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1. Introduction 
 

Functionally graded materials (FGMs) are defined as 

those materials in which the volume fraction of the two or 

more materials is varied as a power-law distribution. This 

distribution varies continuously as a function of position 

along with certain dimensions of the structure from one 

point to another (Reddy 2000, Suresh and Mortensen 1998). 

Usually, a ceramic is used at one surface to resist severe 

environmental effects such as temperature, corrosion and 

wear (Afsar and Go 2010). The original purpose of 

functionally graded materials was to develop thermal 

barrier coatings for propulsion systems of spacecraft to 

resist high temperature and to ensure high thermal 

conductivity as well (Holt et al. 1993). Rotating disks have 

extensive practical engineering applications, such as, in 

steam and gas turbines, turbo generators, flywheel of 

internal combustion engines, turbojet engines, etc. Brake 

disks and clutch are examples of solid rotating disks where 

body forces and bending loads are applied. Gas turbine 

rotor can be assumed as a clamped-free condition by 

ignoring thermal expansion. In all of these applications, the 

performance of the components in terms of efficiency, 

service life and power transmission, certainly depend on the 

material, speed of rotation and operating conditions. 

However, for special application such as aerospace, where 

lightweight and durability becomes crucial in high 

temperatures, the components need to be fabricated using 

FGM materials (Bayat et al. 2009). 

Reddy, Wang and Kitipornchai (1999) have studied  
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axisymmetric bending and stretching of FG solid and 

annular circular plates using First Order Shear Deformation 

Theory (FSDT). The solutions for deflection, force and 

moment resultants were presented in terms of the 

corresponding quantities of isotropic plates based on the 

classical Kirchhoff plate theory. Parveen and Reddy (1998) 

have used the FSDT and derived the equilibrium and 

stability equations of a moderately thick rectangular plate 

made of FGM under thermal loads. They assumed that the 

material properties varied as a power law of thickness. 

Bayat (2007) have developed a new set of equilibrium 

equations with small and large deflections in a FG rotating 

disk with axisymmetric bending and steady state thermal 

loadings. The material properties of the disk varied in the 

thickness direction. FSDT and von Karman theories were 

used in this study. Li, Ding and Chen, 2006 have obtained 

an elastic solution for pure bending problems of simply 

supported, transversely isotropic circular plates with elastic 

compliance coefficient being arbitrary functions of the 

thickness coordinates. Chen (2007) have obtained a three-

dimensional analytical solution for transversely isotropic 

FG rotating plate by means of the direct displacement 

method. The displacement components were assumed as a 

linear combination of certain explicit functions of the radial 

coordinates. Li, Ding and Chen (2008) have used the stress 

function method and presented a set of elasticity solutions 

for the axisymmetric problem of transversely isotropic, 

simply supported and clamped edge FG circular plates 

subjected to a transverse load. They illustrated the effect of 

material in-homogeneity on the elastic field in FG plates. 

In the study conducted by Durodola and Attia (2000), a 

finite element analysis is adopted for FG rotating disks 

using a commercial software package. The disks were 

modeled as non-homogeneous orthotropic materials such as 

those obtained through non-uniform reinforcement of metal 

matrix by long fibers. They considered three types of 
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gradation distribution for the Young's modulus in the hoop 

direction relative to the matrix modulus. Jahed and 

Sherkatti (2000) have applied the Variable Material 

Properties method (VMP) and obtained stresses for an in-

homogeneous rotating disk with variable thickness under 

steady temperature field, assuming the material properties 

as the field values. Kheirkhah and Loghman (2015) studied 

the stress and electric potential redistribution of thick 

walled FGP cylinder due to creep using a semi analytical 

method. Dai  and Dai (2017) investigated thermal loadings 

on a variable thickness FGMME material with radial 

polarization. They have obtained electric and magnetic 

potentials as well as stresses and displacements with 

different grading parameters by a semi-analytical solution. 
Arefi and Rahimi (2012) have presented a non-linear 

analysis of a FGP annular plate, based on Von-Karman 
assumptions. The response of a system can be obtained 
using minimization of the energy of system with respect to 
amplitude of displacements and electric potential. In a study 
conducted by Arefi and Zenkour (2017b), Thermo-electro-
mechanical bending behaviour of sandwich nano-plate 
integrated with piezoelectric face sheets based on 
trigonemtric plate theory used the trigonometric shear and 
normal deformation plate theory to study the thermo-
electro-mechanical bending analysis of a sandwich nano 
plate. 

There are also other efficient computational methods for 

solving electro-elastic problems that can solve wider range 

of problems that are currently the key topic under study by 

many researchers. Nanthakumar, Lahmer, Zhuang, Zi and 

Rabczuk (2016) have proposed an algorithm to solve the 

inverse problem of identifying piezoelectric material 

interfaces. 

Iterative extended finite element formulation was used 

in their analysis. They claim that the algorithm offered can 

provide a smart way of health monitoring piezoelectric or 

flexoelectric structures. The method was also optimized to 

apply for broad ranges of problems (Hamdia et al. 2017). 

Thai, Rabczuk and Zhuang (2018) have provided an 

isogeometric approach to analyze large deformation of 

electro-mechanical problems by applying non-uniform 

rational B-spline function. Numerical solutions for various 

problems of flexoelectric effects prove the efficiency of this 

method especially for soft materials. Hamdia et al. (2017) 

have presented a sensitivity analysis to identify the key 

parameters affecting the energy conversion factor. IGA was 

first applied to formulate the problem and the various 

methods such as MOAT and EFAST were involved in the 

sensitivity analysis. Nguyen, Zhuang and Rabczuk (2018) 

have used a numerical model for the characterization of 

Maxwell-Wagner relaxation in piezoelectric and 

flexoelectric composite material where they presented a 

numerical model of the Maxwell-Wagner polarization effect 

in a piezoelectric bi-layer structure. Furthermore, effective 

dielectric permittivity, piezoelectric coefficient and 

flexoelectric coefficients as well as their frequency 

dependence were investigated in this study. Nguyen, et al., 

2018 studied the dynamic flexoelectric effects and natural 

frequencies on a simply supported beam. The numerical 

results reveal the importance of the dynamic flexoelectric 

coefficient. Various methods for quantifying uncertain 

parameters are also available (Hamdia et al. 2017). Vu Bac 

et al. (2016) provided a sensitivity analysis toolbox using 

MATLAB functions that help quantifying the effect of 

various parameters for an output goal. 

A comprehensive investigation on the elastic, thermo-

elastic and electro-elastic analysis of disks and plates was 

performed. The literature review of this study indicates that 

although some useful research pieces on the electro-elastic 

analysis of functionally graded disk were conducted, 

however, the absence of a comprehensive work on the 

electro-elastic analysis of functionally graded radially 

polarized variable thickness rotating disk is noticeable in 

the literature. Moreover, a research is needed to investigate 

the possible application of variable thickness FGPM 

rotating disk to be used as a turbine disk to produce 

electricity. In this study, we employ first order shear 

deformation theory to present thermo-electro-elastic 

analysis of functionally graded variable thickness disk 

subjected to thermal, mechanical and electrical loads. These 

loads are presented in the form of rotational body force, 

radial temperature distribution and applied electric charges. 

Furthermore, the boundary conditions are assumed to be 

clamped-free at the inner and outer sides of the disk. The 

influence of important parameters such as type of profile, 

electric loads, gradation of material properties and 

dimensionless geometric parameters have been taken into 

account. 

 

 

2. Gradation of material properties 
 

In this research, electro-elastic results of a functionally 

graded piezoelectric disk with variable thickness are 

studied. All of the mechanical, electrical and thermal 

material properties are assumed to be variable along the 

thickness direction, based on power-law distribution. For a 

symbolic material properties 𝑃(𝑧), the following relations 

are expressed as (Arefi and Allam 2015, Arefi 2015, Arefi et 

al. 2011, Arefi and Rahimi 2011) 

𝑃(𝑧) = (𝑃𝑢 − 𝑃𝑙) ∙ (
𝑧 − 𝑧𝑙
𝑧𝑢 − 𝑧𝑙

)
𝑛

+ 𝑃𝑙  (1) 

Where; 𝑃(𝑧) denotes the material property 𝑃𝑢 and 𝑃𝑙  
denote the property of the upper and lower surface 

properties respectively. 𝑛 is known as the grading index 

(Zenkour and Mashat 2011, Arefi and Rahimi 2011). In this 

study the two types of materials used are both PZT 

ceramics, with PZT5 ceramic at the lower surface and PZT4 

at the top surface. Both the density (𝜌)  and thermal 

conductivity (𝑘) are the same values for both materials 

and hence, there is no variation for these parameters along 

the thickness direction. 

A schematic of the variable disk can be observed in Fig. 

1. 

 

 

3. Temperature distribution  
 

In this study, a distributed temperature field in the radial 

coordinate has been taken into account by neglecting the  
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Fig. 1 Schematic of a variable thickness disk 

 

 

thermal changes through the thickness, which is presented 

by the steady state heat conduction equation. The heat 

transfer equation is expressed as (Arefi and Rahimi 2014): 

1

𝑟
(𝑟𝑘𝑇′(𝑟))

′
= 0 (2) 

The boundary conditions regarding Eq. (2) are: 

𝑇(𝑟𝑖) = 𝑇𝑖   , 𝑇(𝑟𝑜) = 𝑇𝑜 (3) 

Where; 𝑟𝑖 and 𝑟𝑜 represent the inner and outer radius 

of the disk. The solution of the Eq. (2) and the 

corresponding boundary conditions result in: 

𝑇(𝑟) =
𝑇𝑜 − 𝑇𝑖

𝑙𝑛 (
𝑟𝑜
𝑟𝑖⁄ )
𝑙𝑛(𝑟) +

𝑇𝑖𝑙𝑛(𝑟𝑜) − 𝑇𝑜𝑙𝑛 (𝑟𝑖)

𝑙𝑛 (
𝑟𝑜
𝑟𝑖⁄ )

 (4) 

 

 

4. Electro-elastic formulation of variable thickness 
disk 

 

A variable thickness annular FGP disk is considered in 

this paper. The profile thickness is expressed as a power 

function (Zenkour and Mashat 2011, Arani et al. 2010). The 

thickness profile is described as: 

ℎ(𝑟) = ℎ0[1 − 𝑞 (
𝑟

𝑟0
)
𝑚

] (5) 

Where; ℎ0 is the thickness at the axis of the disk. 𝑞 

and 𝑚  are geometric parameters with the condition of  

0 ≤ 𝑞 ≤ 1 and 𝑚 ≥ 0 . A uniform thickness is obtained 

by setting 𝑞 = 0 and a linearly decreasing thickness is 

obtained by setting  𝑚 = 1 . For 𝑚 > 1  and 𝑚 < 1 

equation would result in a convex and concave profile 

respectively. 

The first order shear deformation Theory (FSDT) is the 

most straight forward theory that accounts for non-zero 

transverse shear strain. Based on FSDT, the displacement 

field is described as: 

𝑢𝑟 = 𝑢0(𝑟) + 𝑧𝜓(𝑟) , 𝑢𝜃 = 0 , 𝑢𝑧 = 𝑤(𝑟) (6) 

Where; 𝑢𝑟, 𝑢𝜃 and 𝑢𝑧 are the radial, circumferential 

and axial displacements respectively. 𝑢0(𝑟) is known as 

the in-plane displacement of the middle surface of the 

disk. 𝜓 denotes the rotation of a transverse normal in 𝜃 

plane and 𝑤(𝑟) is displacement in the thickness direction. 

Since the problem is axisymmetric 𝑢𝜃 is zero. The strain-

displacement relations are given by: 

𝜀𝑟 =
𝜕𝑢𝑟
𝜕𝑟

= 𝑢′(𝑟) + 𝑧𝜓′(𝑟) 

𝜀𝜃 =
𝑢𝑟
𝑟
=
𝑢(𝑟)

𝑟
+
𝑧𝜓(𝑟)

𝑟
 

𝛾𝑟𝑧 = 2𝜀𝑟𝑧 =
𝜕𝑢𝑟
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑟

= 𝜓(𝑟) + 𝑤′(𝑟) 

𝛾𝑟𝜃 = 𝛾𝜃𝑧 = 𝜀𝑧 = 0 

(7) 

Throughout this study, prime denotes the derivative with 

respect to the radial coordinates. The stress-strain relations 

considering thermal strains and electric effects are 

expressed as three-dimensional multi-field equations of a 

functionally graded piezoelectric thick shell with variable 

thickness, curvature and arbitrary nonhomogeneity (Deneva 

et al. 2014, Arefi and Rahimi 2012). 

{
 
 

 
 
𝜎𝑟𝑟
𝜎𝜃𝜃
𝜎𝑧𝑧
𝜎𝜃𝑧
𝜎𝑟𝑧
𝜎𝑟𝜃}

 
 

 
 

=

[
 
 
 
 
 
 𝐶11
𝐶12
𝐶13
0
0
0

𝐶12
𝐶11
𝐶13
0
0
0

𝐶13
𝐶13
𝐶33
0
0
0

0
0
0
𝐶55
0
0

0
0
0
0
𝐶55
0

0
0
0
0
0

𝐶11 − 𝐶12
2 ]

 
 
 
 
 
 

 

{
 
 

 
 
𝜀𝑟𝑟 − 𝛼1𝑇
𝜀𝜃𝜃 − 𝛼1𝑇
𝜀𝑧𝑧 − 𝛼3𝑇
𝛾𝜃𝑧
𝛾𝑟𝑧
𝛾𝑟𝜃 }

 
 

 
 

−

[
 
 
 
 
 
0 0 𝑒31
0 0 𝑒31
0
0
𝑒15
0

0
𝑒15
0
0

𝑒33
0
0
0 ]
 
 
 
 
 

{

𝐸𝑟
𝐸𝜃
𝐸𝑧

} 

(8) 

In which; 𝐶𝑖𝑗  represent the stiffness coefficients, 𝑒𝑖𝑗 

piezoelectric coefficients, 𝛼𝑖  thermal expansions and 𝐸𝑖 
electric field components. The above parameters are 

assumed to be independent of the temperature for the 

chosen thermal environment. The electric displacement 

components along the radial, circumferential and transverse 

directions are expressed as: 

{

𝐷𝑟
𝐷𝜃
𝐷𝑧

} = [
0 0 0
0 0 0
𝑒31 𝑒31 𝑒33

    
0 𝑒15 0
𝑒15 0 0
0 0 0

]

{
 
 

 
 
𝜀𝑟𝑟 − 𝛼1𝑇
𝜀𝜃𝜃 − 𝛼1𝑇
𝜀𝑧𝑧 − 𝛼3𝑇

𝛾𝜃𝑧
𝛾𝑟𝑧
𝛾𝑟𝜃 }

 
 

 
 

+ [

𝜂11 0 0
0 𝜂11 0
0 0 𝜂33

] {

𝐸𝑟
𝐸𝜃
𝐸𝑧

} 

(9) 

In which; 𝜂𝑛𝑛  indicate dielectric coefficients 

respectively. The components of electric field are 

considered as follows:  

{𝐸𝑟  , 𝐸𝑧 } = − {
𝜕

𝜕𝑟
,
𝜕

𝜕𝑧
}𝜑(𝑟, 𝑧) (10) 

𝐸𝜃 = 0 (11) 

In which; 𝜑(𝑟, 𝑧)  is to represent electric potential 
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distribution in terms of radial and axial coordinates. The 

electric potential in the circumferential direction becomes 

zero due to the symmetry of the problem. In addition, 

electric potential distribution along the radial and axial 

directions is expressed as (Arefi and Zenkour 2017a, b): 

𝜑(𝑟, 𝑧) =
2𝑧

ℎ0
𝜑0 − 𝜑(𝑟)cos (

𝜋𝑧

ℎ0
) (12) 

In which; 𝜑0 is applied electric potential and 𝜑(𝑟) is 

considered a function that must be derived using electrical 

boundary conditions. Based on electric potential defined in 

Eq. (12), electric field components are defined as: 

{
𝐸𝑟  
𝐸𝑧
} =

{
 

 𝜑′(𝑟) cos (
𝜋𝑧

ℎ0
)

−(
2𝜑0
ℎ0

+
𝜋

ℎ0
sin (

𝜋𝑧

ℎ0
))𝜑(𝑟)

}
 

 
 (13) 

Substitution of electric fields and strains into 

constitutive relations leads to the following relations:   

𝜎𝑟 = 𝐶11(𝑧) ∙ (𝑢
′(𝑟) + 𝑧𝜓′(𝑟))

+
𝐶12(𝑧)

𝑟
(𝑢(𝑟) + 𝑧𝜓(𝑟))

− (𝐶11(𝑧) + 𝐶12(𝑧))(𝛼1(𝑧) ∙ 𝑇(𝑟))

− (𝐶13(𝑧)𝛼3(𝑧) ∙ 𝑇(𝑟))

+ 𝑒31(𝑧) (
2𝜑0
ℎ0
)

+ 𝑒31(𝑧)(
𝜋

ℎ0
sin (

𝜋𝑧

ℎ0
))𝜑(𝑟) 

(14) 

𝜎𝜃 = 𝐶12(𝑧) ∙ (𝑢
′(𝑟) + 𝑧𝜓′(𝑟))

+
𝐶11(𝑧)

𝑟
(𝑢(𝑟) + 𝑧𝜓(𝑟))

− (𝐶11(𝑧) + 𝐶12(𝑧))(𝛼1(𝑧) ∙ 𝑇(𝑟))

− (𝐶13(𝑧)𝛼3(𝑧) ∙ 𝑇(𝑟))

+ 𝑒31(𝑧) (
2𝜑0
ℎ0
)

+ 𝑒31(𝑧)(
𝜋

ℎ0
sin (

𝜋𝑧

ℎ0
))𝜑(𝑟) 

(15) 

𝜎𝑟𝑧 = 𝐶55(𝑧) ∙ (𝜓(𝑟) + 𝑤
′(𝑟))

+ 𝑒15(𝑧)cos (
𝜋𝑧

ℎ0
)𝜑′(𝑟) (16) 

𝐷𝑟 = 𝑒15(𝑧)(𝜓(𝑟) + 𝑤
′(𝑟)) + 𝜂11𝜑

′(𝑟) 𝑐𝑜𝑠 (
𝜋𝑧

ℎ0
) (17) 

𝐷𝑧 = 𝑒31(𝑧)(𝑢
′(𝑟) + 𝑧𝜓′(𝑟) − 𝛼1(𝑧) ∙ 𝑇(𝑟))

+
𝑒31(𝑧)

𝑟
(𝑢(𝑟) + 𝑧𝜓(𝑟) − 𝛼1(𝑧)

∙ 𝑇(𝑟)) + 𝑒33(−𝛼3(𝑧) ∙ 𝑇(𝑟))

− 𝜂33(
2𝜑0
ℎ0

+
𝜋

ℎ0
sin (

𝜋𝑧

ℎ0
))𝜑(𝑟) 

(18) 

After the evaluation of the stresses conducted, the 

electric displacement and strain and the total potential 

energy of the system can be calculated using: 

𝛱 = 𝑈 −𝑊 (19) 

Where 𝑈 is the strain energy and is obtained by: 

𝑈 =
1

2
∫(𝜎𝑖𝑗𝜀𝑖𝑗 − 𝐷𝑖𝐸𝑖) 𝑑𝑉 (20) 

The extension of stress and electric displacement 

components and definition of volume element leads to 

following relation for strain energy: 

𝑈 = 𝜋∫ ∫ [

ℎ(𝑟)
2

−
ℎ(𝑟)
2

𝑟𝑜

𝑟𝑖

𝜎𝑟𝜀𝑟 + 𝜎𝜃𝜀𝜃 + 𝜎𝑟𝑧𝛾𝑟𝑧 − 𝐷𝑟𝐸𝑟

− 𝐷𝑧𝐸𝑧 ] 𝑟𝑑𝑟𝑑𝑧 

(21) 

In addition, the work W performed by external work due 

to centrifugal force is defined as: 

𝑊 = −∫ ∫ (2𝜋𝜌𝑟2𝜔2𝑢𝑟)𝑑𝑟𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

𝑟𝑜

𝑟𝑖

 (22) 

Substitution of strain energy and external work into the 

total potential energy equation leads to the following 

relation: 

𝛱 = ∫ 𝐹(𝑢, 𝜓, 𝑤, 𝜑, 𝑟) 𝑑𝑟
𝑟𝑜

𝑟𝑖

 (23) 

Where; 𝐹(𝑢, 𝜓, 𝑤, 𝜑, 𝑟) is assumed to be the energy 

functional of the system. By substituting the stresses, strains 

and electric displacements in terms of displacements and 

electric potential, the energy functional can be derived as: 

 

(24) 

Where; 𝐴𝑖𝑗  represent the integration coefficients 

described in the appendix. Euler equations can be employed 

to obtain the final governing differential equation of the 

system (Arefi and Rahimi 2012) 
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{
 
 
 
 

 
 
 
 
𝜕𝐹

𝜕𝑢
− (

𝜕𝐹

𝜕𝑢′
)
′

= 0

𝜕𝐹

𝜕𝑤
− (

𝜕𝐹

𝜕𝑤′
)
′

= 0

𝜕𝐹

𝜕𝜓
− (

𝜕𝐹

𝜕𝜓′
)
′

= 0

𝜕𝐹

𝜕𝜑
− (

𝜕𝐹

𝜕𝜑′
)
′

= 0

 (25) 

Eq. (25) in expanded form can be expressed as: 

𝑒𝑞. 𝐴 ≔
𝜕𝐹

𝜕𝑢
− (

𝜕𝐹

𝜕𝑢′
)
′

= 0 

 𝐴16𝜓
′ + 𝐴28𝜓

′ + 2𝐴30𝑢 + 𝐴31𝜓 + 𝐴33 +
𝐴35𝜑 + 𝐴37 + 𝐴37 + 𝐴39 + 𝐴52 + 𝐴54𝜑 − 2𝐴11𝑢

′′ −
2𝐴11

′𝑢′ − 𝐴13𝜓
′′ − 𝐴13

′𝜓′ − 𝐴14
′𝑢 − 𝐴15𝜓

′ −
𝐴15

′𝜓 − 𝐴18
′ − 𝐴20𝜑

′ − 𝐴20
′𝜑 − 𝐴22

′ − 𝐴24
′ −

𝐴26
′𝑢 − 𝐴27𝜓

′ − 𝐴27
′𝜓 − 𝐴48

′ − 𝐴50𝜑
′ − 𝐴50

′𝜑 −
𝐴61

′ = 0 

(26) 

𝑒𝑞. 𝐵 ≔
𝜕𝐹

𝜕𝜓
− (

𝜕𝐹

𝜕𝜓′
)
′

= 0 

𝐴15𝑢
′ + 𝐴27𝑢

′ + 𝐴31𝑢 + 2𝐴32𝜓 + 𝐴34 + 𝐴36𝜑 + 𝐴38
+ 𝐴40 + 2𝐴41𝜓 + 𝐴42𝑤

′ + 𝐴45𝜑
′

+ 𝐴53 + 𝐴55𝜑 − 2𝐴12𝜓
′′ − 2𝐴12

′𝜓′

− 𝐴13𝑢
′′ − 𝐴13

′𝑢′ − 𝐴16𝑢
′ − 𝐴16

′𝑢
− 𝐴17

′𝜓 − 𝐴19
′ − 𝐴21𝜑

′ − 𝐴21
′𝜑

− 𝐴23
′ − 𝐴25

′ − 𝐴28𝑢
′ − 𝐴28

′𝑢
− 𝐴29

′𝜓 − 𝐴49
′ − 𝐴51𝜑

′ − 𝐴51
′𝜑 = 

(27) 

𝑒𝑞. 𝐶 ≔
𝜕𝐹

𝜕𝑤
− (

𝜕𝐹

𝜕𝑤′
)
′

= 0  

 −𝐴62 + 𝐴42𝜓
′ + 𝐴42

′𝜓 + 2𝐴43𝑤
′′ +

2𝐴43
′𝑤′ + 𝐴46𝜑

′′ + 𝐴46
′𝜑′ = 0 

(28) 

𝑒𝑞. 𝐷 ≔
𝜕𝐹

𝜕𝜑
− (

𝜕𝐹

𝜕𝜑′
)
′

= 0 

2𝐴63𝜑 + 𝐴20𝑢
′ + 𝐴21𝜓

′ + 𝐴35𝑢 + 𝐴36𝜓 + 𝐴50𝑢
′

+ 𝐴51𝜓
′ + 𝐴54𝑢 + 𝐴55𝜓 + 𝐴56

+ 𝐴57 + 𝐴58 − 𝐴44
′ − 𝐴45𝜓

′

− 𝐴45
′𝜓 − 2𝐴47𝜑

′′ − 2𝐴47
′𝜑′

− 𝐴46𝑤
′′ − 𝐴46

′𝑤′ = 0 

(29) 

Stress resultants need to be calculated in order to impose 

the boundary conditions. The stress resultant relations are as 

follows: 

(𝑁𝑟 , 𝑁𝜃 , 𝑄𝑟) = ∫ (𝜎𝑟

ℎ(𝑟)
2

−
ℎ(𝑟)
2

, 𝜎𝜃 , 𝜎𝑟𝑧)𝑑𝑧 (30) 

(𝑀𝑟 , 𝑀𝜃) = ∫ (𝜎𝑟

ℎ(𝑟)
2

−
ℎ(𝑟)
2

, 𝜎𝜃)𝑧𝑑𝑧 (31) 

𝑁𝑟 = 𝐼01𝑢
′ + 𝐼02𝜓

′ + 𝐼03𝑢 + 𝐼04𝜓 + 𝐼05 + 𝐼06𝜑 + 𝐼07
+ 𝐼08 (32) 

𝑀𝑟 = 𝐼11𝑢
′ + 𝐼12𝜓

′ + 𝐼13𝑢 + 𝐼14𝜓 + 𝐼15 + 𝐼16𝜑 + 𝐼17
+ 𝐼18 (33) 

𝑄𝑟 = 𝐼21𝑤
′ + 𝐼21𝜓 + 𝐼22𝜑

′ (34) 

Where; 𝐼𝑚𝑛  represents integration coefficients, which 

are described in the appendix. The Boundary conditions for 

a clamped-free disk can be expressed as: 

𝑟 = 𝑟𝑖:  𝑢 = 0 , 𝜓 = 0 , 𝑤 = 0 , 𝜑 = 0 (35) 

𝑟 = 𝑟𝑜:  𝑁𝑟 = 0 , 𝑀𝑟 = 0 , 𝑄𝑟 = 0 , 𝜑 = 0 (36) 

 
 
5. Solution procedure 

  

The formulated Eq. (25) and the following boundary 

conditions are taken as a system of ODEs that govern the 

displacement field of the disk. These equations were solved 

numerically by Maple Software with the numerical option. 

Refined mesh was also applied to increase efficiency. The 

Stresses were then calculated directly from the 

displacement field. 

In this research, the FEM modelling was used to 

validate the results using the Abaqus Software. The disk 

was modeled by revolving a thickness profile. Thereafter, 

material properties were applied by introducing 

piezoelectric coefficients and engineering stiffness 

constants. The electric and displacement boundary 

conditions as well as body forces were implemented in the 

model. 

The piezoelectric mesh element C3D8E was applied to 

the disk with the mesh orientation adjusted for axial 

polarization of disk. Mesh refinements were also applied 

and the resulting electric potential is presented in Fig. 2. 

Element sizes varied from 0.5mm to 0.3mm so that 147270 

elements were meshed. 

 

 

6. Numerical results and discussions 
 

Before presentation of full numerical results, the 

thermal, mechanical and electrical boundary conditions 

together with other conditions are expressed as:  

• Constant angular velocity of 1000 𝑟𝑎𝑑/𝑠 
• Zero electric potential at the inner and outer radius 

of the disk  

• Disk is clamped in the inner radius and has zero 

degrees of freedom  

• Free at the outer radius (six degrees of freedom) 

In this study, the governing Eqs. (25)-(27) were numerically 

solved using MAPLE18 Software. Material properties 

implemented in this analysis are presented in Table 1. In 

this section, the effect of various parameters such as root 

thickness to inner radius ratio (
ℎ0

𝑟𝑖
), outer to inner radius 

ratio (
𝑟𝑜

𝑟𝑖
), profile thickness index (𝑚) and gradation index 

(𝑛)  on radial stress and electric potential have been 

presented. 
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6.1 Effects of 
ℎ0

𝑟𝑖
 ratio  

 

Figure 3(a) indicates the variation of the maximum 

electric potential for different 
ℎ0

𝑟𝑖
. The electric potential is 

zero at the inner and outer radiuses which satisfies the 

boundary conditions. It can also be observed that the 

electric potential increases dramatically as the 
ℎ0

𝑟𝑖
 ratio 

increases. 

Normalized radial stress for various 
ℎ0

𝑟𝑖
 is shown in Fig. 

3(b). It is noticeable that the stress levels depict a sharp 

increase as 
ℎ0

𝑟𝑖
 decreases. The radial stress values reduce to 

zero at the outer radius as we expected, since it is a stress-

free surface. It should also be noted that the radial stress 

undergoes a strong increase adjacent to the inner radius.  

 

 

 

This behavior cannot be observed for lower values of 
ℎ0

𝑟𝑖
. 

Generally, the local concentration of strains develop 

electric potential. Higher 
ℎ0

𝑟𝑖
 will result in an increase of 

stresses and strains and therefore affect the electric 

potential. Therefore the increase of stress near the inner 

radius justifies the electric potential peak in that area. 
 

6.2 Effect of 
𝑟𝑜

𝑟𝑖
 ratio  

 

The maximum electric potential and the normalized 

radial stress values with respect to the dimensionless radius 

for various 
𝑟𝑜

𝑟𝑖
 ratios are illustrated in Figs. 4(a)-(b). An 

increase in the electric potential with the increase of the 
𝑟𝑜

𝑟𝑖
 

ratio is observed in Fig. 4(a). It has been observed that the 

electric potential peak relocates towards the inner radius as 

 
Fig. 2  Effect of various mesh sizes 

Table 1 PZT Material Properties 

Parameter PZT-4 PZT-5A 

𝐶11 139 𝐺𝑃𝑎 121 𝐺𝑃𝑎 

𝐶12 77.8 𝐺𝑃𝑎 75.9 𝐺𝑃𝑎 

𝐶13 74 𝐺𝑃𝑎 75.4 𝐺𝑃𝑎 

𝐶33 115 𝐺𝑃𝑎 111 𝐺𝑃𝑎 

𝐶55 25.6 𝐺𝑃𝑎 21.1 𝐺𝑃𝑎 

𝑒31 −5.2 𝐶
𝑚2⁄  −5.4 𝐶

𝑚2⁄  

𝑒33 15.1 𝐶
𝑚2⁄  15.8 𝐶

𝑚2⁄  

𝑒15 12.7 𝐶
𝑚2⁄  12.3 𝐶

𝑚2⁄  

𝜂11 0.646 × 10−8  𝐶 v𝑚⁄  0.811 × 10−8  𝐶 v𝑚⁄  

𝜂33 0.562 × 10−8  𝐶 v𝑚⁄  0.735 × 10−8  𝐶 v𝑚⁄  

𝛼1 3.8 × 10−6  1
𝐶°⁄  1.2 × 10−6  1

𝐶°⁄  

𝛼3 1.7 × 10−6  1
𝐶°⁄  4 × 10−6  1

𝐶°⁄  

𝐾 1.25 𝑊
𝑚𝐶°⁄  1.25 𝑊

𝑚𝐶°⁄  

𝜌 7800 
𝑘𝑔

𝑚3⁄  7800 
𝑘𝑔

𝑚3⁄  
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𝑟𝑜

𝑟𝑖
 increases. Fig. 4(b) illustrates the normalized radial 

stress for the same ratios. 

It can be perceived that increasing the 
𝑟𝑜

𝑟𝑖
 ratio will 

result in a decrease in the radial stress as also reported for 

isotropic materials (Afsar and Go 2010).. 
 

6.3 Gradation index  
 

Figs. 4(a)-(b) represent the electric potential stress and 

normalized radial stress for different grading indices. It can 

be seen from figure 7 that increasing the grading index of 𝑛 

results in a higher radial stress. Higher electric potentials 

can also be observed associated with this grading index.  

A higher grading index results in a sharper gradation 

from PZT5 to PZT4. Furthermore, increasing the grading 

index will result in a higher PZT5 volume fraction. PZT5 

properties have higher dielectric coefficients and therefor 

influence the developed electric field more than expected 

values. However PZT5 has higher piezoelectric coefficients  

 

 
than that of PZT4 thus the increase in stress is also obtained 

due to the coupling. 

 
6.4 Thickness profile 

 
The electric potential for various profile thicknesses is 

presented in Fig. 6. It is noticeable that for profile 𝑚 = 4 a 

small increase of 60 volts can be observed. No noticeable 

changes on stress with various profile thicknesses were 

concluded. 

 
6.5 Rotation speeds 

 
The electric potential for different rotation speeds is 

illustrated in Fig. 7. Increasing the rotation speed will result 

in a rise of the electric potential. This is just as we expected 

since it would result in a higher radial stress and strain. The 

higher rotation speeds will generally generate more electric 

potential in the FGP disk. 

  

(a) Maximum electric potential (b) Normalized radial stress 

Fig. 3 Effect of various thickness ratios 
 

 
 

(a) Maximum Electric Potential (b) Normalized Radial Stress 

Fig. 4 Effect of various radius ratios 
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The numerical analysis carried out in this study were 

validated by FEM analysis using the ABAQUS CAE 

Software. Validation of the electric potential with the FEM 

results is presented in Fig. 8. Fig. 9, displays the electric 

potential contour in this analysis. 

The maximum error between FEM results and the 

numerical analysis was less than 9.8% in all cases and thus 

acceptable agreement is achieved. 

 

 

 
 
7. Conclusions 

 

Numerical and FEM analysis were performed to obtain 

the electric potential, displacements and radial stresses for a 

variable thickness FGP rotating disk with axial polarization 

under thermal and mechanical loading. Principles of virtual 

displacement was used to derive governing equations of 

electro-elastic bending. Thermal conductivity equation was 

  
(a) Maximum Electric Potential (b) Normalized Radial Stress 

Fig. 5 Effect of various gradation index values 

  

Fig. 6  Effect of various gradation index values Fig. 7  Effect of various gradation index values 

  

Fig. 8  Comparison between results from FEM and 

Numerical Method 

Fig. 9  FEM Electric Potential Contours for the simulated 

disk 
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solved for a functionally graded material. The variable 

thickness disk was subjected to applied electric potential. 

Various 
𝑟𝑜

𝑟𝑖
, 
ℎ0

𝑟𝑖
, profile thickness and grading indices were 

considered by holding constant for all other parameters. 

• This study has concluded that an increase in 
ℎ0

𝑟𝑖
 

ratio will result in a higher electric potential. However, a 

higher 
ℎ0

𝑟𝑖
 ratio will result in a lower normalized stress level 

due to the smaller rotational inertia. 

• An increase in 
𝑟𝑜

𝑟𝑖
 ratio will result in a rise in the 

electric potential but will lower the normalized radial stress. 

• No dramatic changes with various thickness 

profiles were observed. However, the profile thickness 

index (𝑚 = 4)  experienced an increase in the electric 

potential by up to 5%. 

• Lower grading indices produce lower strains due  

• to the increase in the overall stiffness of the disk 

thus, decreasing the maximum electric potential. A small 

decrease in the radio stress could also be observed by 

lowering the grading index. 
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Appendix: Integration Coefficients 
 

𝐴11 = ∫ [𝜋𝑟𝐶11(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴12 = ∫ [𝜋𝑟𝐶11(𝑧)𝑧
2]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴13 = ∫ [2𝜋𝑟𝐶11(𝑧)𝑧]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴14 = ∫ [𝜋𝐶12(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴15 = ∫ [𝜋𝑟𝐶12(𝑧)𝑧]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴16 = ∫ [𝜋𝐶12(𝑧)𝑧]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴17 = ∫ [𝜋𝐶12(𝑧)𝑧
2]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴18 = ∫ [𝜋𝑟 ∙ 𝑒31(𝑧)
2𝜋

ℎ0
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴19 = ∫ [𝑧𝜋𝑟 ∙ 𝑒31(𝑧)
2𝜋

ℎ0
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴20 = ∫ [𝜋𝑟 ∙ 𝑒31(𝑧)
𝜋

ℎ0
sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴21 = ∫ [𝜋𝑧𝑟 ∙ 𝑒31(𝑧)
𝜋

ℎ0
sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴22 = ∫ [𝜋𝑟 (−𝛼1(𝑧)𝑇(𝑟))(𝐶11(𝑧) + 𝐶12(𝑧))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴23 = ∫ [𝜋𝑟𝑧 (−𝛼1(𝑧)𝑇(𝑟))(𝐶11(𝑧) + 𝐶12(𝑧))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴24 = ∫ [𝜋𝑟 (−𝛼3(𝑧)𝑇(𝑟))(𝐶13(𝑧))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴25 = ∫ [𝜋𝑟𝑧 (−𝛼3(𝑧)𝑇(𝑟))(𝐶13(𝑧))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴26 = ∫ [𝜋𝐶12(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴27 = ∫ [𝜋𝑧𝐶12(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴28 = 𝐴27 

𝐴29 = ∫ [𝜋𝑧2𝐶12(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴30 = ∫ [𝜋
𝐶11(𝑧)

𝑟
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴31 = ∫ [𝜋𝑧
2𝐶11(𝑧)

𝑟
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴32 = ∫ [𝜋𝑧2
2𝐶11(𝑧)

𝑟
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴33 = ∫ [𝜋(
2𝜑0
ℎ0
)𝑒31(𝑧)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴34 = ∫ [𝜋𝑧(
2𝜑0
ℎ0
)𝑒31(𝑧)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴35 = ∫ [𝜋𝑟(
𝜋

ℎ0
)𝑒31(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴36 = ∫ [𝜋𝑟𝑧(
𝜋

ℎ0
)𝑒31(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴37 = ∫ [𝜋 (−𝛼1(𝑧)𝑇(𝑟))(𝐶11(𝑧) + 𝐶12(𝑧))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴38 = ∫ [𝜋𝑧 (−𝛼1(𝑧)𝑇(𝑟))(𝐶11(𝑧) + 𝐶12(𝑧))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴39 = ∫ [𝜋 (−𝛼3(𝑧)𝑇(𝑟))(𝐶13(𝑧))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴40 = ∫ [𝜋𝑧 (−𝛼3(𝑧)𝑇(𝑟))(𝐶13(𝑧))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴41 = ∫ [𝜋𝑟𝐶55(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴42 = 2𝐴41 
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𝐴43 = 𝐴41 

𝐴44 = ∫ [−𝜋𝑟𝑒15(𝑧)cos (
𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴45 = ∫ [+𝜋𝑟𝑒15(𝑧)cos (
𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴46 = 𝐴45 

𝐴47 = ∫ [𝜋𝑟𝜂11(𝑧)cos 
2(
𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴48 = ∫ [−𝜋𝑟(
2𝜋

ℎ0
)𝑒31(𝑧)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴49 = ∫ [−𝜋𝑟𝑧(
2𝜋

ℎ0
)𝑒31(𝑧)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴50 = ∫ [−𝜋𝑟(
𝜋

ℎ0
)𝑒31(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴51 = ∫ [−𝜋𝑟𝑧(
𝜋

ℎ0
)𝑒31(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴52 = ∫ [−𝜋𝑟(
2𝜋

ℎ0
)𝑒31(𝑧)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴53 = ∫ [−𝜋𝑟𝑧(
2𝜋

ℎ0
)𝑒31(𝑧)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴54 = ∫ [−𝜋(
𝜋

ℎ0
)𝑒31(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴55 = ∫ [−𝜋𝑧(
𝜋

ℎ0
)𝑒31(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴56 = ∫ [𝜋𝑟(
4𝜑0𝜋

ℎ0
2 )𝜂33(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴57 = ∫ [2𝜋𝑟𝑒31(𝑧)
𝜋

ℎ0
sin (

𝜋𝑧

ℎ0
) (𝛼1(𝑧)𝑇(𝑟))] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴58 = ∫ [𝜋𝑟𝑒31(𝑧)
𝜋

ℎ0
sin (

𝜋𝑧

ℎ0
) (𝛼3(𝑧)𝑇(𝑟))] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴59 = ∫ [2𝜋𝑟𝑒31(𝑧)
2𝜋

ℎ0
(𝛼1(𝑧)𝑇(𝑟))] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴60 = ∫ [𝜋𝑟𝑒33(𝑧)
2𝜋

ℎ0
 (𝛼3(𝑧)𝑇(𝑟))] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴61 = ∫ [2𝜋𝜌(𝑧)𝑟2𝜔2]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐴62 = 2𝜋𝑟𝑞𝑧 

𝐼1 = ∫ [𝐶11(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼2 = ∫ [𝑧𝐶11(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼3 = ∫ [
𝐶12(𝑧)

𝑟
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼4 = ∫ [𝑧
𝐶12(𝑧)

𝑟
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼5 = ∫ [
2𝜋

ℎ0
𝑒31(𝑧)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼6 = ∫ [
𝜋

ℎ0
𝑒31(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼7 = ∫ [(𝐶11(𝑧) + 𝐶12(𝑧)) (−𝛼1(𝑧)𝑇(𝑟))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼8 = ∫ [𝐶13(𝑧) (−𝛼3(𝑧)𝑇(𝑟))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼11 = ∫ [𝑧𝐶11(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼12 = ∫ [𝑧2𝐶11(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼13 = ∫ [𝑧
𝐶12(𝑧)

𝑟
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼14 = ∫ [𝑧2
𝐶12(𝑧)

𝑟
] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼15 = ∫ [𝑧
2𝜋

ℎ0
𝑒31(𝑧)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2
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𝐼16 = ∫ [
𝜋𝑧

ℎ0
𝑒31(𝑧)sin (

𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼17 = ∫ [𝑧(𝐶11(𝑧) + 𝐶12(𝑧)) (−𝛼1(𝑧)𝑇(𝑟))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼18 = ∫ [𝑧𝐶13(𝑧) (−𝛼3(𝑧)𝑇(𝑟))]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼21 = ∫ [𝐶55(𝑧)]𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2

 

𝐼22 = ∫ [−𝑒15(𝑧)cos (
𝜋𝑧

ℎ0
)] 𝑑𝑧

ℎ(𝑟)
2

−
ℎ(𝑟)
2
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