

optimised shape and length of laterally loaded piles using a 

well-known optimality criterion, the Fully Stressed Design 

(FSD) method (Bartholomew and Morris 1976, Haftka and 

Gürdal 1993, Patnaik and Hopkins 1998).  

The design techniques of structural optimization have 

been initially used in mechanical and aeronautical 

engineering, and have been progressively adopted also in 

civil engineering (Briseghella et al. 2013-2016, Marano et 

al. 2006, Marano et al. 2007, Fiore et al. 2016, Greco et al. 

2016, Greco and Marano 2015, Greco et al. 2015, Marano 

et al. 2014, Marano and Greco 2011, Marano et al. 2013, 

Quaranta et al. 2014, Zordan et al. 2010). 

Before the diffusion of evolutionary optimization 

 
 
 

Simplified method to design laterally loaded piles 

with optimum shape and length 
 

Luigi Fenu1a, Bruno Briseghella2b and Giuseppe Carlo Marano2b 
 

1Department of Civil & Environment Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy 

 2College of Civil Engineering, Fuzhou University, No. 2 Xue Yuan Road, University Town, Fuzhou 350108 - Fujian, China 

 
(Received November 25, 2018, Revised March 20, 2019, Accepted March 21, 2019) 

 

Abstract.  Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In 

particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, 

while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure 

is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is 

satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, 

depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. 

Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are 

introduced. 
 

Keywords:  Winkler’s soil; FSD method; laterally loaded piles; optimum shape and length; specific constants; simplified 

design 

 



 

Luigi Fenu, Bruno Briseghella and Giuseppe Carlo Marano 

algorithms, the FSD method, herein adopted, was the 

optimization method more extensively used in industry 

(Haftka and Gürdal 1993). It is an optimality criterion 

leading to the minimum weight design for statically 

determinate structures (Haftka and Gürdal 1993), while, in 

most cases of statically indeterminate structures, it leads to 

design solutions close to the optimum.  

Regarding the soil-pile interaction, in this paper the 

Winkler’s soil model is adopted (Winkler 1867). Although 

many authors have proposed more sophisticated soil-pile 

interaction models (David and Forth 2011, Ashour and 

Norris 2000, Boulanger et al. 1999, Kim and Jeong 2011, 

Kavitha et al. 2016, McGann and Arduino 2011, Carbonari 

et al. 2012) with more complex soil constitutive laws 

(McGann and Arduino 2011, McGann et al. 2011, Chik et 

al. 2008, Ahmadi and Ahmari 2009, Juirnarongrit and 

Ashford 2004, Broms 1964, Kok and Huat 2008, 

Krishnamoorthy and Sharma 2008, Phanikanth et al. 2010, 

Wakai et al. 1999, Yang and Jeremic 2002), for laterally 

loaded piles the Winkler soil model gives sufficiently 

reliable results (Poulos and Davis 1988, Reese and Desai 

1977, Brown and Shie 1990, Han and Frost 2000).   

From the results obtained by analysing laterally loaded 

piles by finite elements and optimising their shape and 

length through the FSD method coupled to a transversality 

condition at the pile lower end, some peculiar properties 

were identified. Through exploiting them, laterally loaded 

piles with optimum shape and length can be designed with 

simple mathematical operations, instead of using finite 

element analyses (as done in Fenu et al. 2018).  

After a brief explanation of the analyzed problem 

(Section 2 and 3), the proposed simplified design method is 

explained in Sections 3 and 4. In Section 5, three possible 

applications explained with five examples are introduced. 

Finally, the conclusions are drawn in Section 6. 

 

 

2. Model of the beam in the Winkler’s medium 
 

To optimise shape and length of a laterally loaded pile, a 

beam with variable cross-section A(x) embedded in a 

Winkler’s medium is considered. Length and volume of the 

beam are l and V, respectively. The soil reaction is 

proportional to the beam width, that is to the diameter D(x), 

if circular cross-sections are adopted. This means that, by 

varying the cross-section along the beam, the reaction of the 

elastic soil varies as well, as it usually happens in 

engineering problems. Since the coefficient of subgrade 

reaction of the Winkler’s medium is kh, then the soil 

reaction varying along the beam is  

𝑘(𝑥) = 𝑘ℎ𝐷(𝑥) (1) 

In structural optimization, it is in general convenient to 

express the diameter D, as well as the moment of inertia J, 

as proportional to, respectively, A and A, that is D(x)= 

cA(x) and J(x)=hA(x), respectively, where c and h are 

dimensioned constants and  and  are real numbers 

(Haftka and Gürdal 1993). 

The axis of the beam coincides with the abscissa axis x 

(Fig. 1). A horizontal force P0 laterally loads the beam at its 

top end, that is assumed as the origin of the reference 

system (O, x, y). Since free rotations at the beam top are 

allowed, for x=0 the moment M0 is zero. 

In general, the coefficient of subgrade reaction of a soil 

layer varies with its depth z. For instance, in sandy soils and 

in soft clays kh linearly varies with depth (Palmer and 

Thompson 1948, Poulos and Davis 1980). 

In overconsolidated clays kh can be assumed as constant 

along the whole beam length. In fact, Davisson (1970) 

noted that in overconsolidated clays kh does not vary for 

considerable depths, and is proportional to the undrained 

cohesion cu of the clay. Therefore, the higher is the 

overconsolidation of the clay, the more constant is the 

coefficient of subgrade reaction kh along the clay bed. A 

good estimation of kh per unit pile width is kh = 67 cu 

(Davisson 1970). Besides kh, also the Young’s modulus E of 

the beam material is assumed to be constant along the beam 

length. 

In this problem, the differential equation of the beam in 

the Winkler’s medium is k(x)v(x)+M(x)II=0, where v(x) is 

the horizontal displacement, M(x) is the bending moment, 

M(x)II is its second derivative and M(x)I is its first 

derivative, that is the shear force S(x).  

To identify the specific properties of optimum beams 

with optimum shape and length, it is convenient to use 

nondimensional quantities. Equations (2) define the 

nondimensional abscissa , lateral displacement , cross-

sectional area a, diameter d, moment of inertia j, volume v, 

normal stress ç,  coefficient of subgrade reaction h, 

modulus of the top force p0, shear s and bending moment m: 

 =
𝑥

𝑙
 𝜂 =

𝑣

𝑙
 𝑎 = 𝐴

𝑙

𝑉
 𝑑 =

𝑑

𝑙
 

(2) 

 𝑗 =
𝐽

𝑉𝑙
  =

𝑉

𝑙3
 ç = 𝜎

𝑙+2 

𝐸ℎ𝑉
 


ℎ

= −𝑘ℎ

𝑙+5 

𝐸ℎ𝑉
 𝑝0 = 𝑃0

𝑙+2 

𝐸ℎ𝑉
 

𝑠 = 𝑆
𝑙+2 

𝐸ℎ𝑉
 𝑚 = 𝑀

𝑙+1 

𝐸ℎ𝑉
 

From the two above mentioned relationships D(x)= 

cA(x) and J(x)=hA(x), the nondimensional expressions of 

d and j as a function of a are:   

𝑑 = 𝜙𝑎 (3) 

𝑗 =  𝑎 (4) 

where both =hV−1/l+1 and =cVl+1 are nondimensional, 

too. 

 

2.1 Optimum shape and length of the beam 
 

For a given type of cross-section, the nondimensional 

optimum shape a() of a laterally loaded beam with 

optimum length in a Winkler’s medium is a specific 

characteristic of all these beams, independently of geometry 

and material properties (Fenu et al. 2018). Figure 2 shows 
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Fig. 1 Model of the beam in the Winkler’s medium 

 

 

the two non-dimensional cross-section distributions a() of 

fully stressed beams with optimum length with solid and 

hollow circular cross-sections. These distributions were 

obtained through Finite Element Analysis (FEA) taking into 

account that, for given nondimensional values m and ç̅ of 

moment M and allowable stress 𝜎, respectively, the FSD 

method allows to obtain non-dimensional diameter d and 

cross-sectional area a from Navier’s formula as: 

a = (
1

2

𝜙



1

 ç̅
𝑚)

1
𝛼−

 (5) 

𝑑 =  (
1

2

𝜙



1

 ç̅
𝑚)


𝛼−

 (6) 

where, for solid circular cross sections =2,  =1/2, 

h=1/(4), c=2/√𝜋  and, for circular hollow sections with 

wall thickness t, =3,  =1, h=1/(8t2), c=1/( t).  

Therefore, by subdividing the beam with N elements, for 

each i-th element with moment Mi obtained by FEA the 

nondimensional cross-sectional area obtained through the 

FSD method is: 

𝑎𝒊
(𝒓+𝟏)

= (
1

2

𝜙



1

 ç̅
𝑚𝑖

(𝑟)
)

1
𝛼−

 (7) 

Besides optimising the beam shape, the beam length is 

to be optimised as well (Fenu et al. 2018). For given 

volume V of the beam, it can be noted that among all fully 

stressed beams with or without optimum length, the beam 

with optimum length shows to have minimum top 

displacement v0. In fact, for instance, consider a fully 

stressed beam with solid circular cross section with given 

volume V=2.219 m3 and optimum length l = 8.482 m, 

laterally loaded at the top by a force P0 = 500 kN. The 

mechanical characteristics of beam and Winkler’s soil are 

E=30 GPa, 𝜎=10 MPa, kh=20 MPa. For same volume, both 

shortening and lengthening the beam with respect to the 

optimum causes a higher top displacement. In this example, 

shortening the beam from l to 6.711 m v0 is increased from 

 

Fig. 2 Distribution of the nondimensional cross-section 

along the beam for circular solid and hollow sections 
 
 

26.4 mm to 26.7 mm, that is by only 1%, while lengthening 

the beam from l to 13 m v0 is increased from 26.4 mm to 

27.8 mm, that is by 5.3%. Too long beams result longer 

than necessary, and the excess of material leads to a change 

of the sign of the moment M, thus causing the insertion of 

an inner hinge with A=0 for M=0. To minimize v0 through 

varying the beam length, a transversality condition at the 

beam lower end is necessary. Considering the 

nondimensional displacement  of the beam top end, 

namely: 

𝜂0 =  ∫
1
𝑝0

(
𝑚2

𝑎𝛼
−

𝑚𝛱2

𝜒ℎ𝜙𝑎𝛽
)

1

0

𝑑𝜉 (8) 

the condition that, for given volume, the integral of a() 

along the beam is equal to v=1 leads to define the auxiliary 

functional: 

𝜂0
∗ =  ∫

1

𝑝0

[(
𝑚2

𝑎𝛼
−

𝑚𝛱2

𝜒ℎ𝜙𝑎𝛽
) + Λ1𝑎]

1

0

𝑑𝜉 (9) 

To minimize 
* through varying the length of the 

optimum shape beam, consider the integrand function F of 

the functional 
* in order to define the transversality 

condition at the beam lower end, that is: 

[𝐹 − (𝐼 − 𝑚𝐼)𝑑𝐹𝑚𝐼𝐼/𝑑𝑥]=𝑙=1 = 0 (10) 

where l =xl /l and xl=l.  

Since  I=0 because the abscissa axis is of course not 

inclined to itself, then, for  =l=1, equation (10) leads to: 

[𝑚𝐼𝐼]=𝑙=1 = 0 (11) 

This transversality condition shows that if the beam 

length is optimum, it is then necessary to have a flex point 

(mII=0) at the beam lower end (xl=l), where also the 

boundary conditions mI=m=0 must be satisfied. 

The optimization procedure is summarized in Figure 3. 

In the following it will be shown that the optimum length 

does not depend on the magnitude of the applied force P0. 

Of course, since l is independent of P0 for given beam 

volume and given stiffness of the material of soil and beam 
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Fig. 3 Numerical algorithm to design any fully stressed 

beams with optimum length in a Winkler’s medium 
 

 

(i.e. kh and E respectively), the higher is P0, the higher is the 

required allowable stress 𝜎. 
 

 

3. Peculiar characteristics of laterally loaded 
beams with optimum shape and length  

 

Besides having the same nondimensional cross-sectional 

area distribution a(), laterally loaded beams with optimum 

shape and length with given type of cross-section are 

characterized by some specific constants, determined as 

follows. 

First, for given type of cross section, the product 

between  h and the average diameter dm has shown to be 

always constant. Since for   varying in the interval 0,1, 

the integral of d() coincides with the average value dm of d, 

then: 

C = χℎ ∫ 𝑑(𝜉)𝑑𝜉 = 𝑐𝑜𝑛𝑠𝑡
1

0
 (12) 

This means that C results independent from the 

mechanical properties of the beam and soil materials, as 

well as of any constant characteristic of the cross section, 

i.e. the wall thickness of hollow sections.  

Numerical computations show that, for solid circular 

cross sections and circular thin-walled hollow sections, C is 

equal to, respectively, 329 and 101. 

Also, say B the integral of a(), that is: 

B = ∫ 𝑎(𝜉)𝛽𝑑𝜉
1

0
 (13) 

Therefore, since a() is assigned for given type of cross-

section and  is a constant, then B is a constant as well. 

Numerical computations show that for solid circular cross-

sections B is 0.9, while, from (15), for circular thin-walled 

hollow sections B is 1, as, for =1, the integral of a() is 1.  

Also, since d()=  a() by integrating both sides of 

this equation and taking into account that  is independent 

of , we obtain: 

dm = ∫ 𝑑(𝜉)𝑑𝜉 =  𝜙 ∫ 𝑎(𝜉)𝛽𝑑𝜉 = 𝜙𝐵
1

0

1

0
 (14) 

The following constant D can be also defined: 

D = h   (15) 

as, for (12), C =  h    is a constant and, for (13), B is a 

constant as well, meaning that also the product  h  , and 

therefore D, must be a constant. For solid circular cross-

sections and circular thin-walled hollow sections, D is equal 

to, respectively, 365.5̅ and 101.  

Finally, from (5) one obtains:  

a()= 1/(−) m()1/(−)  (16) 

where  

 =
 𝜙

2𝑣ç̅
 (17) 

Function f()=a()(−)= m() can be therefore defined. 

Since  and  are constant, then f(), like a(), is another 

peculiar characteristic of laterally loaded beams with 

optimum shape and length for each type of cross-section. A 

further constant parameter Q=df/d =, is hence defined, 

with Q=  dm/d|= . It is worth noting that the boundary 

condition of the derivative of m at the beam top is 𝑝̅0= 

dm/d|= , where 

 𝑝̅0 =  𝑃̅0

𝑙+2 

𝐸ℎ𝑉
 (18) 

is the nondimensional lateral force applied at the beam top 

for which the stress σ coincides with the allowable stress 𝜎 

in each beam section, as required by the FSD method. This 

means that  𝑝̅0 is the nondimensional lateral load bearing 

capacity of the beam. After calculating numerically 𝑝̅ 0= 

dm/d|= , the constant Q is then easily evaluated as  

Q = 𝑝̅0 (19) 

Knowing Q and calculated  from (17), the lateral load 

bearing capacity 𝑃0
̅̅ ̅  of the beam is easily calculated 

through combining (19) with (18). It means that if P0 is 

higher than 𝑃0
̅̅ ̅ , then the stress σ in the beam exceeds the 

allowable stress 𝜎. 

The values of the constants B, C, D and Q characterizing 

fully stressed beams with optimum length with circular 

solid and circular hollow sections are listed in Table 1. 

 

Table 1 Constants characterizing fully stressed beams with 

optimum length for given type of cross section 

 B C D Q 

Circular solid 0.9 329 365.5̅ 22.5 

Circular hollow 1 101 101 25.5 
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4. Simplified design of laterally loaded piles with 
optimum shape and length using the constants B, 
C, D, Q  

 

To design laterally loaded beams with optimum shape 

and length through the FSD method, structural analysis by 

finite elements is usually necessary, as discussed in section 

2.1.  

The four constants defined in the previous section allow 

to design optimum beams without using FEA with only 

simple mathematical operations, namely algebraic sums, 

products, divisions and exponentiations.  

In fact, equation (12) can be expressed as C=hdm, that 

is, for (14), C=hB. By explicitly expressing the 

nondimensional ratios h and , one obtains: 

𝐶 =
𝐵 𝑐 𝑘ℎ  𝑙−+4 

𝐸 ℎ 𝑉−
 (20) 

Given the beam volume V, from equation (20) the 

optimum length l is obtained as: 

𝑙 = (
𝐶𝐸ℎ𝑉−

𝑐𝐵𝑘ℎ

)

1
𝛼−+4

 (21) 

It can be noted that l only depends on the given volume 

V, on the mechanical properties of soil and beam through E 

and kh, and on the type of cross-section through the constant 

C, B, h, c,   as well as through the nondimensional mass 

distribution a() related to this type of cross-section.  

From (16), the nondimensional moment is also obtained: 

𝑚() = 𝑎()𝛼− (22) 

It depends on the nondimensional mass distribution a() 

raised to the difference between  and  (both depending 

on the type of cross-section), and multiplied by the factor 

=(vç̅).  For (17),  depends on the optimum beam 

length l (through  and ), on its volume (through ,   

and v), on the allowable stress through ç̅, as well as on the 

type of cross-section through c, h,  and  , that are all 

present in the expressions of ,  and ç̅.   

Therefore, after obtaining l for given volume, material 

properties and type of cross-section,  is obtained from (17). 

From (19), 𝑝̅0 is then obtained as    

𝑝̅0 =
𝑄


 (23) 

thus obtaining the lateral load bearing capacity 𝑃̅0 through 

combining (23) with (18). Since the beam is fully stressed, 

then 𝑃̅0 must be equal to the applied lateral load P0, in order 

to have σ = 𝜎 in all the beam sections. Higher values of P0 

would cause higher stress level in the beam, with σ >𝜎. 

Conversely, the magnitude of the applied force P0 can 

be assigned. For given beam volume V, the optimum length 

l is still obtained from (21). Calculated the nondimensional 

applied force p0, elimination of  between (17) and (19) 

allows to calculate ç̅. The allowable material stress 𝜎 of the 

beam to be used in order to resist the force 𝐏𝟎  is hence 

obtained. Also, calculated  from (17) or, conversely, from 

(19), the moment along the beam is also obtained through 

(22).  

Finally, a different design case can also occur, in which 

both the applied force P0 and the allowable stress 𝜎  are 

assigned. In this case, besides the optimum length l, also the 

beam volume V is unknown. Moreover, the optimum length 

cannot be obtained from (21), because, however, for given 

soil, beam material and type of cross-section, this equation 

shows that l depends on V.   

This design problem can be easily solved by trial-and-

error through comparison of the nondimensional applied 

force p0=P0l(+)(EhV) with the nondimensional resistance 

force 𝑝̅0 calculated through (18).   

For this aim, a tentative value of V must be assigned.  

Hence, at a 1-st step, a 1-st value of l can be calculated 

through (21), as well as  a 1-st value of the nondimensional 

applied force p0.A =P0 l+2/(EhV) and a 1-st value of  

calculated through (17), thus allowing to compare the 1-st 

value of p0 with the 1-st value of the nondimensional 

resistance force 𝑝̅0 obtained from (22). If V is too high, p0 is 

higher than 𝑝̅0, and V must be decreased. Conversely, if V is 

too low, p0 is lower than 𝑝̅ 0, and V must be increased. 

When same values of p0 and 𝑝̅0 are achieved, the actual 

beam volume and, through (21), the optimum length 

required to minimize the top displacement of the fully 

stressed laterally loaded beam are obtained.  

In all the cases considered, after obtaining the actual 

values of l, V and , the actual moment distribution M(x)= 

m() EhV/l+1 in each beam section is obtained through 

evaluating the nondimensional moment distribution m() 

from (22). 

 

 

5. Examples 
 

The above mentioned design method allows a quick 

optimum design of laterally loaded piles in a Winkler’s 

medium with only few mathematical operations and only 

one exponentiation, provided that the nondimensional mass 

distribution is known in advance. This means that once a 

finite element analysis has been performed for a specific 

design case, the corresponding nondimensional mass 

distribution can be employed in any design case where the 

same type of cross-section is adopted.   

In this paper the two cases of solid and hollow circular 

sections are considered. When reference is made to laterally 

loaded piles, hollow sections and open sections are used 

with special concretes as textile reinforced concrete and 

ultra-high-performance concrete, while circular solid 

sections are usually adopted when normal concrete is used.  

Ng et al. (2015) investigated the use of ultra-high 

performance concrete (UHPC) in piles of integral abutment 

bridges, using different sections to resist lateral loads, i.e. T 

sections as well as quadrangular, octagonal and circular 

hollow sections (Fig. 4). 

Wall thickness 5 cm was adopted. With similar 

technique, ultra-high performance concrete has been also 

used to manufacture the lower segments of big wind-turbine 

towers height 135 m, as those of one of the largest wind 

farm in the world in Estinnes, Belgium. Circular hollow 

section piles can be also manufactured using centrifuged 

concrete reinforced with steel bars or steel meshes. In both  
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Fig. 4 Hollow sections of laterally loaded UHPC piles for 

integral abutment bridges 
 

 

cases, the material properties are much better than those of 

normal concrete, as shown in the examples 1-4 of this 

section. In the following, the example of easy design of 

laterally loaded piles with hollow section using high 

performance concrete is reported. The simplified design 

procedure herein proposed allows to easily design all 

laterally loaded piles in UHPC with different open and 

hollow sections, provided that for any pile with a specific 

cross-section, its nondimensional optimised mass 

distribution (that is specific of this cross-section for all the 

optimised laterally loaded piles with any load and material 

properties) is available.  

Normal concrete is instead more appropriate for circular 

solid section piles with optimum shape and length, that can 

be constructed by first prefabricating a hollow section pile 

with same shape made of centrifuged concrete, and, after 

embedding it into the soil, by then pouring the fluid 

concrete into the hollow-section pile (Fenu et al. 2018). A 

similar procedure is used in “Multiton” piles (Fenu 2006), 

that are manufactured with steel tubes with different 

diameters (the deeper the smaller) and, after embedding, are 

then filled in-situ with concrete to improve their load 

bearing capacity, 

Besides in Geotechnics, laterally loaded beams in a 

Winkler’s medium are used also in other fields of civil and 

mechanical engineering. Consider for instance the case of a 

steel dowel fastener embedded in wood and subjected to a 

shear force at its head, i.e. in concrete-timber composite 

beams or in steel-to-timber shear joints (Fig. 5). A steel 

dowel fastener with optimum shape and length can be 

designed as a steel beam in a Winkler’s medium laterally 

loaded at its head by the joint shear force.  

In the following, five examples showing the 

applicability of the proposed method to different cases are 

introduced. 

Example 1. Design a fully stressed pile in concrete with 

optimum shape and length with solid circular cross-section. 

This type of cross-section is characterized by =2,  =1/2, 

h=1/(4𝜋) and c=2/√𝜋 (see Section 3).  

Elastic modulus and allowable stress of the beam 

material are E=30 GPa and 𝜎  =10 MPa, respectively; the 

coefficient of subgrade reaction of the soil is 

kh=20 MPa/mm, corresponding, for kh=67cu , to a clayly soil 

with cu=0.3MPa.  

The pile volume is assigned to be V=2.219 m3, a volume 

value that is of the same magnitude order of the volume of 

an optimised cylindrical laterally loaded pile with same type  

 
Fig. 5 Steel-to-timber shear joint connecting a steel sheet 

and a wood member through a steel dowel fastener 

embedded in wood 
 

 

of cross-section. The lateral load is P0=500kN. 

Since a solid circular cross-section is used, the specific 

constants to be used for carrying out a simplified design of 

the pile with optimum shape and length are the ones of the 

first row in Table 1.  

The design data are therefore: V=2.219 m3, P0=500kN, 

E=30 GPa, 𝜎 =10 MPa, kh=20 MPa/mm. 

From the simple operations described in the previous 

section, one obtains:  

l=8.482 m p0=0.22   

ϕ=6.80510-2 =2.89410-4  
(24) 

v=3.63710-3 ç̅=3.167103  

=102.1 𝑝̅0=0.22   

The nondimensional applied load p0 results equal to the 

nondimensional resistant force 𝑝̅0= Q/. This means that 

the stress in any section is equal to the allowable stress 𝜎. 

Checking this in the pile section with maximum bending 

moment where amax=1.94, one obtains: 

mmax=0.026 Mmax= kNm jmax=1.09·10-3 

(25) 

Jmax=0.0680 m4 Amax=0.5076 m2 Dmax=0.934 m 

and, from Navier formula, σ=10MPa, that is σ=𝜎. The 

same procedure can be repeated for any section of the pile, 

still obtaining σ=𝜎, as the laterally loaded pile is fully 

stressed in any section, in accordance with what required by 

the FSD method. 

It is worth noting that, assigning the same pile volume, 

if P0>500kN, then p0.=P0l +2/(EhV Q/=0.22. The pile 

shape and length would be the same, but P0>500kN would 

lead to σ>𝜎.   

Example 2. Consider a pile with circular solid section 

and same material properties than that of the previous 

example, with given lateral load P0=700kN, but with 

unknown pile volume.   

To find volume and optimum length of the laterally 

loaded pile, a trial-and-error procedure is carried out.  

At the 1-st step, V(1)=3m3 is tried, chosen to be of the 

same magnitude order of the volume of an optimised 

cylindrical laterally loaded pile with same type of cross-

section.  

For each step, a procedure similar to that of the previous 

example is followed. After the 1-st step the results are: 
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l(1)= 9.209 m p0
(1)=0.234   

ϕ(1)=6.99410-2 (1)=3.05710-4 
 (26) 

v(1)=3.84210-3 ç̅(1)=283.795 

(1)=104.91 𝑝̅0
(1)=0.214   

Since p0
(1)

>p̅0
(1)

, then the pile volume is to be increased. 

Trying V(2)=3.7m3, one obtains: 

l(2)= 9.751 m p0
(2)=0.194   

ϕ(2)= 7.12910-2 (2)= 3.17610-4 
 (27) 

v(2)= 3.99110-3 ç̅(2)=262.957 

(2)=106.929 𝑝̅0
(2)=0.210   

Contrary to the 1-st step, at this 2-nd step 𝑝0
(2)

< 𝑝̅0
(2)

, 

hence the pile volume is to be decreased.  

Trying V(3)= (V(1)+ V(2))/2=3.35m3, one obtains: 

l(3)= 9.490 m p0
(3)=0.212   

ϕ(3)= 7.06510-2 (3)= 3.11910-4 
 (28) 

v(3)= 3.92010-3 ç̅(3)=272.632 

(3)=105.968 𝑝̅0
(3)=0.212   

Since 𝑝0
(3)

 = 𝑝̅0
(3)

, at the 3-rd step convergence is 

achieved. 

Checking the stress at the section with maximum 

bending moment, that is the section with maximum cross-

sectional area amax=1.94, one obtains: 

mmax=0.025 Mmax= kNm jmax=1.17·10-3 

(29) 

Jmax=0.0373 m4 Amax=0.68486 m2 Dmax=0.934 m 

and, from Navier formula, σ=10MPa, that is σ= 𝜎 , in 

accordance with what required by the FSD method. 

Checking any other section, one would still obtain σ=𝜎.  

The shape of this laterally loaded pile is similar to that 

of the hollow section one in Figure 5, because circular solid 

and circular hollow sections have similar distribution of the 

nondimensional cross-sectional area (see Fig. 2). Of course 

pile volume and length are very different, because hollow 

sections are more efficient than solid sections.   

Example 3. A fully stressed beam with optimum shape 

and length with hollow circular cross-section with wall 

thickness t=50mm is to be designed. This type of cross-

section is characterized by =3,  =1, h=1/(8t2), c=1/( t) 
(see Section 3) 

The coefficient of subgrade reaction of the soil is 

kh=5 MPa/mm. Since to prefabricate a hollow-section pile 

ultra-high performance concrete or centrifuged concrete 

reinforced by steel meshes can be used, concrete with 

higher mechanical properties is considered, for instance 

with E=45GPa and  𝜎 =80MPa.  

Since a circular hollow section is used, the specific 

constants to be used for carrying out the simplified design 

of this pile with optimum shape and length are the ones of 

the second row in Table 1.  

For given lateral load P0=820 kN, following the same 

procedure as in the previous Example 1, the pile volume is 

assigned to be V=0.215 m3, thus obtaining: 

 
Fig. 6 Hollow section pile with optimum shape and length 

of Example 4 

 

 

l=5.675 m p0=2.135   

ϕ=4.25010-2 =2.25510-4  

(30) 

v=1.17610-3 ç̅=6.705103  

=11.945 𝑝̅0=2.135   

Therefore p0 results equal to the nondimensional 

resistant force 𝑝̅0= Q/., and the stress σ must be equal to 

the allowable stress 𝜎.  Calculating σ in the section with 

maximum moment and amax=1.81, similarly to the previous 

examples one obtains: 

mmax=0.274 Mmax= kNm jmax=1.3410−3 

(31) 

Jmax=1.6210−3m4 Amax=0.0685 m2 Dmax=0.486 m 

Checking then the maximum moment section we obtain 

σ=Mmax 0.5Dmax /Jmax=89.17MPa, showing that σ practically 

coincides with 𝜎, in accordance with what required by the 

FSD method. The same procedure can be repeated for any 

beam section, still obtaining that the beam is fully stressed 

in any section. It is worth noting that while for solid cross 

sections the method is exact, for hollow sections σ is found 

to slightly differ from 𝜎, namely the ratio σ over 𝜎 is 

0.991 instead of 1. This difference is due to the fact that the 

walls of a hollow section with given wall thickness tends to 
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merge close to the pile ends. Nevertheless, the error is 

negligible by an engineering point of view.   

If P0>820kN, then p0.=P0l+2/(EhV)𝑝̅0=2.135, and σ 

becomes higher than 𝜎. The higher is P0 the greater is σ 

with respect to 𝜎. 

Example 4. Consider a pile with circular hollow section 

and same material properties than that of the previous 

example, but with given lateral force P0=500kN, and 

unknown beam length and volume.   

Similarly to the Example 2, to find both volume and 

optimum length of the beam, a trial-and-error procedure is 

performed, starting with V(1)=0.15 m3 at the 1-st step. One 

then obtains: 

l(1)= 5.034 m p0
(1)= 2.101   

ϕ(1)= 3.76810-2 (1)= 1.77510-4 
 (32) 

v(1)= 1.17610-3 ç̅(1)= 8.519103 

(1)= 10.598 𝑝̅0
(1)= 2.406   

Since 𝑝0
(1)

 < 𝑝̅0
(1)

, then at the 2-nd step the pile volume 

is to be decreased.  

Trying V(2)=0.11 m3, one obtains: 

l(2)= 4.540 m p0
(2)= 3.177   

ϕ(2)= 3.39810-2 (2)= 1.44310-4 
 (33) 

v(2)= 1.17610-3 ç̅(2)= 1.048104 

(2)= 9.557 𝑝̅0
(2)== 2.668   

Contrary to the 1-st step, at this 2-nd step 𝑝0
(2)

> 𝑝̅0
(2)

, 

hence the beam volume is to be increased.  

Trying V(3)= (V(1)+ V(2))/2= 0.13 m3, one obtains: 

l(3)= 4.80 m p0
(3)=2.534   

ϕ(3)= 3.59310-2 (3)= 1.61310-4 
 (34) 

v(3)= 1.17610-3 ç̅(3)= 9.372103 

(3)= 10.104 𝑝̅0
(3)==2.524   

Since 𝑝0
(3)

 is only slightly higher than 𝑝̅0
(3)

, then the 

volume is only slightly increased to V(4)=0.131 m3, thus 

obtaining: 

l(4)= 4.812 m p0
(4)= 2.517   

ϕ(4)= 3.60210-2 (4)= 1.62210-4 
 (35) 

v(4)= 1.17610-3 ç̅(4)= 9.324103 

(4)= 10.130 𝑝̅0
(4)==2.517   

Since 𝑝0
(4)

 = 𝑝̅0
(4)

, at the 4-th step convergence is 

finally achieved. Figure 6 shows the optimum shape and 

length of this laterally loaded pile.  

Similarly to the previous example, the stress at the 

section with maximum bending moment and amax=1.81 is 

checked. To this aim, one first calculates:  

mmax=0. 323 Mmax= kNm jmax=9.6210−4 

(36) 

Jmax=6.0610−4m4 Amax=0.0493 m2 Dmax=0.364 m 

From Navier formula, one obtains σ=92.7MPa, that is 

σ≃𝜎 , in accordance with the FSD method. As in the 

previous example, the small difference between σ and 𝜎 is 

due to the wall merging in the sections close to the beam 

ends. Figure 7 shows the actual moment distribution along 

the hollow section pile. 

Example 5. Consider a steel dowel fastener embedded in  

 

 
Fig. 7 Moment M(x) along the hollow section pile of 

Figure 6 

 

 

wood and subjected to a shear force P0=2.9kN at the head 

(See Fig.5). Fastener length and volume to be optimised are 

unknown. From wood stiffness and steel material 

properties, it is assumed that kh=10500 MPa, E=210 GPa, 

and σ̅=300 MPa. 

Similarly to the previous Examples 2 and 4, to solve this 

design problem, a trial-and-error design procedure is 

necessary. After few steps, at the final n-th step, for 

V(n)=5000 mm3 one obtains 

l(3)= 112 mm p0
(3)=1.076   

ϕ(3)= 6.77410-2 (3)= 2.86810-4 
 (37) 

v(3)= 3.60410-3 ç̅(3)= 1.382103 

(3)= 23.71 𝑝̅0
(3)=1.076   

with convergence achieved, as 𝑝0
(𝑛)

 = 𝑝̅0
(𝑛)

.  

The stress at the section with maximum bending 

moment and maximum nondimensional cross-sectional area 

amax=1.94 is finally checked. 

After calculating:  

mmax=0. 114 Mmax= Nmm jmax=1.0810−3 

(38) 

Jmax=60210−4mm4 Amax=86.97 mm2 Dmax=0.364 m 

from Navier formula, one obtains =300 MPa, that is 

 = 𝜎 , as required by the FSD method. 

It is worth noting that in the mass production of steel 

dowel fasteners, even a low mass saving can result in a high 

production cost saving.  

 

 

6. Conclusions 
 

A method to easily design laterally loaded beams with 

optimum shape and length embedded in a Winkler’s 

medium has been illustrated. The proposed simplified 

design method has been developed through identifying 

some nondimensional constants that are specific of all 
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optimum laterally loaded beams in a Winkler’s medium 

with same cross-section type, and that are independent of 

applied load, beam length and volume, and material 

properties. A further peculiar property is that all the 

optimum laterally loaded beams with same type of cross-

section have same nondimensional mass distribution. To 

allow the application of the method in some design 

problems frequently faced in structural engineering, the 

mass distribution related to any embedded beam with 

circular solid and hollow cross-section (both available from 

a previous research and calculated by finite elements) has 

been provided.  

Among the laterally loaded beams embedded in a 

Winkler’s medium, in civil engineering laterally loaded 

piles are the most commonly used, for instance in the 

foundations of wind turbines, integral abutment bridges, 

retaining walls, harbour embankments and in structures 

subjected to seismic loads. The examples developed in the 

paper show how the simplified design of laterally loaded 

piles with optimum shape and length, otherwise performed 

by finite elements, can be easily carried out with simple 

mathematical operations. Starting from conventional 

cylindrical piles, the developed method leads to innovative 

optimal shapes, that nowadays can be obtained using ultra- 

high performance concrete and cement composites as textile 

reinforced concrete and ferrocement. Other interesting 

applications can be proposed both in the field of structural 

engineering and in mechanical engineering. For instance, 

the effectiveness of the design method has been also shown 

through an application to steel dowel fasteners embedded in 

a wood element and subjected to a shear force at the 

fastener head. It’s an interesting optimization problem that 

could lead to a significant material saving in the mass 

production of steel dowel fasteners. 
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