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1. Introduction 
 

The dynamic fracture problems in brittle solids is an 

interesting phenomena (Bowden and Brunton 1967; Ravi-

Chandar and Knauss 1984; Fineberg et al. 1991; Rosakis et 

al. 1999), including crack propagation, crack bifurcation, 

crack branching, crack-path instability, successive 

branching, secondary or circumferential cracking, 

asymmetries of crack growth paths, etc., in the experiments 

attract large attentions from scholars (Bowden and Brunton 

1967; Ravi-Chandar and Knauss 1984; Fineberg et al. 1991; 

Sharon et al. 1995; Fineberg and Marder 1999; Sharon and 

Fineberg 1999; Rabczuk et al. 2009; Fineberg and 

Bouchbinder 2015). In this interesting problems, the 

emergence of a critical crack tip speed of dynamic fracture 

process in brittle solids shows the dramatical increase of the 

fracture energy dissipation. For example, the saturation in 

crack speed affects the parasitic microcracks which emerge 

at an angle to the main crack. Ravi-Chandar and Knauss 

(1984) attributed the phenomenon of dynamic crack growth 

instability, i.e., crack propagation and crack branching, in 

brittle solids to microstructural defects of the fracture zone 

ahead of the crack tip, in which nucleation, growth and 

coalescence of voids take place. Furthermore, Ravi-Chandar 

and Knauss (1984), Fineberg et al. (1991) found that the 

evolution of these processes and the microscopic path 

instabilities provide a rate - and state-dependent 

characteristics to dynamic fracture energy in the laboratory 
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tests. However, the aforementioned the experimental studies 
are restricted by the monitoring techniques, which is 
difficult to reveal the mechanism of dynamic fracture 
instabilities in brittle solids. 

In the past decades, three main types of numerical 

methods, including atomistic mechanics, continuoum 

mechanics and discontinuous mechanics, were applied to 

investigate the dynamic fracture characteristics of brittle 

solids (Cox et al. 2005; Buehler and Gao 2006; Fineberg 

and Bouchbinder 2015). In the aspect of atomistic 

mechanics, the Molecular Dynamic (MD) was applied to 

simulate and study crack propagation and crack branching 

in dynamic brittle fracture problems (Cox et al. 2005; 

Abraham 2005; Buehler and Gao 2006; Procaccia and 

Zylberg 2013; Bouchbinder et al. 2014). However, 

numerical methodologies on the basis of atomistic 

mechanics is computational time cost, which is not suitable 

to study the macroscopic dynamic fracture problems. In the 

aspect of continuum mechanics, the finite element method 

(FEM) is the most popular method to study dynamic 

fracture problems. Some scholars have successfully applied 

FEM and extended FEM to simulate the dynamic fracture 

behaviors (Belytschko et al. 2003; Song et al. 2008; Song 

and Belytschko 2009; Yang et al. 2015; Meng and Wang 

2015). However, to simulate dynamic crack growth, the 

additional techniques, such as mesh remeshing technique, 

element-erosion technique, cohesive zone technique, etc., 

and additional branching failure criteria are required to be 

added into the standard FEM, which results in the 

difficulties of simulating dynamic fracture phenomena 

(Song et al. 2008). For sake of easily simulating fracture 

phenomena in brittle solids, peridynamics (Shojaei et al. 

2016, 2018, 2019; Zaccariotto et al. 2018; Bazazzadeh et al. 
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2019a, b) and phase-field model (Miehe et al. 2010a, b, 

Zhang et al. 2018, Emdadi et al. 2018, Carlsson and 

Isaksson 2019) were proposed based the continuous 

mechanics (Sarkar et al. 2017, Nowruzpour and Reddy 

2018, Nowruzpour et al. 2019).  

The discrete element method (DEM) (Potyondy and 

Cundall 1998, 2004) is a powerful numerical method based 

on discontinuous mechanics and is initially proposed for 

predicting the behaviors of particulate media. This 

numerical methodology is popular and natural technique to 

study the dynamic fracture behaviors of granular 

geomaterials (Potyondy and Cundall 1998, 2004, Cho et al. 

2007, Mohammed et al. 2015, Sarfarazi and Haeri 2018, 

Haeri et al. 2018a, b, c, d, e, Cao et al. 2016, 2018a, b, c) 

and powders (Martin et al. 2006, Hedjazi et al. 2012, Meng 

et al. 2018). The most feature of DEM is that the method 

consists in describing materials as an assembly of local 

interacting material particles. The motion of particles within 

the framework of DEM obey Newton’s second law, in 

which displacements and rotations are updated at the 

transient suitable time increment (Potyondy and Cundall 

2004, Martin et al. 2003, 2006, Hedjazi et al. 2012). In the 

whole DEM system, a state path evolves to follow the 

conditions that enforce force equilibrium at every material 

particles. The boundary conditions can be implemented 

using rigid geometric objects such as cylinders, planes, 

spheres or periodic boundary conditions. The local 

interactions between material particles are described using 

the suitable contact law, including the linear elastic laws 

coupled with Coulomb friction. The second characteristic of 

DEM is that the DEM allows material particles bonding so 

that tensile forces and resisting moments are transmitted 

through contacts (Potyondy and Cundall 1998, 2004, Cho et 

al. 2007, Mohammed et al. 2015, Sarfarazi and Haeri 2018, 

Haeri et al. 2018a, b, c, d, e, Cao et al. 2016, 2018a, b, c). 

Since the DEM is suitable to simulate failure process of 

geomaterials, there is rare studies on dynamic fracture 

problems using DEM (Hedjazi et al. 2012, Braun and 

Fernandez-Saez 2014, Kosteski et al. 2012).  

DEM is applied to investigate the dynamic failure 

behaviors of brittle solids subjected to dynamic loads. The 

crack propagation and crack branching in brittle PMMA 

plate with a single pre-existing crack is firstly reproduced 

by DEM. Moreover, the numerical predicted terminal crack 

speeds attained in PMMA specimens are substantially lower 

than the Rayleigh wave speed and the computed crack 

speeds agree quite well with the reported experimental and 

numerical results not only in the field of quantitative 

analysis, but also in the field of qualitative analysis. The 

quantitative and qualitative comparisons with the existing 

experimental data illustrate the effectiveness and accuracy 

of the microscopic parameters in DEM simulations. 

Meanwhile, the microscopic parameters for PMMA 

materials in DEM are calibrated using the above 

quantitative and qualitative analysis. Furthermore, the 

influences of dynamic loading magnitude, offset distance of 

the initial crack and initial crack length on dynamic fracture 

behaviors, including dynamic fracture patterns and critical 

crack propagation speed in brittle solids under dynamic 

loading are numerically investigated.  

The present article is structured as follows. In Section 2, 

we briefly describe the DEM theory. In Section 3, the 

microscopic parameters of DEM for PMMA material are 

calibrated, and numerical reproduction of dynamic fracture 

process in brittle solids under dynamic loading are shown. 

In Section 4, influences of loading parameters and 

geometrical parameters on dynamic fracture features are 

investigated and discussed. Conclusions are drawn in 

Section 5. 
 

 

2. Numerical methodology 
 

In the discrete element method (DEM), the dense 

materials are represented by a packing of overlapping 

nearly monosized spherical particles, which was proposed 

by Potyondy and Cundall (1998, 2004) and Cho et al. 

(2007). To simulate the tensile fracture and shear fracture 

characteristics of brittle solids under different loading 

conditions, the parallel bond DEM was proposed by Cho et 

al. (2007), which has been widely used to simulate 

complicated fracture behaviors of brittle solids (Mohammed 

et al. 2015, Sarfarazi and Haeri 2018, Haeri et al. 2018a, b, 

c, d, e, Cao et al. 2016, 2018a, b, c).  

In the parallel bond DEM, the intact brittle solids is 

represented by a composite of separate particles bonded 

together. There are two different contact interactions named 

as normal bonds and tangential bonds based on the 

deformation characteristics of separated particles. The two 

different bonds provide the normal and shear stiffness 

between adjacent interacting particles. In addition, there are 

two different sets of contact springs bonded among 

particles. The parallel bond DEM approximates the 

mechanical behaviors of brittle and quasi-brittle connecting 

the two adjacent particles, which acts like a beam resisting 

the moment induced by the particle rotation or shearing 

within the bonded region (Potyondy and Cundall 1998, 

2004, Cho et al. 2007, Mohammed et al. 2015, Sarfarazi 

and Haeri 2018, Haeri et al. 2018a, b, c, d, e, Cao et al. 

2016, 2018a, b, c). According to the remarks by Cho et al. 

(2007), the parallel bond DEM is a more realistic bond 

model for brittle and quasi-brittle materials whereby the 

bonds may break in either tension or shearing with an 

associated reduction in stiffness (Cho et al. 2007). Based on 

the previous studies (Potyondy and Cundall 1998, 2004, 

Cho et al. 2007, Mohammed et al. 2015, Sarfarazi and 

Haeri 2018), the first set of springs between two adjacent 

particles is belong to grain behaviors providing normal and 

shear stiffness 𝑘𝑁 and 𝑘𝑇, respectively. While, the second 

set of springs between two adjacent particles is belong to 

bond behaviors providing the parallel bond normal and 

shear stiffness 𝑘𝑁 and 𝑘̅𝑇, which are uniformly distributed 

over a disc shaped cross section lying on the contact plane.  

The normal and shear stiffness representing the material 

mechanical behaviors between two adjacent particles can be 

expressed as  

𝑘𝑁 = 2ℎ𝐸𝑐  (1) 

𝑘𝑇 =
𝑘𝑁

𝑘𝑁 𝑘𝑇⁄
 (2) 
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where ℎ = 1  is the thickness for two-dimensional 

cases; 𝐸𝑐 denotes Young’s modulus of the particle; 𝑘𝑁 𝑘𝑇⁄  

is designated as the ratio of normal to shear stiffness of the 

particle. 

The normal and shear stiffness of parallel bond between 

two interacting material particles are assigned as 

𝑘𝑁 =
𝐸𝑐

𝑅
 (3) 

𝑘̅𝑇 =
𝑘̅𝑇

𝑘̅𝑁 𝑘̅𝑇⁄
 (4) 

in which 𝐸𝑐  denotes the Young’s modulus of the 

parallel bond; 𝑅 is the equivalent radius of two interacting 

discrete particles; and 𝑘̅𝑁 𝑘̅𝑇⁄  represents the ratio of 

normal to shear stiffness of the parallel bond. 

The equivalent radius between two interacting discrete 

particles is related to radii of two interacting discrete 

particles, i.e., 𝑅1 and 𝑅2 and thickness of corresponding 

normal or shear bonds, i.e., ℎ𝑏. The equivalent radius can 

be written as 

𝑅 =
𝑅1𝑅2

𝑅1 + 𝑅1 − ℎ𝑏

 (5) 

For simplification, the thickness of associated 

normalized or shear bonds is adopted to be zero in this 

article. The normal and shear bond radius is assumed as 

same, which is designated as 𝑎𝑏. In the present numerical 

simulations, the normalized bond radius 𝑎∗ can be defined 

as  

𝑎∗ =
𝑎𝑏

2𝑅
 (6) 

Forces on the normal and shear bonds connecting two 

interacting neighbor particles can be divided into the normal 

components, 𝑁 , and the tangential components, 𝑇 . The 

two kinds of forces act on the two spherical particles with 

equivalent radius 𝑅 through the bonds can be expressed as 

𝐹𝑁 = 𝑘𝑁𝑎∗𝑅𝑢𝑁 (7) 

𝐹𝑇 = −𝑘𝑇𝑎∗𝑅𝑢𝑇 (8) 

in which 𝑢𝑁  and 𝑢𝑇  are the accumulated normal and 

tangential displacements integrated from the actual relative 

displacements of two interacting spherical particles. It 

should be noted that forces are taken as positive in tension, 

while the tangential force opposes the accumulated 

tangential displacements. 

Furthermore, the bonded contacts between two 

interacting spherical particles can transmit resisting 

moments, i.e., 𝑀𝑁  and 𝑀𝑇 , along the normal and 

tangential directions, which can be written in the following 

forms.  

𝑀𝑁 = −𝑘𝑇(𝑎∗𝑅)
3

𝜗𝑁 (9) 

𝑀𝑇 = −𝑘𝑁(𝑎∗𝑅)
3

𝜗𝑇 (10) 

where 𝜗𝑁  and 𝜗𝑇  are designated as the accumulated 

relative rotations of two interacting spherical particles along 

the normal and tangential directions. It should be noted that 

the centre to centre distance between two interacting 

spherical particles are distributed in the packing, the 

stiffness and resisting moments from one bond to another 

can be approximated as the same (Martin et al. 2003, 2006, 

Hedjazi et al. 2012). Thus, we impose that 𝑎∗ is equal to 

0.5 in this research. In the parallel bond DEM, the fracture 

criteria are included in the microscopic properties of the 

different bonds. When we approximate the solid bonds by a 

cylindrical beam of radius 𝑎𝑏 and using the beam theory, 

the associated maximum tensile and shear stresses on the 

bond periphery can be evaluated as (Potyondy and Cundall 

1998, 2004, Cho et al. 2007) 

𝜎𝑁 =
𝐹𝑁

4𝜋(𝑎∗𝑅)
2 +

|𝑀𝑇|

2𝜋(𝑎∗𝑅)
2 (11) 

𝜎𝑇 =
|𝐹𝑇|

4𝜋(𝑎∗𝑅)
2 +

|𝑀𝑁|

2𝜋(𝑎∗𝑅)
2 (12) 

Therefore, the bond breakage may occur due to the 

tensile and shear deformation of the bond cylindrical beam. 

It is assumed that the following fracture criteria is adopted 

in this article. 

𝜎𝑁 > 𝑓𝑡 (13) 

𝜎𝑇 > 𝑓𝜏 (14) 

in which 𝑓𝑡  is the uniaxial tensile strength of brittle 

materials, and 𝑓𝜏  is the maximum shear strength of 

materials on the bonds. 

The conventional explicit time integration in the DEM is 

adopted to conduct the numerical simulations of dynamic 

fracture phenomena in brittle solids under dynamic loading. 

 
 
3. Microscopic calibration 

 

To calibrate the microscopic parameters in the parallel 

bond DEM for brittle PMMA materials for dynamic fracture 

problems, a classical experimental test of PMMA plates 

under dynamic loading conditions is reproduced using the 

developed DEM. A thin rectangular plate with dimension of 

0.1 m × 0.04 m with a long horizontal pre-cracked under 

remote and symmetric tensile dynamic loading conditions 

as shown in Fig. 1(a). It can be found from Fig. 1(a) that the 

pre-existing edged crack with length of 𝑎0 = 0.05 m is 

located at the center position along vertical direction with 

ℎ0 = 0.02 m. The sharp tensile dynamic loads are suddenly 

applied and keep constant. The sharp dynamic tensile 

loading of 𝜎(𝑡) = 1.0 MPa  is symmetrically applied on 

the upper and bottom boundaries of the PMMA plate, as 

shown in Fig. 1(a). The macroscopic material parameters of  
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Table 1 Experimental results for the macroscopic 

mechanical parameters of intact PMMA material 

Mass density 

𝜌 (kg m3⁄ ) 

Young’s 

modulus 

𝐸 (GPa) 

Poisson’s ratio 

𝜐 

Uniaxial tensile 

strength 

𝑓𝑡  (MPa) 

2,235 3.24 0.35 10.0 

 

Table 2 Microscopic parameters for brittle PMMA materials 

in parallel bond DEM 

Microscopic parameters Values 

Maximum particle radius, 𝑅max (mm) 0.35 

Minimum particle radius, 𝑅min (mm) 0.15 

Ratio of maximum to minimum radius of the 

particle, 𝑅max 𝑅min⁄  
2.333 

Particle contact modulus, 𝐸𝑐 (GPa) 3.24 

Ratio of normal to shear stiffness of the 

particle, 𝑘𝑁 𝑘𝑇⁄  
1.8 

Particle friction coefficient, 𝜇 0.577 

Parallel bond modulus, 𝐸𝑐 (GPa) 3.24 

Ratio of normal to shear stiffness of the parallel 

bond, 𝑓𝑡  (MPa) 
10 

Parallel-bond normal strength, standard 

deviation, (MPa) 
2 

Parallel bond shear strengths, 𝑓𝜏 (MPa) 70 

Parallel-bond shear strength, standard 

deviation, (MPa) 
2 

 

 

PMMA materials are same as ones listed in Table 1, and the 

same microscopic parameters in the parallel bond DEM are 

shown in Table 2 in the present numerical simulations.  

In the parallel bond DEM numerical simulations, 42,586 

discrete spherical particles with the maximum radius of 

𝑅max = 0.35 mm  and the minimum radius of 𝑅min =
0.15 mm are used to construct the thin brittle PMMA plate 

with an initial crack under dynamic loading, as shown in 

Fig. 1(b). The velocity Verlet-algorithm with time step size 

of ∆𝑡 = 1.0 × 10−7 s  is adopted to model the dynamic 

fracture process of brittle PMMA plates under dynamic 

loading conditions in this parallel bond DEM. 

Fig. 2 shows the crack growth paths in the brittle plates 

with a single pre-existing crack under dynamic tensile 

loading conditions. During the dynamic fracture process, it 

can be found the when time is equal to 15 μs, a crack is 

initiated from the tip of the pre-existing crack and the 

 
 

emanating crack propagates along an approximate straight 

horizontal direction, as shown in Fig. 2(a). With increasing 

the dynamic tensile loading time, the cracks emanating 

from the tip of pre-existing crack continues to growth along 

the straight horizontal direction, as shown in Fig. 2(b) and 

Fig. 2(c). When the dynamic tensile loading time equates to 

about 30 μs, it can be found from Fig. 2(d) that the main 

straight crack emanating from the pre-existing crack tip is 

split into two macroscopic crack branches. As the dynamic 

tensile loads continue to apply on the upper and bottom 

boundaries of the brittle PMMA plate, the two macroscopic 

crack branches continue to growth along inclined directions, 

as shown in Fig. 2(e). Finally, it can be found from Fig. 2(f) 

that the two macroscopic crack branches continue to 

propagate separately towards the edge of the brittle PMMA 

plate. 

The final predicted numerical crack growth paths in 

brittle PMMA plates with an initial crack under dynamic 

tensile loading are compared with the previous 

experimental observations (Bowden and Brunton 1967; 

Ravi-Chandar and Knauss 1984; Fineberg et al. 1991; 

Sharon et al. 1995; Fineberg and Marder 1999; Sharon and 

Fineberg 1999; Rabczuk et al. 2009; Fineberg and 

Bouchbinder 2015) and the previous numerical results 

(Song et al. 2008; Song and Belytschko 2009; Zhang and 

Chen 2014; Shojaei et al. 2018; Carlsson and Isaksson 

2019), as shown in Fig. 3. This analysis also illustrates the 

microscopic parameters for brittle PMMA materials in the 

present parallel bond DEM are effective and accuracy in the 

field of qualitative analysis. In addition, the microscopic 

cracks can be captured in the macroscopic crack branches 

and main straight crack as same as the previous 

experimental observations (Bowden and Brunton 1967; 

Ravi-Chandar and Knauss 1984; Fineberg et al. 1991; 

Sharon et al. 1995; Fineberg and Marder 1999). 

The crack propagation speed is an important indicator 

for dynamic crack propagation and one of the important 

topics in the theoretical studies and engineering application. 

Many researches indicated that the crack propagation speed 

has critical values. There is a critical crack propagation 

speed which has been commonly accepted (Bowden and 

Brunton 1967; Ravi-Chandar and Knauss 1984; Fineberg et 

al. 1991; Sharon et al. 1995; Fineberg and Marder 1999; 

Sharon and Fineberg 1999; Rabczuk et al. 2009; Song et al. 

2008; Song and Belytschko 2009; Zhang and Chen 2014;  

 
 

(a) (b) 

Fig. 1. The geometrical and loading conditions of a PMMA plate with a single initial crack: (a) schematics and (b) 

numerical specimen 

Initial crack
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Shojaei et al. 2018; Carlsson and Isaksson 2019; Fineberg 

and Bouchbinder 2015). Based on the previous studies, the 

phenomena of crack branching occurs in brittle PMMA 

 

 

materials accompanies by a drop in crack tip velocity after 

the crack tip propagation speed achieves a maximum value. 

  
(a) 15 μs (b) 20 μs 

  
(c) 25 μs (d) 30 μs 

  
(e) 35 μs (f) 45 μs 

Fig. 2 The process of crack propagation and crack branching in the PMMA plate with an initial crack under dynamic loading 
 

  
(a) (b) 

  
(c) (d) 

Fig. 3 Comparison of dynamic cracking patterns obtained from (a) the present numerical simulation, (b) the previous 

experimental observation (Ravi-Chandar and Knauss 1984), (c) the phase field model results (Carlsson and Isaksson 2019), 

(d) the adaptive multi-grid peridynamic results (Shojaei et al. 2018) 
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Fig. 4 Crack tip propagation speed predicted from 

different numerical methodologies 
 

 

Fig. 4 shows that the crack tip velocity profiles also are 

very close to the numerical results obtained by the XFEM 

(Song et al. 2008; Song and Belytschko 2009), lattice bond 

cell simulation (Zhang and Chen 2014) and bond-based 

peridynamics (Shojaei et al. 2016, 2018, 2019). The 

numerically predicted crack tip velocity are in good 

agreement with the previous experimental results, which 

demonstrate the microscopic parameters in the parallel bond 

DEM are effective and accuracy in the field of quantitative 

analysis under dynamic tensile loading.  

It can be found from Fig. 4 that once the crack starts to 

propagate, the crack propagation speed gradually increases 

to its maximum value of 1753 m/s at about 28.8 μs. After 

crack propagation speed reaches its maximum value at 

about 28.8 μs, the macroscopic crack branches happen and 

the main macroscopic straight crack splits into two 

macroscopic crack branches. As shown in Fig. 4, the 

maximum crack tip velocity obtained from the present 

parallel bond DEM simulations are less than the Rayleigh 

wave speed, which conforms to the previous experimental 

results (Bowden and Brunton 1967). Based on the 

aforementioned qualitative and quantitative studies on the 

brittle PMMA plate with a pre-existing crack under 

dynamic tensile loading conditions, the present numerical 

microscopic parameters is also suitable to simulate the 

fracture behaviors of brittle PMMA materials not only in 

the field of qualitative analysis, but also in the field of 

quantitative analysis. 
 

 

4. Numerical results and discussions 
 

The effect of dynamic loading magnitudes, offset 

distances and initial crack lengths on the dynamic fracture 

behaviors of brittle PMMA materials are discussed in this 

section. 
 

4.1 Effect of dynamic loading magnitudes 
 

In this subsection, effect of dynamic loading magnitudes 

on dynamic fracture characteristics of brittle PMMA 

materials are numerically investigated using four numerical 

PMMA plates subjected to sharp dynamic loads with four 

different magnitudes of 𝜎0 = 1.00 MPa, 𝜎0 = 1.25 MPa , 

𝜎0 = 1.50 MPa  and 𝜎0 = 1.75 MPa . The microscopic 

parameters in the parallel bond DEM simulations and time 

integrations scheme are same as ones in Section 4.  
The numerically predicted ultimate crack growth paths 

in the above four numerical brittle PMMA plates under 
different dynamic tensile loading conditions are plotted in 
Fig. 5. It can be found from Fig. 5(a) that the crack growth 
paths are approximate symmetrical. The microscopic cracks 
occur at the surfaces of two macroscopic crack branches 
and the main straight crack, as shown in Fig. 5(a). It can be 
found from Fig. 5(b) that the first crack branching point in 
the brittle PMMA plate under dynamic 𝜎0 = 1.00 MPa is 
same at the one in brittle the brittle PMMA plate under 
dynamic 𝜎0 = 1.25 MPa . When the dynamic tensile 
loading magnitude is equal to 𝜎0 = 1.25 MPa , the 
secondary macroscopic branches occur at the brittle PMMA 
plate, as shown in Fig. 5(b). As the dynamic tensile loading 
magnitude increase to 𝜎0 = 1.50 MPa , the macroscopic 
crack branching occurs earlier than ones under low dynamic 
loading magnitudes, i.e., 𝜎0 = 1.00 MPa  and 𝜎0 =
1.25 MPa, as shown in Fig. 5(c). It can also be observed 
from Fig. 5(c) that the multiple crack branches happens in 
the brittle PMMA plates under dynamic tensile loading 
magnitude of 𝜎0 = 1.50 MPa. Similar complicated crack 
branches can also be observed in the ultimate crack paths in 
the brittle PMMA plate under dynamic tensile loading with 
magnitude of 𝜎0 = 1.75 MPa, as shown in Fig. 5(d). Under 
the high dynamic loading conditions, the multiple crack 
branches in the brittle PMMA plates lead to the 
asymmetrical final crack growth paths, as shown in Fig. 
5(c)-Fig. 5(d). It can be observed from Fig. 5 that the crack 
branching occurs much earlier in brittle PMMA plates under 
low dynamic tensile loading than that in brittle PMMA 
plates subjected to high dynamic tensile loads. 

The evolutions of crack tip velocities in the 

aforementioned four brittle PMMA plates under various 

dynamic tensile loading conditions are depicted in Fig. 6. It 

can be found from Fig. 6 that the crack propagation speed 

profiles in different brittle PMMA plates shows similar 

shapes. As the dynamic tensile loads increases, it can also 

be observed from Fig. 6 that the maximum crack tip 

velocity slightly increases in the brittle PMMA plates. 

Moreover, the maximum crack tip velocities in above four 

different brittle PMMA plates are smaller than the Rayleigh 

wave speed, which obeys the experimental remarks 

(Bowden et al. 1967; Ravi-Chandar and Knauss 1984; 

Fineberg et al. 1991), as shown in Fig. 6 

 

5.2 Effect of offset distances  
 

To study the effect of the pre-existing crack offset 
distances on dynamic fracture characteristics of brittle 
PMMA materials under dynamic tensile loading conditions, 
six different numerical PMMA plates with different offset 
distances are simulated in the framework of parallel bond 
DEM. The six different offset distances of initial cracks are 
listed as follows: ℎ0 = 0.02 m , ℎ0 = 0.016 m , ℎ0 =
0.012 m , ℎ0 = 0.008 m , ℎ0 = 0.006 m  and ℎ0 =
0.004 m. The microscopic parameters in the parallel bond 
DEM simulations and time integrations scheme are same as 
ones in Section 4. The dynamic tensile loading magnitudes 
of the above six brittle PMMA plates are fixed as 𝜎0 =
1.0 MPa. 
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Fig. 6 Influence of dynamic loading magnitudes on crack 

tip propagation speed in PMMA solids under dynamic 

loading 

 
  

The numerically predicted ultimate crack growth paths 

in the above six numerical brittle PMMA plates with 

various offset distances under dynamic tensile loading 

condition of 𝜎0 = 1.0 MPa are plotted in Fig. 7. It can be 

found from Fig. 9(a) that the crack growth paths are 

approximate symmetrical in the brittle PMMA plate with a 

single pre-existing crack of ℎ0 = 0.02 m. The microscopic 

cracks occur at the surfaces of two macroscopic crack 

branches and the main straight crack, as shown in Fig. 7(a). 

When the offset distance of the single initial crack is equal 

to ℎ0 = 0.016 m, the secondary crack branches occur near 

the right boundary of the brittle PMMA plates during the 

dynamic cracking process, as shown in Fig. 7(b). 

Meanwhile, it can be observed from Fig. 7(a)-7(b) that the 

microscopic cracks are initiated at the surfaces of main 

straight crack and macroscopic crack branches. When the 

offset distance of an initiate crack changes from 

 

 

ℎ0 = 0.012 m  to ℎ0 = 0.008 m , the crack branching 

patterns in brittle PMMA plates under dynamic tensile 

loading become much more complicated, and the 

trajectories of the main cracks become curvier, as shown in 

Fig. 7(c)-7(d). Furthermore, it can also observed from Fig. 

7(a)-Fig. 7(f) that main cracks propagate towards the 

middle horizontal line along the more bent trajectories as 

the offset distance of initial crack varies from ℎ0 = 0.02 m 

to ℎ0 = 0.004 m. In addition, when the offset distance of 

initial crack equates to ℎ0 = 0.006 m or ℎ0 = 0.004 m, 

the macroscopic crack branches also propagate along the 

curve trajectories towards the middle horizontal lines in the 

brittle PMMA plates under dynamic tensile loading 

conditions, as shown in Fig. 7.  

The variations of maximum crack tip velocity in the 

brittle PMMA plates with the various pre-existing crack 

offset distances under dynamic tensile loading condition of 

𝜎0 = 1.0 MPa are plotted in Fig. 8. It can be observed from 

Fig. 8 that when the offset distance of initial crack in the 

brittle PMMA plates increases from 0 mm to 8 mm, the 

maximum crack tip velocity during the dynamic fracturing 

process in the brittle PMMA plates decreases from about 

1658 m/s to approximate 1475 m/s, which are less than the 

Rayleigh wave speed. Furthermore, when the offset 

distance of initial crack in the brittle PMMA plates 

increases from 8 mm to 16 mm, the maximum crack tip 

velocity during the dynamic fracturing process in the brittle 

PMMA plates decreases from approximate 1475 m/s to 

about 1612 m/s, as shown in Fig. 8. 

 
5.3 Effect of initial crack length 

 

To study the effect of the initial crack length on dynamic 

fracture characteristics of brittle PMMA materials under 

dynamic tensile loading conditions, four different numerical  

  
(a) 𝜎0 = 1.0 MPa (b) 𝜎0 = 1.25 MPa 

  
(c) 𝜎0 = 1.50 MPa (d) 𝜎0 = 1.75 MPa 

Fig. 5 Influence of dynamic loading magnitudes on dynamic fracture patterns in PMMA solids under dynamic loading 
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Fig. 8 Influence of offset distances on maximum crack tip 

velocity in PMMA solids under dynamic loading 

 

 

PMMA plates with various initial crack lengths are modeled 

in the parallel bond DEM framework. The four different 

initial crack lengths in the brittle PMMA plates are listed as 

follows: 𝑎0 = 50 mm , 𝑎0 = 40 mm , 𝑎0 = 30 mm  and 

𝑎0 = 20 mm. The microscopic parameters in the parallel 

bond DEM simulations and time integrations scheme are 

same as ones in Section 4. The dynamic tensile loading 

magnitudes of the above four brittle PMMA plates are fixed 

as 𝜎0 = 1.0 MPa.  

 

 

The numerically predicted ultimate crack growth paths 

in the above four numerical brittle PMMA plates with 

different initial crack lengths under dynamic tensile loading 

conditions are plotted in Fig. 9. It can be found from Fig. 

9(a) that the crack growth paths are approximate 

symmetrical in the brittle PMMA plate with a single pre-

existing crack of 𝑎0 = 50 mm. The microscopic cracks 

occur at the surfaces of two macroscopic crack branches 

and the main straight crack, as shown in Fig. 9(a). When the 

initial crack length in brittle PMMA plates is equal to 𝑎0 =
40 mm, not only the microscopic cracks happen at the 

surfaces of the main straight crack and macroscopic crack 

branches, and the secondary crack branches occur during 

the dynamic cracking process in the brittle PMMA plate 

under dynamic tensile loading, as shown in Fig. 9(b). It can 

be observed from Fig. 9(a) and Fig. 9(b) that length of the 

main straight crack in the brittle PMMA plate with 𝑎0 =
40 mm is longer than that in the brittle PMMA plate with 

𝑎0 = 50 mm. With decreasing the initial crack length in 

brittle PMMA plates from 𝑎0 = 50 mm to 𝑎0 = 20 mm, 

the microscopic crack branches are much easier to occur in 

the brittle PMMA plates under dynamic tensile loading, as 

shown in Fig. 9(c)-9(d). The occurrence of macroscopic and 

microscopic branches in the brittle PMMA plates results in 

the asymmetrical crack growth paths during the dynamic  

  
(a) ℎ0 = 0.02 m (b) ℎ0 = 0.016 m 

  
(c) ℎ0 = 0.012 m (d) ℎ0 = 0.008 m 

  
(e) ℎ0 = 0.006 m (f) ℎ0 = 0.004 m 

Fig. 7 Influence of offset distances on dynamic fracture patterns in PMMA solids under dynamic loading 
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Fig. 10 Influence of initial crack length on maximum 

crack tip velocity in PMMA solids under dynamic 

loading 

 

 

fracturing process, as shown in Fig. 9. In addition, it can 

also be observed from Fig. 9 that the main straight crack 

lengths decreases as the initial crack lengths in brittle 

PMMA plates decrease. 

The variations of maximum crack tip velocity in the 

brittle PMMA plates with different initial cracks are plotted 

in Fig. 10. It can be observed from Fig. 10 that as the initial 

crack length in brittle PMMA plates under dynamic tensile 

loading conditions increases, the maximum value of crack 

tip velocity increases.  
 

 

5. Conclusions 
 

In this study, the insights of dynamic failure behaviors 

of brittle solids under dynamic loading conditions are 

numerically captured using the developed discrete element 

methodology (DEM). The microscopic parameters are first 

calibrated using the comparison between experimental data 

and the present numerical results. From the numerical 

analysis, the calibrating microscopic parameters selected in  

 

 

parallel bond DEM are effective and accurate in the 

simulations of brittle PMMA materials under dynamic 

loading conditions. Compared with the previous 

experimental and numerical results, the present numerical 

results are in good agreement with the existing ones not 

only in the field of qualitative analysis, but also in the field 

of quantitative analysis. Then, effects of dynamic loading 

magnitudes, pre-existing crack offset distances, and initial 

crack length on dynamic fracture behaviors, such as 

dynamic fracture patterns and critical crack propagation 

speed in brittle PMMA solids subjected to dynamic loads 

discussed. 
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