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1. Introduction 
 

To measure deformations or stresses in structures and 

coupled systems and also to perform a defined work, the 

piezoelectric materials are used as sensor or actuator in 

electro-mechanical systems. These effects are used 

frequently in electro-magneto-mechanical systems. These 

materials can be used in small scales such as micro or nano 

for some specific operations. To capture the various 

mechanical, vibrational, thermal and buckling analysis of 

piezoelectric and piezomagnetic structures in small scales, 

some non classical theories such as nonlocal Eringen 

elasticity theory, modified couple stress theory and strain 

gradient theory have been developed by various researchers. 

This paper aims to consider the effect of couple stress 

theory on the magneto-electro-mechanical vibration 

analysis of laminated curved beam integrated with 

piezomagnetic layers as sensor and actuator subjected to 

initially electric and magetic potentials. The literature 

review is presented to show that the subject of this paper 

needs some more consideration.     

Radial vibration analysis of a curved beam was studied 

by Petyt and Fleischer (1971) using finite element method 

to present natural frequencies of curved beam for various 

boundary conditions such as simply supported, hinged and 

clamped ends. Surana et al. (1989) provided three 

dimensional nonlinear analysis of a curved beam using the 

total Lagrangian approach. Raveendranath et al. (2000) 

summarized some advantages and characteristics of a two-

noded shear flexible curved beam element including three 

degree of freedom at each node based on curvilinear deep 
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shell theory. The displacement field was assumed using a 

cubic polynomial function for radial and tangential 

displacements and section rotation. The results indicated 

that performance of the element is much superior to other 

elements of the same class. Effect of sinusoidal excitation 

was studied on the nonlinear buckling responses of 

clamped-clamped curved beam by Poon et al. (2002). 

Runge-Kutta numerical integration method was used for 

solution of the governing equations of motion. Shi (2005) 

analyzed bending behaviors of a piezoelectric and 

functionally graded curved actuator based on theory of 

piezo-elasticity subjected to an external voltage. The 

influence of power index of functionally graded material 

has been investigated on the results and the obtained results 

have been approved by comparison with finite element 

approach. 

Piovan et al. (2015) presented dynamic analysis of 

magneto-electro-elastic curved beams. The aim of this work 

was to control motions and/or attenuate vibrations, for 

energy harvesting. The responses of curved beam were 

evaluated based on finite element method. One-dimensional 

beam theory of piezo-elasticity was employed by Kuang et 

al. (2007) in order to study static responses of a circular 

curved beam integrated with piezoelectric actuators. The 

obtained results have been verified by comparison with 

finite element results. Shi and Zhang (2008) studied 

bending analysis of a functionally graded piezoelectric 

curved beam subjected to external electric potential using 

theory of piezo-elasticity. The effect of variable curvature 

on the transient analysis of a curved piezoelectric beam 

with a piezoelectric vibration energy harvester was studied 

by Zhou et al. (2017). Arefi (2015) studied elastic solution 

of a curved beam made of functionally graded materials 

with various cross sections such as circular, rectangular and 

triangular. The influence of some important parameters such 

 
 
 

Effect of pre-magneto-electro-mechanical loads and initial curvature 

on the free vibration characteristics of size-dependent beam 
 

M. Arefi 
 

Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-51167, Iran 

 
(Received November 8, 2018, Revised December 20, 2018, Accepted January 24, 2019) 

 
Abstract.  This paper studies application of modified couple stress theory and first order shear deformation theory to magneto-

electro-mechanical vibration analysis of three-layered size-dependent curved beam. The curved beam is resting on Pasternak’s 

foundation and is subjected to mechanical, magnetic and electrical loads. Size dependency is accounted by employing a small 

scale parameter based on modified couple stress theory. The magneto-electro-mechanical preloads are accounted in governing 

equations to obtain natural frequencies in terms of initial magneto-electro-mechanical loads. The analytical approach is applied 

to investigate the effect of some important parameters such as opening angle, initial electric and magnetic potentials, small scale 

parameter, and some geometric dimensionless parameters and direct and shear parameters of elastic foundation on the magneto-

electro-elastic vibration responses. 
 

Keywords:  vibration Responses; modified couple stress; initial electric and magnetic potentials; length scale parameter 

 



 

M. Arefi 

as non-homogeneous index and various cross sections has 

been investigated on the stress distribution of curved beam. 

Zhou et al. (2010) studied the piezoelectric laminated 

curved nano beams with variable curvature as an element of 

electromechanical systems. They modeled the curved beam 

using radial and tangential displacements and rotation. The 

influence of some geometrical parameters and patterns of 

layers was studied in detail. The influence of applied 

electric and magnetic potentials on the sandwich rod, beam 

and plates has been studied by researchers (Arefi and 

Zenkour (2017a-f), Arefi 2016, Arefi et al. 2018).  

Vu-Bac et al. (2016) provided a sensitivity analysis for 

quantifying the influence of uncertain input parameters on 

uncertain model outputs. The effectiveness of this study 

were highlighted using numerical studies based on 

analytical functions. Hamida et al. (2018) provided a 

sensitivity analysis for identification of key input 

parameters affecting energy conversion factor of 

flexoelectric materials. The numerical results indicated that 

the flexoelectric constants are the most dominant factors 

influencing the uncertainties in the energy conversion 

factor. Ghasemi et al. (2018) presented a computational 

methodology for topology optimization of multi-material-

based flexoelectric composites. They provided some 

numerical examples for two, three and four phase 

flexoelectric composites to demonstrate the flexibility of the 

model that can be obtained using multi-material topology 

optimization for flexoelectric composites. Some related 

works to optimization and computational methods of 

flexoelectric and piezoelectric structures were studied by 

various researchers (Ghasemi et al. 2017; Thai et al. 2017; 

Nanthakumar et al. 2016; Nguyen et al. 2018) 
A comprehensive literature review on the important 

works related to some significant topics such as electro-
magneto-elastic problems, size dependent analyses, 
magneto-electro-elastic vibration and some related works 
on them in micro and nano scales and curved structures has 
been completed above. One can conclude that although 
some works on the curved beam have been reported by 
various researchers, however it is investigated that there is 
no comprehensive work on application of first order shear 
deformation theory and modified couple stress theory to the 
magneto-electro-elastic vibration analysis of laminated 
micro curved beam subjected to electro-magneto-
mechanical loads. The governing equations of motion are 
derived based on Hamilton’s principle. The significant 
numerical results including free vibration characteristics are 
presented in terms of important parameters such as opening 
angle, micro length scale parameter, initial electric and 
magnetic potentials and two parameters of Pasternak’s 
foundation and. 

 
 

2. Formulation 
 

To capture the influence of micro scales on the vibration 
responses of curved structure (Figure 1), modified couple 
stress theory is employed. Based on this theory, strain 
energy is expressed as follows: 

( )
1

2
s ij ij ij ij i i i i

v
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(1) 

 

Fig. 1 The schematic figure of a three-layer curved 

nanobeam 
 

 

In which σij and εij are the components of the stress and 

strain tensors, mij are the components of the deviatoric part 

of the symmetric couple stress tensor and χij are the 

components of the symmetric curvature tensor that are 

defined as follows: 

2 1
   

1 2

T

ij ij
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m l    


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(2) 

In which l is the material length scale parameter and θi 

are the components of the rotation vector. In Eq. 1, Di, Bi 

are electric displacement and magnetic induction 

components and Ei, Hi are electric and magnetic field 

components.   

The electric displacement and magnetic induction 

components along the radial and circumferential directions 

are derived as: 

𝐷𝑟
𝑝 = 𝑒𝑟𝜃𝜃

𝑝𝜀𝜃 + 𝜖𝑟𝑟
𝑝𝐸𝑟 + 𝑚𝑟𝑟

𝑝𝐻𝑟

𝐷𝜃
𝑝 = 𝑒𝜃𝑟𝜃

𝑝𝛾𝑟𝜃 + 𝜖𝜃𝜃
𝑝𝐸𝜃 + 𝑚𝜃𝜃

𝑝𝐻𝜃

𝐵𝑟
𝑝 = 𝑞𝑟𝜃𝜃

𝑝𝜀𝜃 + 𝑚𝑟𝑟
𝑝𝐸𝑟 + 𝜇𝑟𝑟

𝑝𝐻𝑟

𝐵𝜃
𝑝 = 𝑞𝜃𝑟𝜃

𝑝𝛾𝑟𝜃 + 𝑚𝜃𝜃
𝑝𝐸𝜃 + 𝜇𝜃𝜃

𝑝𝐻𝜃

 (3) 

in which 𝑚𝑖𝑗  and 𝜇𝑖𝑗  are dielectric and electromagnetic 

coefficients. In order to complete constitutive mechanical, 

electrical and magnetic loads, the electric and magnetic 

potentials should be completed. For this aim, the electric 

and magnetic potentials are defined as (Arefi and Zenkour 

2017a-f, Arefi 2016, Arefi et al. 2018) 

𝜓̆(𝑟, 𝜃) =
2𝜓0

ℎ𝑝

𝜌 − 𝜓(𝜃) 𝑐𝑜𝑠 (
𝜋

ℎ𝑝

𝜌)

𝜙̆(𝑟, 𝜃) =
2𝜙0

ℎ𝑝

𝜌 − 𝜙(𝜃) 𝑐𝑜𝑠 (
𝜋

ℎ𝑝

𝜌)

 (4) 

In which, ψ0, ϕ0  are applied electric and magnetic 

potentials, ρ = ζ ±
he

2
±

hp

2
 for top and bottom piezo-

magnetic face-sheets, respectively. The first term in electric 

and magnetic potentials is applied electric and magnetic 

potentials and second terms are used for description of 

homogeneous electrical and magnetic boundary conditions. 

Electric and magnetic fields are derived based on 

following relation in terms of electric and magnetic 

potentials (Arefi and Zenkour (2017a-f), Arefi 2016, Arefi 

et al. 2018). 
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Er = −
∂ψ̆

∂r
, Eθ = −

1

r

∂ψ̆

∂θ

Hr = −
∂ϕ̆

∂r
, Hθ = −

1

r

∂ϕ̆

∂θ

 (5) 

In this stage and using the Hamilton’s principle∫ 𝛿(𝑇 −
𝑈 + 𝑉)𝑑𝑡 = 0, we can derive the governing equations of 

motion. The variation of strain energy 𝛿𝑈 is defined as: 

𝛿𝑈 = ∭ (𝜎𝑖𝑗𝛿𝜀𝑖𝑗
𝑣

− 𝐷𝑖𝛿𝐸𝑖 − 𝐵𝑖𝛿𝐻𝑖 + 𝑚𝑖𝑗𝜒𝑖𝑗  )d𝑉. (6) 

The work performed by external works including 

mechanical, electrical and magnetic loads is expressed as 

follows: 

𝑊𝐸𝑥𝑡 = ∫ (𝑁0 + 𝑁𝐸 + 𝑁𝑀)(
1

𝑟

𝑑𝑢𝜃

𝑑𝜃
)2

𝜃

rd𝜃. (7) 

In which 𝑁0. 𝑁𝐸 . 𝑁𝑀 are mechanical, electrical and 

magnetic pre-loads. 𝑁0 is direct pre-mechanical loads and 

remained terms are pre-electrical and mechanical loads that 

are defined as: 

{𝑁𝐸 , 𝑁𝑀} = ∫ {
2𝜓0

ℎ𝑝

𝑒𝜃𝜃𝜃
𝑝,

2𝜙0

ℎ𝑝

𝑞𝜃𝜃𝜃
𝑝}d𝑧

−
ℎe
2

−
ℎe
2

−ℎp

+ ∫ {
2𝜓0

ℎ𝑝

𝑒𝜃𝜃𝜃
𝑝,

2𝜙0

ℎ𝑝

𝑞𝜃𝜃𝜃
𝑝}d𝑧

ℎe
2

+ℎp

ℎe
2

. 

(8) 

The terms defined in Eq. 8 show pre-loads due to 

electrical and mechanical loads. Substitution of strain 

energy, kinetic energy and external woks into Hamilton’s 

principle leads to final governing equations of motion as 

follow: 

𝛿𝑢𝑟: −𝑁𝜃𝜃 +
𝑑𝑁𝑟𝜃

𝑑𝜃
+

1

4

𝑑𝑀𝑟𝑧
𝜒

𝑑𝜃
+

1

4

𝑑2𝑀𝜃𝑧
𝜒

𝑑𝜃2
 

+ (𝐾1𝑢𝑟 − 𝐾2

1

(𝑅 −
ℎ𝑒

2
− ℎ𝑝)

2

𝑑2𝑢𝑟

𝑑𝜃2
) (𝑅 −

ℎ𝑒

2
− ℎ𝑝) 

−(𝑁0 + 𝑁𝐸 + 𝑁𝑀)(
1

𝑟2

𝑑2𝑢𝑟

𝑑𝜃2
) (𝑅 +

ℎ𝑒

2
+ ℎ𝑝) = 𝐴1𝑢̈𝑟 

𝛿𝑢𝜃:
𝑑𝑁𝜃𝜃

𝑑𝜃
+ 𝑁𝑟𝜃 +

1

4

𝑑𝑀𝜃𝑧
𝜒

𝑑𝜃
−

1

4
𝑀𝑟𝑧

𝜒 = 𝐴1𝑢̈𝜃 + 𝐴2𝜗̈ 

𝛿𝜒:
𝑑𝑀𝜃𝜃

𝑑𝜃
− (𝑅𝑁𝑟𝜃 + 𝑀𝑟𝜃) + 𝑀𝑟𝜃 −

1

2
𝑁𝜃𝜃

𝜒 +
1

4

𝑑𝑁𝑟𝜃
𝜒

𝑑𝜃
 

+
1

4
𝑀𝑟𝑧

𝜒𝑅 +
1

4

𝑑𝑁𝜃𝑧
𝜒

𝑑𝜃
+

1

4

𝑑𝑃𝜃𝑧
𝜒

𝑑𝜃
= 𝐴2𝑢̈𝜃 + 𝐴3𝜗̈ 

𝛿𝜓: − 𝐷̅𝑟 −
𝑑𝐷̅𝜃

𝑑𝜃
= 0 

𝛿𝜙: −𝐵̅𝑟 −
𝑑𝐵̅𝜃

𝑑𝜃
= 0 

(9) 

Substitution of resultant components in terms of basic 

relations into governing relations leads to: 

𝛿𝑢𝑟: −
1

4
𝐴33

𝑑4𝑢𝑟

𝑑𝜃4
+ [

1

4
𝐴35 + 𝐴11]

𝑑2𝑢𝑟

𝑑𝜃2
− 𝐴4𝑢𝑟

+
1

4
𝐴33

𝑑3𝑢𝜃

𝑑𝜃3
 

+ [
1

4
𝐴35 − 𝐴4 − 𝐴11]

𝑑𝑢𝜃

𝑑𝜃
+

1

4
[𝐴32 + 𝐴34]

𝑑3𝜗

𝑑𝜃3
 

+ [𝐴12 − 𝐴13 − 𝐴5 −
1

4
𝐴35𝑅]

𝑑𝜗

𝑑𝜃
− 𝐴14

𝑑2𝜓

𝑑𝜃2
− 𝐴6𝜓

− 𝐴15

𝑑2𝜙

𝑑𝜃2
 

−𝐴7𝜙 + (𝐾1𝑢𝑟 − 𝐾2

1

(𝑅 −
ℎ𝑒

2
− ℎ𝑝)

2

𝑑2𝑢𝑟

𝑑𝜃2
) (𝑅 −

ℎ𝑒

2

− ℎ𝑝) 

−(𝑁0 + 𝑁𝐸 + 𝑁𝑀)(
1

𝑟2

𝑑2𝑢𝑟

𝑑𝜃2
) (𝑅 +

ℎ𝑒

2
+ ℎ𝑝) = 𝐴1𝑢̈𝑟 

𝛿𝑢𝜃: −
1

4
𝐴33

𝑑3𝑢𝑟

𝑑𝜃3
+ [ 𝐴4 + 𝐴11 −

1

4
𝐴35]

𝑑𝑢𝑟

𝑑𝜃
 

+ [𝐴4 +
1

4
𝐴33]

𝑑2𝑢𝜃

𝑑𝜃2
− [𝐴11 +

1

4
𝐴35] 𝑢𝜃  

+ [𝐴5 +
1

4
𝐴32 +

1

4
𝐴34]

𝑑2𝜗

𝑑𝜃2
+ [𝐴12 − 𝐴13 +

1

4
𝐴35𝑅] 𝜗 

+[𝐴6 − 𝐴14]
𝑑𝜓

𝑑𝜃
+ [𝐴7 − 𝐴15]

𝑑𝜙

𝑑𝜃
= 𝐴1𝑢̈𝜃 + 𝐴2𝜒̈ 

𝛿𝜗: −
1

4
[𝐴36 + 𝐴33]

𝑑3𝑢𝑟

𝑑𝜃3
+ [

1

4
𝑅𝐴35 + 𝐴5]

𝑑𝑢𝑟

𝑑𝜃

− 𝑅𝐴11

𝑑𝑢𝑟

𝑑𝜃
 

+ [𝐴5 +
1

4
𝐴33 +

1

4
𝐴36]

𝑑2𝑢𝜃

𝑑𝜃2
+ [𝑅𝐴11 +

1

4
𝑅𝐴35]𝑢𝜃 

+ [𝐴8 +
1

2
𝐴32 +

1

2
𝐴34 +

1

4
𝐴37]

𝑑2𝜗

𝑑𝜃2
 

+ [−𝑅𝐴12 + 𝑅𝐴13 − 𝐴32 −
1

4
𝑅2𝐴35] 𝜗 + 𝐴9

𝑑𝜓

𝑑𝜃
 

+𝑅𝐴14

𝑑𝜓

𝑑𝜃
+ 𝐴10

𝑑𝜙

𝑑𝜃
+ 𝑅𝐴15

𝑑𝜙

𝑑𝜃
=  𝐴2𝑢̈𝜃 + 𝐴3𝜒̈ 

𝛿𝜓: −𝐴23

𝑑2𝑢𝑟

𝑑𝜃2
− 𝐴16𝑢𝑟 + [𝐴23 − 𝐴16]

𝑑𝑢𝜃

𝑑𝜃

+ [𝐴25 − 𝐴17 − 𝐴24]
𝑑𝜒

𝑑𝜃
− 𝐴29

𝑑2𝜓

𝑑𝜃2

+ 𝐴18𝜓 

−𝐴30

𝑑2𝜙

𝑑𝜃2
+ 𝐴19𝜙 = −𝐷𝜓 − 𝐷𝜙  

𝛿𝜙: −𝐴26

𝑑2𝑢𝑟

𝑑𝜃2
− 𝐴20𝑢𝑟 + [𝐴26 − 𝐴20]

𝑑𝑢𝜃

𝑑𝜃
+ [𝐴28

− 𝐴21 − 𝐴27]
𝑑𝜒

𝑑𝜃
− 𝐴30

𝑑2𝜓

𝑑𝜃2
+ 𝐴19𝜓

− 𝐴31

𝑑2𝜙

𝑑𝜃2
+ 𝐴22𝜙 = −𝐵𝜓 − 𝐵𝜙 

 

(10) 
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Table 1 Variation of first, second and third natural 

frequencies (in GHz) in terms of applied voltage 

Ψ0 ω1(1st mode) ω2(2nd mode) ω3(3rd mode) 

0 423.30 1066.87 1724.66 

10 423.38 1067.01 1724.86 

20 423.46 1067.15 1725.06 

 

Table 2 Variation of first, second and third natural 

frequencies (in GHz) in terms of applied magnetic 

Φ0 ω1(1st mode) ω2(2nd mode) ω3(3rd mode) 

0 423.30 1066.87 1724.66 

0.1 423.20 1066.69 1724.41 

0.2 423.09 1066.51 1724.16 

 
 
3. Solution procedure 

 

In this section, the solution procedure for electro-

magneto-mechanical vibration results is developed. The 

proposed solutions for a simply-supported curved sandwich 

beam are expressed as:  

{
(𝑢𝜃 , 𝜗)

(𝑢𝑟 . 𝜓, 𝜙)
} = ∑ 𝑒𝑖𝜔𝑡 {

(𝑈𝜃 , ϑ)cos (𝛼𝜃)
(𝑈𝑟 , Ψ, Φ)sin (𝛼𝜃)

}

𝑚=1.3.5

 (11) 

in which 𝛼 = 𝑚𝜋𝑅
𝐿⁄  and 𝜔 is natural frequency of 

the problem. This solution is applicable for simply-

supported boundary conditions and homogeneous electric 

and magnetic boundary conditions. For other boundary 

conditions, the numerical and semi-analytical methods 

should be developed. Substitution of proposed solution into 

governing equations of motion leads to below equation: 

[𝐾]{𝑋} = 𝜔2[𝑀]{𝑋} (12) 

In which {𝑋} = {𝑈𝑟 , 𝑈𝜃 , Χ, Ψ, Φ} is an unknown vector 

corresponding to five unknown functions, [𝐾] is stiffness 

matrix and [𝑀] is mass matrix. Solution of characteristic 

equation 𝐷𝑒𝑡{[𝐾] − 𝜔2[𝑀]} = 0  leads to natural 

frequencies of the problem.  

 

 

4. Results and discussions 
 

In this section, the numerical results of the problem are 

presented. The electro-magneto-elastic vibration results are 

presented in this section in terms of important parameters of 

the sandwich curved beam such as length scale parameter, 

applied electric and magnetic potentials, direct and shear 

parameters of Pasternak’s foundation and opening angle. To 

account length scale parameter, a dimensionless parameter 

l is defined as: l′ = l × 17.65μm. 

Tables 1 and 2 list variation of first, second and third 

natural frequencies in terms of various values of applied 

electric and magnetic potentials, respectively. It is observed 

that the natural frequencies are increased with increase of 

applied electric potential and decrease of magnetic 

potential. One can see that these behaviors are in 

accordance with results of literature (Liu et al. 2013).  

Table 3 Variation of first, second and third natural 

frequencies (in GHz) in terms of small scale parameter 

l ω1(1st mode) ω2(2nd mode) ω3(3rd mode) 

0.9 394.26 1022.55 1675.52 

0.95 409.05 1045.29 1700.61 

1 423.30 1066.87 1724.67 

 

Table 4 Variation of first, second and third natural 

frequencies (in GHz) in terms of applied magnetic 

𝜃 = 𝐿
𝑅⁄  ω1(1st mode) ω2(2nd mode) ω3(3rd mode) 

0/8 578.07 1396.71 2211.95 

1 423.30 1066.87 1724.66 

1/2 325.28 847.39 1396.71 

 

Table 5 Variation of first, second and third natural 

frequencies (in GHz) in terms of applied magnetic 

N0 ω1(1st mode) ω2(2nd mode) ω3(3rd mode) 

0 423.30 1066.87 1724.66 

1E3 422.39 1065.30 1722.42 

1E4 414.127 1051.04 1702.15 

 

 

Fig. 2 Variation of first, second and third natural 

frequencies (in GHz) in terms of direct parameter of 

foundationK1 
 

 

Table 3 lists the influence of small scale parameter on 

the free vibration responses of sandwich curved beam. One 

can conclude that with increase of small scale parameter l, 

the stiffness of structure is increased and consequently the 

natural frequency is increased. It is concluded that this 

conclusion is completely in accordance with results of 

literature (Arefi et al. 2018). 

Variation of first three natural frequencies of sandwich 

curved beam in terms of various opening angles is listed in 

Table 4. One can conclude that with increase of opening 

angle, the natural frequencies are decreased significantly. 

Table 5 lists variation of first three natural frequencies 

of sandwich curved beam in terms of various mechanical 

pre-loads (N0). One can conclude that increase of pre-loads 

leads to decrease of fundamental natural frequency. 

Figures 2 and 3 show variation of first three natural 

frequencies of sandwich curved beam in terms of direct and 

shear parameters of Pasternak’s foundation, respectively. It  
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Fig. 3 Variation of first, second and third natural 

frequencies (in GHz) in terms of shear parameter of 

foundationK2. 

 

 
Fig. 4 Variation of first, second and third natural 

frequencies (in GHz) in terms of direct parameter of 

foundationh𝑝 h𝑒⁄  

 

 

is observed that with increase of two parameters, the 

fundamental natural frequencies are increased significantly. 

It is concluded that with increase of both parameters of 

foundation, the stiffness is increased and consequently the 

fundamental natural frequencies are increased significantly. 

Figure 4 shows variation of first three natural 

frequencies of sandwich curved beam in terms of 

piezoelectric to core thickness ratio h𝑝 h𝑒⁄  . The numerical 

results indicate that with increase of  h𝑝 h𝑒⁄ , the 

fundamental natural frequencies are increased significantly. 

It is concluded that with increase of piezoelectric to core 

thickness ratio h𝑝 h𝑒⁄ , the portion of core in bending 

stiffness of sandwich structure is increased and 

consequently the natural frequencies are increased. 
 
 

5. Conclusion 
 
Magneto-electro-elastic vibration analysis of a three-

layered curved beam was studied in this paper based on 
modified couple stress formulation and first-order shear 
deformation theory. Hamilton’s Principle was used to derive 
governing equations of motion in terms of displacement 
field and magnetic and electric fields. The numerical results 
were presented in terms of length scale parameter, opening 
angle, initial electric and magnetic potentials, direct and 
shear parameters of foundation and piezoelectric thickness 

to core thickness ratio. Some significant outputs of this 
analysis are expressed as follows: 

Initial electric and magnetic potentials lead to significant 
changes of natural frequencies. It is observed that the 
natural frequencies are increased with increase of initial 
electric potential and decrease of magnetic potential.  

The numerical results show that with increase of length 
scale parameter, the stiffness of curved beam is increased 
and consequently the natural frequencies are increased 
significantly. 

Investigation on the effect of opening angle indicates 
that with increase of opening angle of curved beam, the 
stiffness is decreased and then the natural frequencies are 
decreased.  

The influence of piezoelectric to core thickness ratio 

h𝑝 h𝑒⁄  was studied on natural frequencies for the case that 

total thickness of curved beam to be constant.  It is 

concluded that with increase of piezoelectric to core 

thickness ratioh𝑝 h𝑒⁄ , the bending stiffness of sandwich 

structure is increased and consequently the natural 

frequencies are increased.  
 
 

References 
 

Arefi, M. (2015), “Elastic solution of a curved beam made of 

functionally graded materials with different cross sections”, 

Steel. Compos. Struct., 18(3), 659-672. 

http://doi.org/10.12989/scs.2015.18.3.659. 

Arefi, M. and Zenkour, A.M. (2017a), “Effect of thermo-magneto-

electro-mechanical fields on the bending behaviors of a three-

layered nanoplate based on sinusoidal shear-deformation plate 

theory”, J. Sandw. Struct. Mater. 

https://doi.org/10.1177/1099636217697497. 

Arefi, M. and Zenkour, A.M. (2017b), “Employing the coupled 

stress components and surface elasticity for nonlocal solution of 

wave propagation of a functionally graded piezoelectric Love 

nanorod model”, J. Intel. Mater. Syst. Struct., 28(17), 2403-

2413. https://doi.org/10.1177/1045389X17689930. 

Arefi, M. and Zenkour, A.M. (2017c), “Influence of magneto-

electric environments on size-dependent bending results of 

three-layer piezomagnetic curved nanobeam based on sinusoidal 

shear deformation theory”, J. Sandw. Struct. Mater., 

https://doi.org/10.1177/1099636217723186. 

Arefi, M. and Zenkour, A.M. (2017d), “Transient analysis of a 

three-layer microbeam subjected to electric potential”, Int. J. 

Smart. Nano. Mater., 8(1), 20-40. 

https://doi.org/10.1080/19475411.2017.1292967. 

Arefi, M. and Zenkour, A.M. (2017e), “Transient sinusoidal shear 

deformation formulation of a size-dependent three-layer piezo-

magnetic curved nanobeam”, Acta. Mech., 228(10), 3657-3674. 

https://doi.org/10.1007/s00707-017-1892-6. 

Arefi, M. and Zenkour, A.M. (2017f), “Size-dependent free 

vibration and dynamic analyses of piezo-electro-magnetic 

sandwich nanoplates resting on viscoelastic foundation”, Phys. 

B. Cond. Matt., 521, 188-197. 

https://doi.org/10.1016/j.physb.2017.06.066. 

Arefi, M. (2016), “Analysis of wave in a functionally graded 

magneto-electro-elastic nano-rod using nonlocal elasticity 

model subjected to electric and magnetic potentials”, Acta 

Mech., 227, 2529-2542. https://doi.org/10.1007/s00707-016-

1584-7. 

Arefi, M., Zamani, M.H. and Kiani, M., (2018), “Size-dependent 

free vibration analysis of three-layered exponentially graded 

nanoplate with piezomagnetic face-sheets resting on Pasternak’s 

41



 

M. Arefi 

foundation”, J. Intel. Mater. Syst. Struct., 29(5), 774-786. 

https://doi.org/10.1177/1045389X17721039. 

Ghasemi, H. Park, H.S. and Rabczuk, T. (2017), “A level-set based 

IGA formulation for topology optimization of flexoelectric 

materials”, Comput. Meth. Appl. Mech. Eng., 313, 239-258. 

https://doi.org/10.1016/j.cma.2016.09.029.  

Ghasemi, H. Park, H.S. and Rabczuk, T. (2018), “A multi-material 

level set-based topology optimization of flexoelectric 

composites”, Comput. Meth. Appl. Mech. Eng., 332, 47-62. 

https://doi.org/10.1016/j.cma.2017.12.005. 

Hamdia, K.M.  Silani, M.  Zhuang, X. He, P. and Rabczuk, 

T. (2017), “Stochastic analysis of the fracture toughness of 

polymeric nanoparticle composites using polynomial chaos 

expansions”, Int. J. Fract., 206(2) 215-227. 

https://doi.org/10.1007/s10704-017-0210-6. 

Hamdia, K.M. Ghasemi, H. Zhuang, X. Alajlan, N. and Rabczuk, 

T. (2018), “Sensitivity and uncertainty analysis for flexoelectric 

nanostructures”, Comput. Meth. Appl. Mech. Eng., 337, 95-109. 

https://doi.org/10.1016/j.cma.2018.03.016. 

Kuang, Y.D., Li, G.Q., Chen, C.Y. and Min, Q. (2007), “The static 

responses and displacement control of circular curved beams 

with piezoelectric actuators”, Smart. Materi. Struct., 16, 1016-

1024.  

Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), 

“Thermo-electro-mechanical vibration of piezoelectric 

nanoplates based on the nonlocal theory”, Compos. Struct., 106, 

167-174. https://doi.org/10.1016/j.compstruct.2013.05.031. 

Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, 

T. (2016), “Detection of material interfaces using a regularized 

level set method in piezoelectric structures”, Inv. Prob. Sci. Eng., 

24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485. 

Nguyen, B.H., Zhuang, X. and Rabczuk, T. (2018), “Numerical 

model for the characterization of Maxwell-Wagner relaxation in 

piezoelectric and flexoelectric composite material”, Comput. Struct., 

208, 75-91. https://doi.org/10.1016/j.compstruc.2018.05.006. 

Petyt, M. and Fleischer, C.C. (1971), “Free vibration of a curved 

beam”, J. Sound. Vib. 18(1), 17-30. 

https://doi.org/10.1016/0022-460X(71)90627-4. 

Piovan, M.T., Olmedo, J.F. and Sampaio, R. (2015), “Dynamics of 

magneto electro elastic curved beams: Quantification of 

parametric uncertainties”, Compos. Struct., 133, 621-629. 

https://doi.org/10.1016/j.compstruct.2015.07.084. 

Poon, W.Y., Ng, C.F. and Lee, Y.Y. (2002), “Dynamic stability of a 

curved beam under sinusoidal loading”, Proc. Inst. Mech. Eng. 

Part G: J. Aer. Eng., 216(4), 209-217. 

https://doi.org/10.1243/09544100260369740. 

Raveendranath, P., Singh, G. and Pradhan, B. (2000), “Free 

vibration of arches using a curved beam element based on a 

coupled polynomial displacement field”, Comput. Struct., 78(4), 

583-590. https://doi.org/10.1016/S0045-7949(00)00038-9. 

Raveendranath, P., Singh, G. and Pradhan, B. (1999), “A two‐
noded locking–free shear flexible curved beam element”, Int. J. 

Num. Meth. Eng., 44(2), 265-280. 

https://doi.org/10.1002/(SICI)1097-0207(19990120)44:2<265::AID-

NME505>3.0.CO;2-K 

Shi, Z.F. (2005), “Bending behavior of piezoelectric curved 

actuator”, Smart. Materi. Struct. 14, 835-842.  

Shi, Z.F. and Zhang, T. (2008), “Bending analysis of a 

piezoelectric curved actuator with a generally graded property 

for the piezoelectric parameter”, Smart. Materi. Struct., 17, 

045018.  

Surana, K.S. and Sorem, R.M. (1989), “Geometrically non‐linear 

formulation for three dimensional curved beam elements with 

large rotations”, Int. J. Num. Meth. Eng., 28(1), 43-73. 

https://doi.org/10.1002/nme.1620280106. 

Thai, T.Q., Rabczuk, T. and Zhuang, X. (2017), “A large 

deformation isogeometric approach for flexoelectricity and soft 

materials”, Comput. Meth. Appl. Mech. Eng., 341, 718-739. 

https://doi.org/10.1016/j.cma.2018.05.019. 

Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and 

Rabczuk, T. (2016), “A software framework for probabilistic 

sensitivity analysis for computationally expensive models”, Adv. 

Eng. Softw., 100, 19-31. 

https://doi.org/10.1016/j.advengsoft.2016.06.005. 

Zhou, Y., Nyberg, T.R., Xiong, G., Zhou, H. and Li, S. (2017), 

“Precise deflection analysis of laminated piezoelectric curved 

beam”, J. Intel. Mater. Syst. Struct, 27(16), 2179-2198. 

https://doi.org/10.1177/1045389X15624797. 

Zhou, Y., Dong, Y. and Li, S. (2010) “Analysis of a Curved Beam 

MEMS Piezoelectric Vibration Energy Harvester”, Adv. Mater. 

Res., 139-141, 1578-1581. 

https://doi.org/10.4028/www.scientific.net/AMR.139-141.1578. 

 

 

CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42



 

Effect of pre-magneto-electro-mechanical loads and initial curvature on the free vibration characteristics… 

Appendix  
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