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1. Introduction 
 

With the reformation of the existing performance-based 

seismic design, the traditional earthquake-resilient structural 

systems need to be upgraded due to the high demands of 

limitative residual deformation which may result in the cost 

of structural repairs. Previous researches show that the 

structural repair cost will exceed its reconstruction cost 

once the ratio of residual deformation is higher than 0.5% 

(McCormick et al. 2008). Considering that the cumulative 

plastic deformation induced by the inelastic actions of 

components is inevitable under strong earthquakes, it is 

necessary to append energy dissipation and self-centering 

systems to retard the damage evolution of the original 

structures. 

Various earthquake-resilient substructures have been 

proposed and experimentally verified. For instance, rocking 

systems, pre-stressing beam-column joints (Yurdakul and 

Avsar 2016, Zhang et al. 2016, Wang et al. 2017), self-

centering systems (Rojas et al. 2009, Guerrini et al. 2014, 

Henry et al. 2016, Xu et al. 2016a) and self-centering 

braces (Erochko et al. 2013, Chou and Chung 2014) are all 

efficient components for energy dissipation and recentering 

capability improvement. Seismic analyses and hysteretic 

behavior studies have shown that structures employing self-

centering braces have smaller residual deformation than 

structures using buckling-restrained braces alone (Marshall  
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and Charney 2012). In order to enhance the seismic 

behavior of the brace-structure system, one of the complex 

and coupled problems, the optimum locations of these 

devices and the corresponding design parameters, should be 

presupposed before the other one is initiated in general. 

For current brace-structure system, engineers usually 

select the brace design parameters first, and gradually 

optimize them to obtain the relatively optimal brace-

structure design results, mostly relying on personal 

experience. This will sometimes lead to unreasonable brace-

structure system design. Nowadays, researchers advocate 

more precise and scientific optimization methods. An 

optimization process requires optimized objective, 

optimization algorithm and specific measures. Considering 

that the difficulty of parameters analyses increases with the 

expansion of the parameter domain (both quantity and 

range), an appropriate optimization algorithm can greatly 

improve the computational convergence and reduce 

computation time. Based on numerous mathematical 

models, a large number of optimization algorithms have 

been developed and applied to the design and verification of 

structures, such as harmony search algorithm (Degertekin 

and Hayalioglu 2010), teaching-learning-based optimization 

algorithm (Dede and Ayvaz 2013), chaotic artificial bee 

colony algorithm (Xu et al. 2015), collaborative-climb 

monkey algorithm (Yi et al. 2015), and so on. Recently, 

genetic algorithm (GA) has been gradually used for 

structural parameter optimization (Liu et al. 2010, Rojas et 

al. 2011, Abbasnia et al. 2014). Losanno et al. (2015) 

proposed a solution to a design optimization problem for a 

simple linear-elastic one-bay one-story frame equipped with 

elastic-deformable viscous or friction dissipative braces. 
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They also provided an exhaustive treatment for the analysis 

of non-proportional damping structures (Losanno et al. 

2017a), as well as defined optimal design parameters 

characterizing the isolation system of a bridge (Losanno et 

al. 2014). However, as a stochastic algorithm with multiple 

iterative requirements, the analysis of the influence of 

essential build-in parameters on the optimization process 

and the results seems to be inefficient and non-universal. 

Therefore, a response-dependent optimization method 

should be proposed to constantly redress the route towards 

the local optimal solution from another perspective. 

In this paper, the formula of piecewise mechanical 

model is updated to simulate the seismic responses, 

regarding a new type of pre-pressed spring self-centering 

energy dissipation (PS-SCED) brace proposed by Xu et al. 

(2016a, b) as an object. The linear acceleration method 

based modelling of brace-structure system is developed as 

well. In addition, the response sensitivities of brace 

parameters are presented to analyze the effect of these 

homologous parameters on the predicted response 

quantities. Moreover, a GA based PS-SCED brace-structure 

optimization for frame considering the sensitivity of brace 

parameters is carried out to improve the algorithm 

convergence and general optimized results. 

 

 

2. Response analysis of brace-structure system 
 
2.1 Explicit time-discrete formula of PS-SCED brace 
 

The schematic drawing of a typical PS-SCED brace is 

shown in Fig. 1. During the relative movement between the 

inner and outer tubes, an adequate energy dissipation is 

added by the Coulomb friction devices. The pre-pressed 

disc springs, the spring plates, and the blocking plates 

constitute the recentering device of the brace. The disc 

springs are always compressed. When the restoring force 

exceeds the activation force of the brace, the inner and outer 

tubes move relatively. When the displacement reaches its 

maximum level and then begins to decrease, its restoring 

force immediately reduces by twice as much as the friction 

force, while there is no relative movement between the 

inner and outer tubes, as shown in Fig. 2(a). Before 

activation (when the force of brace is less than the sum of 

the friction force and pre-pressed force), the behavior of the 

PS-SCED brace is reproduced by a rheological model 

where an elastic spring s1 with a stiffness ke (represents the 

combined stiffness of the inner and outer tubes of the brace) 

is connected in series with a rigid rod by a switch s0, as 

shown in Fig. 2(b). Once the brace is activated, s0 is 

switched to the other side, and s1 is connected in series with 

the paralleling of friction pads exhibiting a Bouc-Wen 

hysteresis variable z(t) (Ismail et al. 2009) and disc springs 

s2 with a stiffness kd. Although the original restoring force 

model can accurately simulate the behavior of brace under 

experimental loading schemes, due to the lack of an 

indication of relevant state variable S, the distortion occurs 

when the working stage of the brace is misjudged under the 

random seismic inputs. So a revised evolution law is 

derived as, 
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Fig. 1 Schematic drawing of PS-SCED brace 
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Fig. 2 (a) Working principle and (b) rheological model of 

PS-SCED brace 
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where the original value of S is 0 and fb(tn) is the restoring 

force of the brace at time step n; ub(tn) and ub(tn-1) are the 

relative displacements between two ends of the brace at 

time step n and n-1, respectively; F0 is the Coulomb friction 

force of the friction pads and P0 is the pre-pressed force of 

the springs s2. The yield displacement is d0=(F0+P0)/ke, and 

sgn( ) is the symbolic function that returns values of -1 or 1. 

The hysteresis variable z(tn) is expressed as, 

1
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 (3) 

where β, γ and α are all non-dimensional parameters that 

control the hysteresis shape; 
b ( )nu t  is the relative velocity 

between two ends of the brace. z(tn) can be easily given by 

the classical Runge-Kutta method in the explicit time-

discrete formula. It should be mentioned that the numerical 

differential expression of z(tn) consists of parameters β, γ 

and d0 which refers to design parameters ke, kd, F0 and P0 of 

the PS-SCED brace. 
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Fig. 3 MDOF model of PS-SCED brace-structure system 

 
 

2.2 Brace-structure system modelling 
 

For simplicity, the frame structure dominated by shear 

deformation can be simplified as multi-particle series 

models with a specific stiffness ki, a mass mi and a damping 

coefficient ci of each story, as shown in Fig. 3. Note that 

only the horizontal stiffness contribution of the PS-SCED 

braces is considered and the axial stiffness of the columns is 

infinite regardless of the vertical vibration of the structure 

in this study. 

Based on the restoring force model of the PS-SCED 

brace in Section 2.1, the dynamic responses of the m-story 

MDOF system can be described as follows, 

b g= −Mu+ Cu+ Kx + f Meu  (4) 

where M, C and K are the m×m structural mass, damping 

and stiffness matrices; u, u  and u  are the m×1 vectors 

of structural displacement, velocity and acceleration; e is a 

m×1 unity vector and 
g−Meu  is the external force; the 

m×1 vector fb of brace restoring force is given as, 

b be=f f  (5) 

where Λ is the m×nb location matrix for the brace-structure 

system with respect to the masses; the m×1 vector fbe is 

calculated as, 
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where nb is the number of the braces and Λ′ is the 

transposition of matrix Λ. If each story contains one PS-

SCED brace, as is the case in this study in Section 4, 
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It is reasonable for integration of the brace restoring 

force at the same story, as the rigid floors ensure the 

compatibility of brace displacements. Note that the 

disassembly of the integrated brace parameters should be 

properly addressed in the future. Eq. (4) can be solved by 

the incremental form of linear acceleration method, 
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where ∆t is the time integration interval. The exact dynamic 

solution is to solve the coupled Eqs. (8)-(12) with unknown 

quantities ∆u and fb,n+1. While the function f() is piecewise, 

considering two possible states of each brace, there are 2^nb 

cases for this problem. Using fb,n+1 and fb,n to calculate is 

hard for obtaining an unique solution of this problem, 

usually producing two more solutions to satisfy the 

qualification. Therefore, fb,n+1 and fb,n are replaced by the 

values at the previous incremental step fb,n and fb,n-1, to 

decouple the equations, resulting in a one-step hysteresis of 

brace-structure system response. When ∆t is small enough, 

the calculation precision is within an acceptable range. 

 

 
3. GA optimization and parameter sensitivity 
analysis 

 
3.1 Mathematical formulation of the optimization 
 

Although the multi-parametric effect analysis of the 

structural response can be given by orthogonal experiment 

with tremendous cases within the domain boundary, the 

results are still confined to special cases and bound up with 

the analysis procedures. In this study, an automatic brace 

design algorithm is used to obtain the local optimal solution 

of the parameters from the default values, which can be 

easily extended to the global optimum only if the default 

range is large enough. Therefore, the simplest form of the 

structural optimization problem is formulated as follows, 

s

1

min( )
p

i i

i

a
=

  (13) 
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where Eq. (13) is the objective function to be reached and 

ais is the ith of p prescribed performance index normalized 

by the initial value aio. Eqs. (13) and (14) are general 

expressions of the minimum optimization algorithm, and 

the control variables and parameter fields can be selected as 

appropriate. ηi is the corresponding weighting coefficient 

which guarantees the dominance of ais with a larger rate of 

convergence in multi-objective optimization, as shown in 

Eq. (15). It can be easily confirmed that the sum of ηi equals 

1. gj( ) is the jth of r deterministic constraints of the 

problem and θ is the vector of q design variables that take 

values from a theoretically continuous set Rd.  

In terms of the low expense of optimization cycles, GA 

is applicable for handling complex optimization problems. 

In general, attached to fixed length character strings, the 

individual genetic information directly indicates its 

characteristics in a population. In this study, M, K and C 

should be firstly determined by given story mass, stiffness 

and damping ratio ζ. According to the site soil eigenperiod 

and design intensity, the seismic inputs are supposed to be 

appropriately selected. After stipulating the performance 

index and solving the dynamic equations of the brace-

structure system with the default values of the brace design 

parameters, each aio is obtained for the further researches. In 

general, ng0 is defined as the size of the initial population. A 

ng0×(q×m) matrix G with randomly generated integers gij is 

defined, where gij stands for the modification of the ith 

design variable by jth deterministic constraint. The 

designated parameter is multiplied by a coefficient of 1+cv 

(v=1, 2,…, 5) randomly. There are ng0 individuals in the 

initial population for the brace-structure system. After 

eliminating the schemes that do not satisfy Eq. (14), ng0 is 

reduced to ng1 (the number of individuals in the first 

population). After solving ng1 dynamic equations, 

comparisons of Eq. (13) are conducted to filter out the 

optimal individual in first generation g1, and default brace 

parameters are replaced at the same time. Meanwhile, to get 

the second generation g2, crossover and mutation are 

applied to the next loop by GA operators which do not end 

until the pre-specified number of generations is reached, or 

a convergence criterion is met. The penalty of objective 

function is not taken into account in this study. 
 

3.2 Optimization incorporating parameter sensitivity 
analysis 

 

Even though the initial population size ng0, the crossover 

rate rc (to replace the partial structure of two individuals to 

generate a new individual) and the mutation rate rm (to 

change genetic values of some individuals) in GA operator 

have not been discussed yet, the critical parameter cv still 

has a great influence on the convergence and the 

optimization results. It is unreasonable to consider that 

different parameters are supposed to share a common 

change rate even with an identical random index. Therefore, 

the parameter sensitivity is applied in the GA operator to 

modify the parameter cv. The sensitivity of response 

quantity r with respect to a sensitivity parameter θ is 

defined as dr/dθ. For a time-invariant system, after the time 

displacement discretization using linear acceleration 

method, the following sensitivity equation must be solved 

in the unknown dun+1/dθ, as the objective function is 

displacement-dependent, 

2
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Then the solution of the sensitivity equation requires the 

computation of dfn+1/dθ, which can be obtained from the 

derivation of Eq. (2). Two linear modification strategies of 

parameter cv with the weighted normalized parameter 

sensitivity sw given as Eq. (19) are implemented, as shown 

in Eqs. (20)-(23). Previous studies have shown that the 

weighted normalized parameter sensitivity can mitigate 

large variations in very small response values, generally 

having less interest compared with the variations of larger 

response values (Gu et al. 2014). Eq. (22) gives a way to 

speed up the change of parameters with larger sensitivity 

for the distinctions, while Eq. (23) aims at the retard of 

these parameter changes with larger sensitivity for 

synchronous effects, which are respectively denoted as case 

I and case II in this study. The parameter optimization with 

unconverted cv is denoted as case 0 as well. 
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Fig. 4 Flow chart of the optimization 

 

 

where c( ) is the round up function and r( ) is the remainder 

function. Especially when q divides j exactly, r(j/q) equals 

q. The exponent w in Eqs. (22) and (23) is an index related 

to the convergence criterion, and the value of w should 

decrease as the criterion becomes more rigorous for an 

optimization flow without premature termination. Fig. 4 

shows the flow chart of the optimization. 

 

 

4. Case study 
 
4.1 Initialization of calculation model and optimization 
 

To verify the applicability of the proposed optimization 

and figure out the impacts of two forms of modified cv on 

the algorithm convergence and optimization results, a 10-

story 3-bay frame structure is considered as an example. 

The first natural period of this steel frame is 2.2 s, whose 

elevation arrangement is presented in Fig. 5. The mass of 

each story is 50 tons, and an inherent 2% Rayleigh damping 

in the first and second modes is used. An equivalent story 

stiffness study of this frame was carried out by Losanno et 

al. (2017b), so that the matrix K and C are determined as 

well. In this section, a1s and a2s are respectively the 

normalized maximum drift ratio and maximum roof 

displacement, so that p is set as 2 for this double-objective 

optimization problem. 

To begin with, the constraint conditions of this case are 

formulated by the design and detailed requirements of the 

PS-SCED braces: (a) the stiffness ratio kd/ke should not 

exceed 0.2, as experimental studies (Xu et al. 2018a ,b) on 

this type of brace show that each kd/ke is no more than 0.1  
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Fig. 5 Elevation of the 10-story frames (symmetric) 
 

Table 1 Initial design parameters of PS-SCED brace and 

GA default parameters 

PS-

SCED 

brace 

ke 

/kNm-1 

kd 

/kNm-1 
d0/m P0/N F0/N β γ 

10000 1000 0.002 10000 10000 -5 6 

GA 
ng0 rc rm cv w   

1000 0.6 0.05 0.02 0.5   

 

 

while some researchers draw a conclusion that the larger kd 

is, the better structural response is; (b) the force ratio F0/P0 

should not exceed 1.3 in this case to ensure the residual 

deformation of PS-SCED braces within an acceptable range 

and guarantee the accuracy of the mechanical model; (c) 

β+γ should be 1.0 to ensure the consistency of z(tn); (d) the 

individual d0 should not exceed twice as much as its initial 

value, as an excessively large d0 does not cause the 

activation of the brace, resulting in no additional energy 

dissipation during the earthquake. Because too many 

restrain conditions may make an over-constraint problem 

with few loops of optimizations, the four fundamental 

restrictions are enough to give full play to the advantages of 

adoptive algorithm. 

Taking into consideration that GA is a stochastic 

algorithm, the convergence criterion is redefined as: the 

objective function of optimal individual in the kth loop is 

less than the mean value of the objective function of 

optimal individual in the (k-fc)th to the (k-1)th loops. (fc is 

an integral factor to control the convergence of the 

optimization, and in this case fc equals 5.) The initial design 

parameters of PS-SCED brace and GA default parameters 

are listed in Table 1. The base shear force of the original 

structure under the basis ground motion is evenly 

distributed to each story. The braces are activated under the 

basis ground motion and provide no more than 75% of the 

lateral resisting force, as well as ensuring sufficient 

recentering and energy dissipation capabilities. Therefore, 

the initial design parameters of the braces are determined. 
 

4.2 Optimal input of earthquake records 
 

Since the optimization method proposed in this case is 
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based on a certain earthquake record selected by the 

optimizer, considering that the earthquakes have great 

randomness, different ground motions have obvious impact 

on the optimization analysis results. In order to minimize 

the dispersion of earthquake randomness and preserve its 

inherent randomness, 22 far-field records recommended by 

FEMA P695 (2009) are used in this case as the basic ground 

motion set. Before the optimization, the responses of the 

original structure and brace-structure with default brace 

parameters under 22 ground motions are analyzed, and the 

severest ground motion can be selected as the earthquake 

input of the optimization. Each ground motion in FEMA 

P695 far-field record set contains two horizontal 

components and one vertical component. In this case, only 

records in two horizontal components are used as the basic 

inputs, so that the record set contains 44 earthquake records. 

The peak ground acceleration is between 0.21g and 0.82g, 

and the average is about 0.43g. 

For small damage and easy repair after the earthquake, 

the design and optimization objective of the braced frame 

structure is that the inter-story drift ratio under the basis 

ground motion does not exceed the elastic limit, and the 

braces are activated to provide the recentering and energy 

dissipation capabilities. In accordance with the Code for 

seismic design of buildings GB50011-2010 (2016) in 

China, the elastic inter-story drift ratio limit of frame 

structure is 1/550. Although the peak ground motions 

(PGA) is a site specific one and commonly used, the 

spectral acceleration of structures corresponding to the 

fundamental period of structures (Sa(T1)) is superior to PGA 

because not only Sa(T1) is a structure-specific parameter, 

but also the dispersion of inter-story drift ratio envelopes 

using Sa(T1) is obviously smaller than that using PGA. The 

method of Sa(T1) amplitude modulation in this case study 

was introduced by Ebrahimian et al. (2015) and Kiani and 

Pezeshk (2017). 

Based on the results of the Sa(T1) amplitude modulation, 

Fig. 6 shows the inter-story drift ratio envelopes of the 

original structure and brace-structure with default brace 

parameters due to 44 ground motions. For the original 

structure, inter-story drift ratios under most of ground 

motions and their average value exceed the elastic limit. 

The ratios of the brace-structure are greatly reduced 

compared with those of the original structure, whose 

average value does not exceed the limit. However, under 

some ground motions, the drift ratios of the brace-structure 

still exceed the limit, wherein the ratios due to the 1999 

Kocaeli earthquake in Duzce station, Turkey with the 

Richter scale of 7.5 are the largest. Therefore, the 1999 

Kocaeli earthquake is the severest ground motion for the 

brace-structure with default brace parameters and is also 

selected as the optimization earthquake input. 

 
4.3 Validation of parameter sensitivity 
 

Since z(tn) is given by the classical Runge-Kutta method 

in the explicit time discretization formulation, the solution 

of dfn+1/dθ may be a complicated process when θ contains 

d0, β and γ. Fortunately, d0 can be expressed by F0, P0 and 

ke. Besides, the shape parameters β and γ have no effect on 

the magnitude of the restoring force. So that only the  
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(b) Brace-structure with default brace parameters 

Fig. 6 Inter-story drift ratio envelopes of the original 

structure and brace-structure with default brace 

parameters  
 

 

sensitivities of the four parameters, ke, kd, F0 and P0, are 

considered. The evolution of the normalized response 

sensitivities of the first story and roof displacement to the 

adjacent brace parameters are shown in Figs. 7 and 8. The 

maximum displacements umax of the first story and the roof 

floor are obviously different, so the value comparison 

between these two weighted normalized parameter 

sensitivities sw is meaningless. From Fig. 7a and Fig. 8a, it 

is observed that the stiffness ke has a larger influence on the 

node displacement vector u compared to the stiffness kd in 

the first seven seconds, because there is no inter-story drift 

more than d0, so the key parameter ke directly affects the 

performance of the brace-structure system. The reason why 

the same situation comes out for pre-load P0 is that the 

change of high frequency sign makes function sgn( ) 

magnify the effect of P0. When the drift is greater than the 

yield displacement d0, the influence of parameter F0 and kd 

is also observed, because the parameter kd controls the 

stiffness sudden change of the structure and F0 is a critical 

energy dissipation factor after the brace activation. 

Almost all the extreme (positive and negative) values of 

sw used for the modification of cv show up when the braces 

are activated. A simple way to present response sensitivity 

is to compare these values during the earthquake, which are 

shown in Figs. 9 and 10. Almost every parameter sensitivity 

extreme value receives an inversion from positive/negative 

at the first floor to negative/positive at the roof. It is 
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(b) Parameters F0 and P0 

Fig. 7 Normalized response sensitivities of the first floor 

displacement to the adjacent brace parameters 
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(b) Parameters F0 and P0 

Fig. 8 Normalized response sensitivities of the roof 

displacement to the adjacent brace parameters 
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Fig. 9 Maximum and minimum normalized sensitivities 

of the first floor displacement to the considered 

parameters  

-6

-4

-2

0

2

4

θ=k
e

θ=k
d

θ=P
0

θ=F
0

 

 

 

×Δt
2
/6

case 0 case I case II

s w
(u

ro
o

f,θ
)

 
Fig. 10 Maximum and minimum normalized sensitivities 

of the roof displacement to the considered parameters  

 

 

speculated that the parameter sensitivity distribution is quite 

discrepant along the height. It is also observed that the 

parameter P0 always shows an opposite extreme effect on 

the displacement response compared to other brace 

parameters. The influence of parameter F0 on the structural 

seismic behavior is relatively small, as the linear dynamic 

analysis may ignore the positive effect of the additional 

energy dissipation caused by the resistance to structural 

damage evolution, while the contribution of other 

parameters to the stiffness matrix is quite obvious. Case I 

magnifies the greatest influence of P0 at the first floor and 

kd in the roof on the responses, and case II minifies the 

influence of ke which is a critical parameter for the natural 

vibration characteristics and the structure responses around 

the equilibrium position. 

 
4.4 Sensitivity-based GA optimization analysis 
 
Note that the original structure, brace-structure with 

default brace parameters, and brace-structure with brace 

parameter optimization in Case 0, case I and case II are 

respectively denoted as SYS-O, SYS-D, SYS-Case 0, SYS-

Case I and SYS-Case II. Figs. 11-15 show the dynamic 

responses of the structure due to the 1999 Kocaeli 

earthquake. The responses are examined in terms of the roof 

displacement uroof, absolute acceleration 
roofu  and inter-

story drift ratio. 
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Fig. 11 Roof displacements time history of SYS-O, SYS-

D and SYS-Case 0  
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Fig. 12 Roof displacements time history of SYS-Case 0, 

SYS-Case I and SYS-Case II  

 

 

The improvement of the maximum roof displacements 

from SYS-O to SYS-Case 0 is 66.3%, and the responses are 

minimized by more than 80% after the time when extreme 

value occurs. The response of SYS-Case 0 has certain 

reduction compared to that of SYS-D. The roof 

displacements of SYS-Case 0, SYS-Case I and SYS-Case II 

begin to show difference after the 7th second, and SYS-

Case II shows better seismic performance than SYS-Case 0 

does. The acceleration amplifications occur in this brace-

structure system. The roof displacement is effectively 

improved, despite the adverse effect during the minor shock 

and the acceleration amplification due to the increase of the 

initial structural stiffness.  

The inter-story drift ratio envelop is a significant 

performance index closely related to the component damage 

during the earthquake. The maximum drift ratio of SYS-

Case 0 is decreased by 68% compared to SYS-O, while the 

maximum drift ratio of SYS-D is decreased by 60%. The 

distribution of maximum drift ratio in SYS-Case 0 is more 

uniform as well, as shown in Fig. 14. It seems that SYS-

Case I is adversely affected by the strategy that amplifies 

the change rate of parameters with large sensitivity, leading 

to the worst optimization in these three cases. The results in 

Fig. 15 show that optimization in SYS-case II makes it 

possible for a better seismic performance than those of both  
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Fig. 13 Roof accelerations time history of SYS-O, SYS-

D and SYS-Case 0  
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Fig. 14 Inter-story drift ratio envelopes of SYS-O, SYS-

D and SYS-Case 0 
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Fig. 15 Inter-story drift ratio envelopes of SYS-Case 0, 

SYS-Case I and SYS-Case II  
 

 

Table 2 Maximum absolute values of response quantity in 5 

different systems 

Response  SYS-O SYS-D 
SYS-Case 

0 

SYS-Case 

I 

SYS-Case 

II 

uroof/mm 86.02 38.05 28.94 31.02 25.45 

roofu  

/ms-2 
3.22 4.10 3.51 3.78 3.73 

Drift ratio 0.00718 0.00286 0.00230 0.00232 0.00219 
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SYS-Case 0 and SYS-Case I. The maximum absolute 

values of response quantities are shown in Table 2 to help 

illustrate the difference of seismic behaviors among these 5 

systems. Even the roof acceleration is not considered as the 

objective function during the optimization, it is obviously 

controlled after GA optimization as well. 

The typical hysteretic responses of PS-SCED braces in 

SYS-Case II are shown in Fig. 16. The braces in the second 

and third stories represent two types of the relationship of 

the friction force and pre-pressed force (P0>F0 and P0<F0). 

For braces with different friction forces and pre-pressed 

forces, they exhibit stable and repeatable flag-shaped 

hysteretic responses, and their residual deformations are 

effectively reduced. The maximum displacement of the 

braces in the second and third stories are 267.5% and 

325.5% of the activation displacement, respectively, 

indicating that the braces provide sufficient energy 

dissipation and stiffness after activation. Generally, the 

energy dissipation devices in the structure cannot reduce the 

residual deformation, and the residual deformation ratio of 

the structure after earthquakes is close to the inter-story 

drift ratio during earthquakes. However, in SYS-Case II, the 

residual displacements of the braces in the second and third 

stories are 12.3% and 33.0% of the maximum displacement, 

respectively, indicating that the braces can effectively 

reduce the residual deformation ratio of the structure.  

The optimal parameters of PS-SCED brace in SYS-Case 

0 are listed in Table 3, and the average value of each design 

parameter change does not exceed 5% of its initial 

parameter value. Figs. 17 and 18 show the comparisons of 

the visualized parameter changes in SYS-Case I and SYS-

Case II with parameters normalized by the default values, 

respectively. Most optimal brace parameters in SYS-Case I 

seem to decrease after the GA based optimization, and the 

amplitude of parameter variations in SYS-Case II is much 

wider than that in SYS-Case I. 

To study the impacts on the algorithm convergence and 

the GA operator by different ways of cv correction, the 

evolutions of objective functions and generation numbers in 

SYS-Case 0, SYS-Case I and SYS-Case II are compared, as 

shown in Figs. 19 and 20. The objective function in SYS-

Case I declines at the lowest speed. The fluctuation of the  
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Fig. 16 Hysteretic curves of braces in SYS-Case II. 
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Fig. 17 Optimal brace parameters considered in SYS-

Case I normalized by the default values 

 

objective function curves in SYS-Case 0 is obviously 

greater than those in SYS-Case I and SYS-Case II, proving 

a better convergence of the optimization flow in SYS-Case 

I and SYS-Case II. For the smaller objective function, the 

optimization in SYS-Case II pays for more cycles of natural 

selection in GA. But a large number of generations do not 

mean a large amount of calculation. Because of the same 

restrain conditions, it is inevitable for the population size in 

different cases to become feeble and die. It can be observed 

that the population size curve of SYS-Case II declines at the 

fastest speed, and the attenuation speed of population of 

SYS-Case II is larger than that of SYS-Case 0. SYS-Case II 

only contains 11,978 times of dynamic solution even with a 

large number of generations, compared to the 14,163 times  

Table 3 Optimal parameters of PS-SCED brace in SYS-Case 0 

Story ke/(kNm-1) kd/(kNm-1) d0/m P0/N F0/N β γ 

1 11532.2 1076.9 0.00200 9841.7 10934.6 -4.993 5.993 

2 9918.1 1011.9 0.00208 10584.7 9624.5 -5.408 6.408 

3 11035.4 980.1 0.00201 9571.7 10438 -6.210 7.210 

4 12297.1 1003.2 0.00178 10712.4 10780 -4.994 5.994 

5 9010.3 1055.4 0.00235 10073.5 10446.6 -4.895 5.895 

6 8987.8 1043.4 0.00218 9427.8 10524.4 -5.676 6.676 

7 9301.8 998.4 0.00220 9399.5 10182 -4.891 5.891 

8 9946.2 1020 0.00208 10458.6 10067.5 -4.750 5.750 

9 10877.1 1061.6 0.00172 8982.4 9529.3 -5.736 6.736 

10 10562 989.1 0.00196 10156.4 10087.9 -5.045 6.045 

Average 10215.1 1018.1 0.00204 9920.9 10261.5 -5.260 6.260 
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of solution in SYS-Case 0. The accuracy and computational 

cost of GA optimization is contradictory. In order to 

improve the calculation accuracy, the size of initial 

population should be increased and the time integration 

interval ∆t can be reduced. But this also leads to an increase 

in the computational cost. In practice, engineers can balance 

them according to calculation conditions. In this study, the 

size of initial population is 1000 and the time integration 

interval ∆t is 0.01s. 

To explain why the results of roof displacements are not 

as good as that of the inter-story drift ratio, the combination 

coefficient ηi in this multi-objective optimization problem is 

given in Fig. 21. η1 in SYS-Case 0 and SYS-Case II which  
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Fig. 21 Evolution of ηi in SYS-Case 0, SYS-Case I and 

SYS-Case II 
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Fig. 22 Inter-story drift ratio envelopes of SYS-

D obtained by FE and simplified models  

 

 

represent the proportion of drift ratio in the Eq.(13) are all 

more than 0.5 and continually increase as the number of 

generations increases. It certainly prompts the GA operator 

to select the individuals with smaller drift ratio instead of 

these with smaller roof displacement, because GA operator 

only conducts selections according to the objective 

function. In order to obtain a more balanced optimization 

results, a further study should be carried out towards the 

evolution of the combination coefficient ηi. 

 
4.5 Accuracy of the simplified model analysis 
 
The accuracy of the simplified model analysis is the 

basis for applying GA to optimize. Therefore, it is necessary 

to use the finite element (FE) model to check and verify the 

calculation results of the simplified model. Fig. 22 shows 

the inter-story drift ratio envelopes of SYS-D obtained by 

FE and simplified models due to 5 severest ground motions. 

It can be seen that the inter-story drift ratios obtained by 

the simplified model is mostly slightly smaller than those 

obtained by the FE model analysis, and the relative errors 

are not more than 15%. The simplified model not only 

accurately represents the structural responses, but also 

greatly saves the computational cost. The automatic 

optimization design of the brace-structure can be realized 
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Fig. 18 Optimal brace parameters considered in SYS-

Case II normalized by the default values 
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Fig. 19 Evolution of objective function in SYS-Case 0, 

SYS-Case I and SYS-Case II 
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Fig. 20 Evolution of population size in SYS-Case 0, 

SYS-Case I and SYS-Case II 
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through the docking of structural response results of the 

simplified model with the GA operator. 

In future works, a mixed explicit-implicit time 

integration approach (Greco et al. 2018, Vaiana et al. 2018) 

can be used to drastically reduce the computational effort of 

the nonlinear time history analysis. 

 

 

5. Conclusions 
 
In this paper, a piecewise modified mechanical model 

with two state variables of PS-SCED brace is proposed to 

avoid the distortion due to the random seismic inputs. The 

formulation of the MDOF systems equipped with the braces 

is established in an incremental form of linear acceleration 

method. The accuracy of the simplified model is verified by 

the calculation results of FE model. A GA based PS-SCED 

brace optimization with multi-objective functions is 

developed to obtain the optimal solutions from the primary 

design parameters. Meanwhile, the structural response 

sensitivities with respect to the brace parameters are derived 

based on direct differentiation method, which is 

implemented into the GA operator for the parameter change 

rates correction in two opposite cases. 

Due to the severest ground motion, the normalized 

sensitivity analysis indicates that the parameters ke and P0 

show dominant effects on the node displacements before the 

braces start to work. Moreover, the pre-pressed force P0 

always shows an opposite extreme value effect on the 

displacement responses compared to other brace 

parameters, and the influence of the damping force F0 on 

the structural seismic behavior is always in a relatively low 

level. Case I magnifies the greatest influence of P0 at the 

first floor and kd in the roof on the response while case II 

minifies the influence of ke. During the middle and later 

periods of the earthquake, the roof displacements improve a 

lot in SYS-Case 0, SYS-Case I and SYS-Case II with no 

obvious distinctions. These three systems all reduce the 

maximum drift ratio of the structure, nonetheless, SYS-

Case II stands out with a better distribution of inter-story 

deformation and a drift ratio reduction. The average of each 

parameter change after the optimization does not exceed 5% 

of the initial parameters, resulting in few construction cost 

alteration. The brace parameter dispersion in SYS-Case II 

remains the biggest, and the corresponding computational 

convergence is the best with a moderate rate of decay in 

population size. Although SYS-Case I has the lowest 

calculation cost, its optimization result is actually the worst. 

Both the combination coefficients η1 in SYS-Case 0 and 

SYS-Case II are more than 0.5 all the time, leading to an 

unbalanced selection in GA operator. 

Obviously, it is applicable to choose SYS-Case II as the 

optimized object when the operational capability is 

sufficient enough. We acknowledge that the results 

correspond to linear dynamic analyses only, so further 

researches should consider the nonlinear cases, such as the 

collapse performance, and other deformational structures, 

such as core-tube and frame-shear walls. Besides, it is 

necessary to find a stable way of selection in GA operator 

for certain engineering performance requirements. 
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