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1. Introduction 
 

Carbon nanotube (CNT) is a graphene layer rolled into 
tubular shape with a diameter around one nanometer and a 
length up to many micrometers, discovered in 1991 by 
Iijima. CNTs have received widespread interest of 
researchers due to their extraordinary mechanical, thermal, 
physical and electrical properties. CNTs are considered the 
strongest and most resilient material known until now, 
Eltaher et al. (2016). CNTs characteristics are controlled by 
two parameters, which are the orientation of the chiral angle 
and the carbon diameter.  

The chiral vector used to describe the chiral angle, can 
be defined by 

𝐶ℎ = 𝑛𝑎⃗1 +  𝑚 𝑎⃗2 (1) 

where 𝑎⃗1 and 𝑎⃗2  are the unit vectors, and (𝑛,𝑚) is 

integer pair specifies the structure orientation of CNTs [i.e:  
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zigzag at (𝑛, 0), armchair at (𝑛, 𝑛), and chiral orientation 

at (𝑛,𝑚) for 𝑚 ≠ 𝑛 or 0] as shown in Figure 1. In 1995, 

Yamabe depicted the radius of nanotube as a function of 

integer pair (𝑛,𝑚) by 

𝑅 = 𝑙0√3(𝑛
2 +𝑚2 + 𝑛 ∗ 𝑚)/2𝜋 (2) 

where 𝑙0 is the C-C bond length (=0.142 nm) and 𝑛 is the 

translation index. Zigzag and armchair nanotubes radii are 

calculated by 𝑅 =
√3𝑛𝑎

2𝜋
,  and 𝑅 =

3𝑛𝑎

2𝜋
,  respectively.  

Harik (2001 & 2002) proved that the structural 

characteristics of CNTs can be modelled as a beam for 

small radii and a cylindrical shell for large radii. Nasdala et 

al. (2012) illustrated that the standard truss and beam 

elements can be represented atomic interactions accurately. 

Energy equivalent model, resulting from the foundation of 

molecular and continuum mechanics, considers the 

mechanical properties of CNTs (i.e; Young’s modulus, shear 

modulus, and Poisson’s ratio) as a material size-dependent 

by many researchers. Li and Chou (2003) established a 

linkage between structural mechanics and molecular 

mechanics to model a deformation of CNTs act as beams. 

Leung et al. (2005) proposed a combined model of 

molecular and continuum mechanics to investigate 

mechanical properties of zigzag single walled carbon 

nanotubes (SWCNTs).  

Wang et al (2005) employed advanced finite element 

analysis package (ABAQUS) to obtain nonlinear bending  
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Fig 1. Schematic diagram of the chiral vector and the 

choral angle of CNTs, Wu et al. (2006) 
 
 

moment–curvature relationship of CNT. Wu et al. (2006) 

derived the equivalent Young and shear moduli for both 

armchair and zigzag SWCNTs by combining molecular and 

continuum mechanics methods. Hsieh et al. (2006) 

investigated the intrinsic thermal vibrations of a SWCNT 

modelled as a clamped cantilever beam. Cai et al. (2009) 

revealed experimentally and theoretically that Young’s 

modulus of SWCNT varies in a wide range from 0.94 to 

5.81 TPa. Shokrieh and Rafiee (2010) and Shodja and 

Delfani (2011) presented analytical formulations to predict 

the elastic moduli of graphene sheets and CNTs using a 

linkage between lattice molecular structure and equivalent 

discrete frame structure. Joshi et al. (2012) modeled the 

elastic behavior of CNTs reinforced composites by using 

the multiscale representative volume element approach. Le 

(2015) derived a closed-form expression for Young’s 

modulus of hexagonal monolayer sheets based on molecular 

mechanics. Ghavamian and Ochsner (2015) investigated 

mechanical properties and mechanical behaviors of hetero-

junction CNTs using finite element method. Ghadyani and 

Ochsner (2015) presented an expression for the stiffness of 

SWCNTs as function of nanotube thickness. Eltaher and 

Agwa (2016) presented a modified continuum energy 

equivalent model to investigate the vibration of a pretension 

CNTs carrying a concentrated mass as a mass sensor. Han et 

al. (2016) studied the influence of CNTs on the 

microstructure and ductility of CNT/Mg composites. 

Mohammadimehr and Alimirzaei (2016) investigated 

nonlinear static and vibration of Euler-Bernoulli 

functionally graded beam reinforced by carbon nanotubes 

with initial geometrical imperfection under uniformly 

distributed load using finite element method. 

Tunneling Electron Microscope (TEM) images for 

carbon nanotubes (CNTs) illustrate that these tiny structures 

have a certain degree of curvature along the nanotubes 

length, Qian et al. (2000) and Wang et al. (2000). In 2007 

Mikata derived an exact elastica solution for a clamped-

hinged beam SWCNT by the elliptic integral technique. 

Mayoof and Hawwa (2009) investigated nonlinear vibration 

of CNT with waviness along its axis based on classical 

continuum theory. Mezghani et al. (2011) presented 

influence of carbon nanotube (CNT) on the mechanical 

properties of LLDPE/CNT nanocomposite fibers. Results 

showed that, the small addition of CNT when properly 

mixed and aligned will increase the mechanical properties 

of pristine polymer fibers. Based on the nonlocal beam 

theory, Wang et al. (2012, 2013) studied the vibrations of 

simply supported double-walled CNTs subjected to a 

moving harmonic load by using nonlocal Euler and 

Timoshenko beam theories. Thongyothee and 

Chucheepsakul (2013) studied postbuckling behavior of 

curved nanorods including the effects of nonlocal elasticity 

theory and surface stress. Mohammadi et al. (2014) 

investigated the static instability of an imperfect nonlocal 

Eringen nanobeam embedded in elastic foundation. Khater 

et al. (2014) studied buckling behavior of curved nanowires 

including a surface energy under a thermal load. 

Based on both material and size dependency, many 

researchers studied buckling and vibration behaviors of 

CNTs. Baghdadi et al. (2014) presented thermal effect on 

vibration of armchair and zigzag SWCNTs using nonlocal 

parabolic beam theory. Benguediab et al. (2014) studied 

buckling properties of a zigzag double-walled CNT with 

both chirality and small scale effects using Timoshenko 

beam. Semmah et al (2015) presented the thermal buckling 

properties of a zigzag SWCNT based on the nonlocal 

Timoshenko beam and energy-equivalent model. Bedia et al. 

(2015) studied analytically thermal buckling of armchair 

SWCNT embedded in an elastic medium.  On the basis of 

the continuum mechanics and the single-elastic beam model, 

Besseghier et al. (2015) investigated the nonlinear vibration 

of zigzag SWCNT embedded in elastic medium. Heshmati 

et al. (2015) studied the vibrational behavior of CNT-

reinforced composite beams and presented the effects the 

interface, waviness, agglomeration, orientation and length 

on the behavior of CNTs. Farjam (2016) examined the pull-

in behavior of a bio-mass sensor with a cantilevered CNT 

actuated electrostatically by taking into account rippling 

deformation. Galerkin-based reduced-order method was 

used to study the nonlinear structural behavior of actuated 

SWCNTs by Ouakad and Sedighi (2016). Eltaher et al. 

(2016) illustrated nonlinear static behavior of size-

dependent and material-dependent nonlocal CNTs by using 

nonlocal differential form of Eringen and energy equivalent 

method. Hadji et al. (2016) developed a new higher order 

shear deformation model for static and free vibration 

analysis of functionally graded beams. Thermal 

postbuckling equilibrium paths of function graded CNT 

reinforced composite imperfect beams with various 

boundary conditions were studied by Wu et al. (2017). Free 

and forced vibrations of simply supported SWCNT under 

the influence of moving nanoparticle were analyzed by 

Salamat and Sedighi (2017). Sedighi and Farjam (2017) 

examined the dynamic pull-in instability of actuated 

cantilever CNT taking into account the rippling and charge 

concentration phenomena. Hadji et al. (2017 & 2018) 

presented a simple quasi-3D sinusoidal shear deformation 

theory with stretching effect for analyzing mechanical 

behaviors of carbon nanotube-reinforced composite beams 

resting on elastic foundation.   
Kordkheili et al. (2018) employed nonlocal continuum 

theory of Eringen and Von Karman nonlinear strains to 
study a linear and nonlinear dynamics of SWNTs conveying 
fluid with different boundary conditions. Kadari et al. (2018) 
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presented the buckling of embedded orthotropic nanoplates 
by using a new hyperbolic plate theory and nonlocal small-
scale effects. Eltaher et al. (2018) investigated analytically 
the vibration behavior of SWCNTs accompanying with the 
energy equivalent method and the modified couple stress. 
Mohamed et al. (2018) exploited differential-integral 
quadrature method to analyze nonlinear free and forced 
vibrations of buckled curved beams resting on nonlinear 
elastic foundations. Hamza-Cherif et al. (2018) investigated 
vibration of nano beam using differential transform method 
including thermal effect. Maneshi et al. (2018) presented 
closed-form expression for geometrically nonlinear large 
deformation of nano-beams subjected to end force. Emam 
et al. (2018) investigates the postbuckling and free vibration 
response of geometrically imperfect multilayer nanobeams 
under pre-stress compressive load. Torabi et al. (2019) 
studied buckling of different shapes of function graded 
CNT reinforced composite plates in thermal environment. 
Zouatnia and Hadji (2019) investigated effect of the 
micromechanical models on the bending of FGM beam 
using a new hyperbolic shear deformation theory. Eltaher et 
al. (2019a) investigated dynamical behaviors of perfect and 
defected C-C SWCNTs model as a beam structures by 
using finite element method. Eltaher et al (2019b) exploited 
an energy equivalent model and finite element method to 
evaluate the equivalent Young's modulus of SWCNTs at 
any orientation angle by using tensile test.  

According to the best of the authors' knowledge and 

literature review, it can be concluded that no researchers 

have attempted to investigate the postbuckling of curved 

CNTs by considering material size dependency. The present 

study is intended to fill this gap in the literature by 

considering the energy equivalent method along with 

nonlinear curved Euler-Bernoulli beam. This paper is 

organized as follows. Section 2 describes the mathematical 

formulation of the equivalent energy model for armchair 

and zigzag SWCNTs continuum. Main formulations and 

equations of motion for a nonlinear Euler-Bernoulli CNT 

with moderate rotation are presented. In Section 3, 

differential-integral quadrature method is presented and 

developed to solve a nonlinear integro-differential equation 

of material size dependent carbon nanotube. Numerical 

results are presented and discussed in Sections 4. Most 

findings and concluding remarks are summarized in 

Sections 5. 
 

 

2. Mathematical formulation 
 

2.1 Molecular Mechanics Effect 
 

To establish a linkage between the microscopic 
chemistry and the macroscopic mechanics, covalent bonds 
between carbon atoms is represented by a force filed as a 
function of bond lengths and bond angles. The force filed 
can be represented by a potential energy as, [Rappé et al. 
(1992)]  

𝑃𝐸 = 𝑃𝐸𝐿 + 𝑃𝐸𝜃 + 𝑃𝐸𝑇 + 𝑃𝐸𝜔 (3) 

where 𝑃𝐸𝐿 , 𝑃𝐸𝜃 , 𝑃𝐸𝑇 , and 𝑃𝐸𝜔 are bond stretching, 
angle variation, torsion and inversion (out of plane) 
energies. When SWCNTs subjected to tension and bending 
loading in two-dimensional loading, bond stretching and 

angle energies are the most significant and the other 
energies can be neglected. Therefore, Eq. (3) can be 
simplified as, Wu et al. (2006), Shokrieh and Rafiee (2010), 
Eltaher and Agwa (2016) 

𝑃𝐸 = 𝑃𝐸𝐿 + 𝑃𝐸𝜃 =
1

2
∑𝐾𝑖  (𝑑𝑅𝑖)

2

𝑖

+
1

2
∑𝐶𝑗 (𝑑𝜃𝑗)

2

𝑗

 (4) 

where 𝐾𝑖 is the stretching constant, 𝑑𝑅𝑖 is the elongation 

of the bond 𝑖, 𝐶𝑗 is the angle variance constant, 𝑑𝜃𝑗 is the 

variance of bond angle 𝑗.  

For armchair orientation, Young’s modulus and 

Poisson’s ratio for CNTs can be described by [Wu et al. 

(2006), Bedia et al. (2015), Baghdadi et al. (2015)]  

𝐸𝑎 =
4√3

3

𝐾𝐶

3 𝐶 𝑡 + 4 𝐾 𝑙0
2 𝑡 (𝜆𝑎1

2 + 2 𝜆𝑎2
2 )

 (5a) 

𝜐𝑎 =
𝜆𝑎1 𝑙0

2 𝐾 − 𝐶

𝜆𝑎1 𝑙0
2 𝐾 + 3 𝐶

 (5b) 

where 𝑡 is the thickness of a nanotube, 𝜆𝑎1  and  𝜆𝑎2  are 

geometrical dependent parameters that given by 

𝜆𝑎1 (𝑛) =
4 − 𝑐𝑜𝑠2(𝜋 2𝑛⁄ )

16 + 2𝑐𝑜𝑠2(𝜋 2𝑛⁄ )
 (6a) 

𝜆𝑎2 (𝑛) =
−√12 − 3 𝑐𝑜𝑠2(𝜋 2𝑛⁄ ) 𝑐𝑜𝑠(𝜋 2𝑛⁄ )

32 + 4𝑐𝑜𝑠2(𝜋 2𝑛⁄ )
 (6b) 

However, Young’s modulus and Poisson’s ratio in case 

of Zigzag orientation, can be depicted by [Benguediab et al. 

(2014), Baghdadi et al. (2015), Besseghier et al. (2015), 

Eltaher et al. (2016)]: 

𝐸𝑧 =
4√3𝐾𝐶

9 𝐶 𝑡 + 4 𝐾 𝑙0
2 𝑡 (𝜆𝑧1

2 + 2 𝜆𝑧2
2 )

 (7a) 

𝜐𝑎 =
𝜆𝑧1 𝑙0

2 𝐾 + √3𝐶

𝜆𝑧1 𝑙0
2 𝐾 − 3√3 𝐶

 (7b) 

and geometrical dependent parameters in this case can be 

presented as 

𝜆𝑧1 (𝑛) =
−3√4 − 3 𝑐𝑜𝑠2(𝜋 2𝑛⁄ )  𝑐𝑜𝑠(𝜋 2𝑛⁄ )

8√3 − 2√3𝑐𝑜𝑠2(𝜋 2𝑛⁄ )
 (8a) 

𝜆𝑧2 (𝑛) =
12 − 9 𝑐𝑜𝑠2(𝜋 2𝑛⁄ )

16√3 − 4√3𝑐𝑜𝑠2(𝜋 2𝑛⁄ )
 (8b) 

 
2.2 Problem Statement of Curved CNTs 

 

The equilibrium equations of curved CNTs in lateral 

direction as a function of both axial and lateral 

deformations is presented in this section. Based on the 

kinematic Euler-Bernoulli beam assumptions, the axial 

displacement (𝑈)  and lateral deformation (𝑊)  of any 

generic point originally located at coordinates (𝑥̂, 0, 𝑧̂)in 

the beam’s undeformed state can be described as 

𝑈(𝑥̂, 𝑧̂, 𝑡̂) = 𝑢̂(𝑥̂, 𝑡̂) − 𝑧̂ [
𝜕𝑤̂

𝜕𝑥̂
−
𝑑𝑤̂0
𝑑𝑥̂

] (9a) 
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𝑊(𝑥̂, 𝑧̂, 𝑡̂) = 𝑤̂(𝑥̂, 𝑡̂) (9b) 

in which 𝑢̂  and 𝑤̂  are the axial and transverse 
displacements along the neutral axis of the beam and 𝑤̂0 is 
the initial imperfection (initial rise) of the beam. The 
nonlinear axial strain including the moderate deformation 
assumption can be depicted by von Karman strain effect as 
follows: 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥̂
+
1

2
((
𝜕𝑊

𝜕𝑥̂
)
2

− (
𝜕𝑤̂0
𝜕𝑥̂

)
2

)

=
𝜕𝑢̂

𝜕𝑥̂
− 𝑧̂ (

𝜕2𝑤̂

𝜕𝑥̂2
−
𝑑2𝑤̂0
𝑑𝑥̂2

)

+
1

2
((
𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

) = 𝜀0 + 𝑧̂𝑘0 

(10) 

where normal and curvature strains at neutral axis of beam 
can be depicted by 

𝜀0 =
𝜕𝑢̂

𝜕𝑥̂
+
1

2
((
𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

) (11a) 

𝑘0 = −(
𝜕2𝑤̂

𝜕𝑥̂2
−
𝑑2𝑤̂0
𝑑𝑥̂2

) (11b) 

and the force and moment resultants can be defined as 

𝑁 =
𝐴𝐸

1 − 𝜈2
[
𝜕𝑢̂

𝜕𝑥̂
+
1

2
((
𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

)] (10a) 

𝑀 =
−𝐸𝐼

1 − 𝜈2
[(
𝜕2𝑤̂

𝜕𝑥̂2
−
𝑑2𝑤̂0
𝑑𝑥̂2

)] (10b) 

where 𝐴 is the cross sectional area and 𝐼 is the moment of 
inertia of CNT. The equations of motion of the CNTs with 
mid-plane stretching can be portrayed as 

𝑚
𝜕2𝑢̂

𝜕𝑡̂2
−
𝜕𝑁

𝜕𝑥̂
= 𝐹̂𝑢 (13a) 

𝑚
𝜕2𝑤̂

𝜕𝑡̂2
−
𝜕2𝑀

𝜕𝑥̂2
− 𝑁

𝜕2𝑤̂

𝜕𝑥̂2
= 𝐹̂𝑤 (13b) 

in which 𝑚 = ∫ 𝜌𝑑𝐴
𝐴

 is inertia term of CNTs. 𝐹̂𝑢 is the 

axial distributed force along the 𝑥̂ -axis and 𝐹̂𝑤  is the 

transverse force that simulates the nonlinear interaction of 

CNTs with the surrounding elastic medium. The transverse 

force can be illustrated by the following: 

𝐹̂𝑤  = −𝑘̅𝐿𝑤̂ − 𝑘̅𝑁𝐿𝑤̂
3 + 𝑘̅𝑠

𝜕2𝑤̂

𝜕𝑥̂2
 (14) 

where 𝑘̅𝐿  and 𝑘̅𝑁𝐿  are linear and nonlinear elastic 
foundation coefficients, respectively, and 𝑘̅𝑠 is the shear 
stiffness of the elastic foundation. To reduce the governing 
equations into a single equation for the lateral deformation, 
the in-plane inertia and axial distributed forced are 
neglected.  As a result, it can be concluded from Eq. (13a) 
that the induced axial force 𝑁 is constant. Substituting Eq. 
(12) into Eq. (13), the following equations are obtained: 

𝐴𝐸

1 − 𝜈2
𝜕

𝜕𝑥̂
[
𝜕𝑢̂

𝜕𝑥̂
+
1

2
((
𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

)] = 0 (15a) 

𝑚
𝜕2𝑤̂

𝜕𝑡̂2
+

𝐸𝐼

1 − 𝜈2
[(
𝜕4𝑤̂

𝜕𝑥̂4
−
𝑑4𝑤̂0
𝑑𝑥̂4

)]

−
𝐴𝐸

1 − 𝜈2
[
𝜕𝑢̂

𝜕𝑥̂

+
1

2
((
𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

)]
𝜕2𝑤̂

𝜕𝑥̂2
= 𝐹̂𝑤 

(15b) 

By integrating Eq. (15a) with respect to spatial 

coordinate 𝑥, results 

𝜕𝑢̂

𝜕𝑥̂
= −

1

2
((
𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

) −
1 − 𝜈2

𝐴𝐸
𝑐1 (16a) 

𝑢̂ = −
1

2
∫((

𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

)𝑑𝑥̂ −
1 − 𝜈2

𝐴𝐸
𝑐1𝑥̂

+ 𝑐2 

(16b) 

Assuming that the CNT is constrained from movement 

at  𝑥̂ = 0, and the external compressive force 𝑃̅ is applied 

at 𝑥̂ = 𝐿. So that, the boundary conditions for the axial 

displacement 𝑢̂ are  

𝑢̂(0) = 0    and         𝑢̂(𝐿) =
−𝑃̅𝐿(1−𝜈2)

𝐴𝐸
 (17) 

Calculating the constants of Eq. (16) by applying the 

boundary conditions given by Eq. (17), hence, Eq. (16a) can 

be presented as 

𝜕𝑢̂

𝜕𝑥̂
= −

1

2
((
𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

) −
𝑃̅(1 − 𝜈2)

𝐴𝐸

+
1

2𝐿
∫((

𝜕𝑤̂

𝜕𝑥̂
)
2

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

)𝑑𝑥̂

𝐿

0

 

(18) 

Substituting Eq. (18) into Eq. (15.b) yields the 

governing equation of motion of curved CNTs in terms of 

transverse displacement 𝑤̂(𝑥̂, 𝑡̂) as 

𝑚
𝜕2𝑤̂

𝜕𝑡̂2
+

𝐸𝐼

1 − 𝜈2
[(
𝜕4𝑤̂

𝜕𝑥̂4
−
𝑑4𝑤̂0
𝑑𝑥̂4

)]

+ [𝑃̅

−
𝐴𝐸

2𝐿(1 − 𝜈2)
∫ ((

𝜕𝑤̂

𝜕𝑥̂
)
2

𝐿

0

− (
𝑑𝑤̂0
𝑑𝑥̂

)
2

)𝑑𝑥̂]
𝜕2𝑤̂

𝜕𝑥̂2
= 𝐹̂𝑤 

(19) 

To evaluate the significance of the size parameter, 

orientation, and initial curvature on the resulting response, 

the following nondimensional parameters are introduced: 

𝑥 =
𝑥

𝐿
  ,    𝑤 =

𝑤̂

𝑟
 ,   𝑤0 =

𝑤̂0

𝑟
 , 𝑟 =  √

𝐼

𝐴
 ,       (20) 
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𝑡 = 𝑡̂√
𝐸𝐼

(1−𝜈2)𝑚𝐿4
 

As a result, the nondimensional equation of motion can 

be expressed by 

𝑤̈+𝑤𝑖𝑣 + [𝑃 −
1

2
∫(𝑤′2 −𝑤0

′ 2)𝑑𝑥

1

0

]𝑤′′ + 𝑘𝐿𝑤

+ 𝑘𝑁𝐿𝑤
3 − 𝑘𝑠𝑤

′′ = 𝑤0
𝑖𝑣  

(21) 

in which the nondimensional parameters can be represnted 

by, 

𝑃 =
𝑃̅𝐿2(1−𝜈2)

𝐸𝐼
,  𝑘𝐿 =

𝐿4 𝑘̅𝐿(1−𝜈
2)

𝐸𝐼
, 𝑘𝑁𝐿 =

𝐿4 𝑘̅𝑁𝐿(1−𝜈
2)

𝐸𝐴
 

and  𝑘𝑠 =
 𝑘̅𝑠 𝐿

2(1−𝜈2)

𝐸𝐼
 

(22) 

subjected to the nondimensional boundary conditions 

𝑤 = 𝑤′ = 0 at 𝑥 = 0, 1 (23a) 

𝑤 = 𝑤′′ = 0 at 𝑥 = 0, 1 (23b) 

For C-C and SS-SS CNTs respectively.  

 
 
3. Solution Procedure 
 

It is generally impossible to obtain analytical solution to 

the equation of motion (21). This difficulty is overcome by 

seeking approximate solutions. In this section, a 

differential-integral quadrature method (DIQM) is 

introduced. A detailed implementation in matrix form is 

described for static and linear vibration analyses. 

 
3.1 Differential-integral quadrature method (DIQM) 

  

The DIQM is a combination between integral quadrature 

method (IQM) and differential quadrature method (DQM).  

a) Differential quadrature method (DQM) 

In this method, the 𝑟-derivative of function 𝑓(𝑥) is 

approximated by 

𝑑𝑟

𝑑𝑥𝑟
 𝑓(𝑥)|

𝑥=𝑥𝑖

=∑ℳ𝑖𝑗
(𝑟)

𝑁𝑑𝑞

𝑗=1

𝑓(𝑥𝑗), 𝑖 = 1,2,⋯𝑁𝑑𝑞  (24) 

in which 𝑁𝑑𝑞 denotes the number of grid points discretized 

the domain of the problem, 0 ≤ 𝑥 ≤ 1, and ℳ𝑖𝑗
(𝑟)

 is the 

weighting coefficients of the 𝑛𝑡ℎ -order derivates. The 

weighting coefficients for the 1st -order derivatives can be 

given by Quan and Chang (1989)  

ℳ𝑖𝑗
(1)

=

{
 
 

 
 

ℒ (1)(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)ℒ
(1)(𝑥𝑗)

     𝑖 ≠ 𝑗          𝑖, 𝑗 = 1,2, … . 𝑁𝑑𝑞

− ∑ ℳ𝑖𝑗
(1)

𝑁𝑥

𝑗=1,𝑖≠𝑗

   𝑖 = 𝑗,               𝑖 = 1,2, … . . 𝑁𝑑𝑞

 
(25) 

where ℒ (1)(𝑥) is defined as 

ℒ (1)(𝑥) = ∏ (𝑥𝑖 − 𝑥𝑗)

𝑁𝑥

𝑗=1,𝑗≠𝑖

 (26) 

Introducing a column vector 𝑓 = [𝑓(𝑥𝑖)]
𝑇 =

[𝑓1, 𝑓2, ⋯ 𝑓𝑁𝑑𝑞]
𝑇

, in which 𝑓(𝑥𝑖)  is the nodal value of 

𝑓(𝑥)  at 𝑥𝑖 =
1

2
−

1

2
cos (

(𝑖−1)𝜋

𝑁𝑥−1
) , 𝑖 = 1,2, . . 𝑁𝑑𝑞 . Also, let 

its first derivative vector will be  𝐹(1) =

[𝐹1
(1), 𝐹2

(1), ⋯𝐹𝑁𝑑𝑞
(1)
]𝑇, then a differential matrix operator of 

the first order derivative can be defined as  

𝐹(1) = 𝐴(1) 𝑓 (27) 

where  

𝐴(1) = [ℳ𝑖𝑗
(1)], 𝑖, 𝑗 = 1,2, . . . 𝑁𝑑𝑞 (28) 

According to the DQM, the rth-order derivative matrices are 

𝐴(𝑟) = [𝐴(1)]
𝑟
, 𝑟 > 1 (29) 

b) Integral quadrature method (IQM)    

The IQM was introduced in Attia and Mohamed (2017) 

as a new method for computing numerical integration. This 

method is based on the DQM. In this method, an accurate 

row vector integral operator for definite integral is 

introduced. If we have a continuous function 𝑓(𝑥) in a 

domain 0 ≤ 𝑥 ≤ 1 and 

𝑑𝑓

𝑑𝑥
= 𝐹(𝑥) (30) 

Then  

∫ 𝐹(𝑥)𝑑𝑥 = 𝑓(𝑥) − 𝑓(0)
𝑥

0

 (31) 

Equation (30) is discretized in matrix form as Eq. (27) 

whose inverse is 

𝑓 = [𝐴(1)]
−1
𝐹(1) (32) 

However, matrix 𝐴(1)  is singular and hence has no 

unique inverse. Mathematically this is expected since the 

anti-derivative of a given function is not unique due to the 

presence of the constant of integration. In this study the 

definite integral between two nodes 𝑥𝑖  , 𝑥𝑗 is considered. 

So, the inverse of matrix 𝐴(1)  is computed using pseudo 

inverse algorithm. Consequently, the definite integral is 

computed as 

∫ 𝐹(𝑥)𝑑𝑥

𝑥𝑗

𝑥𝑖

= 𝑓(𝑥𝑗) − 𝑓(𝑥𝑖) ⊵ ∑([𝐵]𝑗𝑘 − [𝐵]𝑖𝑘)𝐹𝑘
(1)

𝑁𝑑𝑞

𝑘=1

 (33) 

where the symbol ⊵  stands for “is discretized or 

approximated by and 𝐵  is the pseudo-inverse of 𝐴(1) . 
From Eq. (33), one can deduce that 

∫𝐹(𝑥)𝑑𝑥

1

0

⊵∑([𝐵]𝑁𝑑𝑞𝑘 − [𝐵]1𝑘) 𝐹𝑘
(1)
=

𝑁𝑑𝑞

𝑘=1

𝑅𝑑𝑞𝐹
(1) (34) 

in which the row vector 𝑅𝑑𝑞 is just the difference between 
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the last and first rows of the matrix 𝐵. 
 

3.2 Static analysis 
 

The static response of CNT is obtained by dropping the 

time dependent terms from Eq. (21). Then, the static 
response of imperfect CNTs in prebuckling and 

postbuckling states is given by  

𝑤𝑠
𝑖𝑣 + [𝑃 −

1

2
∫(𝑤𝑠

′2 − 𝑤0
′ 2)𝑑𝑥

1

0

]𝑤𝑠
′′ + 𝑘𝐿𝑤𝑠 + 𝑘𝑁𝐿𝑤𝑠

3

− 𝑘𝑠𝑤𝑠
′′ = 𝑤0

𝑖𝑣  

(35) 

subject to the following boundary conditions 

C-C:            𝑤𝑠 = 𝑤𝑠
′ = 0 at 𝑥 = 0, 1 (36a) 

SS-SS:        𝑤𝑠 = 𝑤𝑠
′′ = 0 at 𝑥 = 0, 1 (36b) 

where  𝑤𝑠 is the static deflected position due to applied 

axial load 𝑃. Following Nayfeh and Emam (2008), Eq. (35) 

can be simplified as 

𝑤𝑠
𝑖𝑣 + 𝜆2𝑤𝑠

′′ + 𝑘𝐿𝑤𝑠 + 𝑘𝑁𝐿𝑤𝑠
3 = 𝑤0

𝑖𝑣  (37a) 

in which  

𝜆2 =  𝑃 − 𝑘𝑠 −
1

2
∫(𝑤𝑠

′2 − 𝑤0
′ 2)𝑑𝑥

1

0

 (37b) 

A column vector 𝑤𝑠 is defined as  

𝑤𝑠 = [𝑤𝑠1 , 𝑤𝑠2 , 𝑤𝑠3 , …… . , 𝑤𝑠𝑁𝑑𝑞
]
𝑇

 (38) 

where 𝑤𝑠𝑖 = 𝑤𝑠(𝑥𝑖). Upon using DIQM, Eq. (37a, b) are 

written as 

𝐴(4)𝑤𝑠 + 𝜆
2𝐴(2)𝑤𝑠 + 𝑘𝐿𝑤𝑠 + 𝑘𝑁𝐿𝑤𝑠

∘3 = 𝐴(4)𝑤0 (39a) 

𝜆2 = 𝑃 − 𝑘𝑠 −
1

2
𝑅𝑑𝑞 [(𝐴

(1)𝑤𝑠)
∘2
− (𝐴(1)𝑤0)

∘2
] (39b) 

In discretization of Eq. (37) by DIQM, we used 

Hadamard 𝑝𝑡ℎ -power, defined for a vector 𝑉 such that 

𝑉∘𝑝 = {𝑉𝑗
𝑝
}  and Hadamard product, defined for two 

matrices 𝐴, 𝐵 as 𝐴 ∘ 𝐵 = [𝐴𝑖𝑗𝐵𝑖𝑗]. In the same way, the 

boundary conditions can be given as  

𝑤𝑠1 = 𝑤𝑠𝑁𝑑𝑞
= 0,      ∑[𝐴(1)]

1𝑗

𝑁𝑑𝑞

𝑗=1

𝑤𝑠𝑗

= 0,       ∑[𝐴(1)]
𝑁𝑑𝑞𝑗

𝑁𝑑𝑞

𝑗=1

𝑤𝑠𝑗 = 0 

(40a) 

For C-C CNTs, and 

𝑤𝑠1 = 𝑤𝑠𝑁𝑑𝑞
= 0,      ∑[𝐴(2)]

1𝑗

𝑁𝑑𝑞

𝑗=1

𝑤𝑠𝑗

= 0,       ∑[𝐴(2)]
𝑁𝑑𝑞𝑗

𝑁𝑑𝑞

𝑗=1

𝑤𝑠𝑗 = 0 

(40b) 

For SS-SS CNTs. Equations of (39) form a system of 

(𝑁𝑑𝑞 + 1)  nonlinear algebraic equations which can be 

rewritten as 

𝐺(𝑤𝑠 , 𝜆
2) = 0 (41) 

Newton's iterative method is proposed to find a solution 

for Eq. (41). The Jacobian of this nonlinear system of 

equations can be given by 

𝐽 = [
𝐴(4) + 𝜆2𝐴(2) + 𝑘𝐿𝐼𝑁𝑑𝑞 + 3𝑘𝑁𝐿𝐷 𝐴(2)𝑤𝑠

𝑅𝑑𝑞([(𝐴𝑤𝑠)𝑂
𝑇] ∘ 𝐴) 1

] (42) 

where 𝐼𝑁𝑑𝑞  is the identity matrix,  𝑂  is column vector 

defined as 𝑂 = [𝑂]𝑁𝑑𝑞×1 = [1, 1, 1, ……… . .1]𝑇 and 𝐷  is 

defined as  

𝐷 =

[
 
 
 
 
𝑤𝑠1
2 0 ⋯ 0

0 𝑤𝑠2
2 ⋯ 0

⋮ ⋮ ⋯ 0
0 0 ⋯ 𝑤𝑠𝑁𝑑𝑞

2
]
 
 
 
 

 (43) 

Note that, in Eqs. (41, 42) rows corresponding to 

boundaries are replaced by the corresponding boundary 

condition equations. Due to the nonlinearity in Eq. (39), it 

has multiple solutions. In fact, Eq. (39) has a unique 

solution if 𝑃 < 𝑃𝑐  and three solutions if  𝑃 > 𝑃𝑐 . To 

compute the critical buckling load 𝑃𝑐 , Eq. (39) is solved for 

certain axial load 𝑃 with different initial guesses and check 

if the iteration converges to a unique solution or multiple 

solutions, where 𝑃𝑐  is the load corresponding to the 

transition from one solution to three solutions. 
 
 
4. Numerical results 

 
The parameters used in the analysis of armchair and 

zigzag orientations of SWCNTs are: the effective thinness 

of CNTs t=0.258 nm, the forces constants K/2= 46900 

kcal/mol/nm2, and C/2= 63 kcal/mol/rad2 [see Eltaher et al. 

(2016)], and the initial configuration of the curved CNT is 

assumed to be 

𝑤0 = {

1

2
𝑔[1 − cos(2𝜋𝑥)]    for C-C 

   𝑔𝑠𝑖𝑛(𝜋𝑥)                    for SS-SS
 (50) 

where 𝑔 is the CNT mid span initial rise. 

 
4.1 Validation  

 
The applicability of the proposed numerical DIQM in 

solving the present nonlinear integro-differential equation is 

validated with analytical method presented by Emam 

(2009). The buckling of Unidirectional laminate C-C beam 

with cosine type imperfection is solved. The dimensionless 

critical buckling loads are compared in Table 1 with those 

obtained by Emam (2009). Good agreement in results is 

noticed.  
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4.2 Static Results 
 

4.2.1 Effect of imperfection amplitude on the critical 
buckling load  

The effect of nondimensional imperfection amplitude on 

the critical buckling load for C-C and SS-SS CNTs is 

shown, respectively, in Tables 2 and 3. It is observed that, 

as the imperfection increases the buckling load is increased 

to a specific value and then decreased from a positive value 

(compressive force) to a negative one (tensile force). This 

phenomenon is consistent with the shell structure theories, 

Srubshchik (1980). It is found that the critical buckling 

load of C-C CNTs nearly doubles as the normalized 

imperfection 𝑔 reaches 3. The case where 𝑔 = 8 yields 

the everted state where the CNT might buckle at zero load. 

However, for SS-SS CNTs, as the imperfection 

amplitude increased from 0 to 2, the critical buckling load 

almost doubles. The everted state for SS-SS CNTs occurs 

when the imperfection amplitude 𝑔 reaches 4. This is a 

characteristic of the onset of a peculiar system state which 

is known as a null–load equilibrium. It can also be noticed 

that the critical buckling load of both armchair and zigzag 

CNTs increases by increasing the chiral number. So that, the 

chiral number and the imperfection amplitude are 

significant parameters controlled critical buckling load of 

the CNTs. The same conclusions can be drawn from Fig. 2 

which presents effect of imperfection and chiral number on 

the critical buckling of C-C and SS-SS CNTs for both 

armchair and zigzag without any elastic foundation at 𝐿 =
40𝑛𝑚. 

 

 

4.2.2 Effect of imperfection amplitude on static 
response  

Effects of nondimensional imperfection amplitude on 

the static response of C-C and SS-SS armchair and zigzag 

CNTs at 𝑛 = 15  without any elastic foundation are 

illustrated in Fig. 3. In these figures, the solid lines are 

stable position and a dashed one is unstable position. It is 

noticed that, at a given chiral number, when the 

imperfection amplitude changes, the critical buckling load 

and the amplitude of static response are different. This 

means that the imperfection amplitude has a great influence 

on the static response of the curved CNTs. 

 
4.2.3 Effect of chiral number on static response  
Figure 4 illustrates the effects of chiral number on static 

response of armchair and zigzag CNTs with C-C and SS-SS 

boundary conditions at imperfection amplitude 𝑔 = 2 , 

length 𝐿 = 20 𝑛𝑚 and without any elastic foundation. The 

convention of solid and dashed lines is the same as 

described in previous figures. It is observed that, the chiral 

number has a significant effect on the static response and 

can be used to enhance the CNTs function.  
 
4.2.4 Effect of slenderness ratio on critical buckling  
load 
The effect of slenderness ratio together with the 

imperfection amplitude on the critical buckling load of C-C 

and SS-SS CNTs for both armchair and zigzag is presented 

in Table 4 and plotted in graphical form in Fig. 5 for SS-SS  

Table 1 Comparison of dimensionless critical buckling load of C-C unidirectional laminate beam, 𝑘𝐿 = 𝑘𝑁𝐿 = 𝑘𝑠 = 0 

𝑔 Present Emam (2009) 

0 39.4785 39.4784 

1 66.6199 66.6198 

2 76.6099 76.6099 

3 78.8607 78.8606 

4 74.6096 74.6095 

5 64.3701 64.3701 

6 48.4182 48.4181 

 

Table 2 Critical buckling loads (nN) for C-C armchair and zigzag CNTs using DIQM, 𝐿 = 40𝑛𝑚, 𝑘𝐿 = 𝑘𝑁𝐿 = 𝑘𝑠 = 0 

𝑔 
Armchair CNT Zigzag CNT 

Armchair (5,5) 
Armchair 

(10,10) 

Armchair 

(15,15) 

Armchair 

(20,20) 

Zigzag 

(5,0) 

Zigzag 

(10,0) 

Zigzag 

(15,0) 

Zigzag 

(20,0) 

0 2.499903 12.31568 34.88008 75.55064 0.82409 3.340377 8.588337 17.60549 

1 4.218428 20.78193 58.85793 127.4869 1.39060 5.636675 14.49227 29.70816 

2 4.851002 23.89828 67.68397 146.6042 1.599128 6.481922 16.66546 34.16304 

3 4.994107 24.60328 69.68066 150.9291 1.646302 6.673139 17.15709 35.17085 

4 4.725627 23.28062 65.93467 142.8152 1.557381 6.312703 16.23039 33.27117 

5 4.077223 20.08628 56.88776 123.2195 1.344052 5.447996 14.00717 28.71372 

6 3.06599 15.10449 42.77846 92.65861 1.010700 4.096784 10.53311 21.59215 

7 1.705228 8.40074 23.79232 51.53442 0.562126 2.27853 5.858255 12.00902 

8 1.27e-06 6.24e-06 1.77e-05 3.83e-05 4.17e-07 1.69e-06 4.35e-06 8.92e-06 

9 -2.04273 -10.0634 -28.5013 -61.7341 -0.67338 -2.7295 -7.01772 -14.3858 
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CNTs at chiral number 𝑛 = 14 and without any elastic 

foundation. At a given imperfection amplitude, it is 

observed that, the critical buckling loads decrease rapidly as 

the slenderness ratio increases. This can be interpreted since 

increasing slenderness ratio decrease the rigidity of the  

 

CNTs. This means that the slenderness ratio is a crucial 

parameter in determining the critical buckling load of the 

CNTs. 
 

 

Table 3 Critical buckling loads (nN) for SS-SS armchair and zigzag CNTs using DIQM, 𝐿 = 40𝑛𝑚,𝑘𝐿 = 𝑘𝑁𝐿 = 𝑘𝑠 = 0 

𝑔 

Armchair CNT Zigzag CNT 

Armchair (5,5) 
Armchair 

(10,10) 

Armchair 

(15,15) 

Armchair 

(20,20) 

Zigzag 

(5,0) 

Zigzag 

(10,0) 

Zigzag 

(15,0) 

Zigzag 

(20,0) 

0 0.62496 3.07883 8.71976 18.88709 0.20602 0.83507 2.14702 4.40124 

0.5 1.05461 5.19548 14.71448 31.87173 0.34765 1.40917 3.62307 7.42704 

1 1.21275 5.97457 16.92099 36.65106 0.39978 1.62048 4.16637 8.54076 

1.5 1.24838 6.15010 17.41813 37.72786 0.41153 1.66809 4.28877 8.79169 

2 1.18108 5.81857 16.47916 35.69404 0.38934 1.57817 4.05758 8.31775 

2.5 1.01900 5.02004 14.21761 30.79550 0.33591 1.36158 3.50073 7.17625 

3 0.76647 3.77600 10.69426 23.16389 0.25267 1.02416 2.63319 5.39786 

3.5 0.42621 2.09969 5.94667 12.88054 0.14050 0.56950 1.46422 3.00154 

4 0 0 0 0 0 0 0 0 

4.5 -0.51085 -2.51670 -7.12771 -15.43870 -0.16840 -0.68260 -1.75502 -3.59767 

         

  
(a) C-C armchair and zigzag CNTs 

  

(b) SS-SS armchair and zigzag CNTs 

Fig. 2 Effect of imperfection amplitude on the critical buckling load  
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4.2.5 Effects of the elastic foundation  
The influence of the elastic foundation parameters on 

the critical buckling load of C-C CNTs for both armchair 

and zigzag are shown in Table 5. It can be observed that, an  

increase in the value of foundation parameters results in an 

increase in the buckling load for all CNTs. Furthermore, 

one can note that the nonlinear elastic foundation  

coefficient has no effect on the buckling load for perfect 

CNTs (𝑔 = 0).  

 

 

 

Fig 6 shows the mutual effects of elastic foundation 

constants on the critical buckling load of SS-SS armchair 

and zigzag CNTs at chiral number 𝑛 = 10, imperfection 

amplitude 𝑔 = 1and length  𝐿 = 40𝑛𝑚 . It is observed 

that with the increase in the shear foundation parameter, the 

buckling load of CNTs increases considerably. However, it 

is slightly increased with increasing the value of linear and 

nonlinear foundation parameters. 

  
(a) C-C armchair and zigzag CNTs 

 
 

(b) SS-SS armchair and zigzag CNTs. 

Fig. 3 Variation of the static response with the applied axial load of CNT at 𝑛 = 15, 𝐿 = 20𝑛𝑚 and 𝑘𝐿 = 𝑘𝑁𝐿 = 𝑘𝑠 = 0 

Table 4 Effects of the slenderness ratio on the critical buckling load 𝑃𝑐(𝑛𝑁) of C-C and SS-SS curved CNTs for both 

armchair and zigzag,  𝑘𝐿 = 𝑘𝑁𝐿 = 𝑘𝑠 = 0 

CNT 

Type 

𝐿 

(nm) 
𝐿/𝐷 

C-C CNTs SS-SS CNTs 

𝑔 = 0 𝑔 = 2 𝑔 = 3 𝑔 = 6 𝑔 = 0 𝑔 = 2 𝑔 = 3 𝑔 = 6 

Armchair CNT 

Armchair 

(14, 14) 

10 5.2676 465.4420 903.1791 929.71330 570.8384 116.35696 219.89894 142.70489 -473.43868 

30 15.8028 51.7158 100.3532 103.30148 63.4265 12.92855 24.43322 15.85610 -52.60430 

50 26.3380 18.6177 36.1272 37.18853 22.8335 4.65428 8.79596 5.70820 -18.93755 

70 36.8732 9.4988 18.4322 18.97374 11.6498 2.37463 4.48773 2.91234 -9.66201 

Zigzag CNT 

Zigzag 

(14, 0) 

10 9.1237 116.3245 225.7249 232.35640 142.6654 29.08024 54.95772 35.66518 -118.32304 

30 27.3712 12.9249 25.0805 25.81738 15.8517 3.23114 6.10641 3.96280 -13.14700 

50 45.6187 4.6530 9.0290 9.29426 5.7066 1.16321 2.19831 1.42661 -4.73292 

70 63.8662 2.3740 4.6066 4.74197 2.9115 0.59347 1.12159 0.72786 -2.41476 
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4.3 Linear vibration results  
 

In this section, the linear vibration of curved CNTs in 

prebuckling and postbuckling states is investigated. The 

variations of the first three natural frequencies of the uppe r 

and lower stable branches of SS-SS and C-C CNTs with the 

 

 

 

applied axial load are illustrated in Fig. 7 when  𝑔 = 1, 

𝐿 = 20𝑛𝑚 and 𝑛 = 15. Solid line indicates 1st vibration 

frequency, dashed one indicates 2nd vibration frequency and 

dotted line indicates 3rd one. It is noticed that, as the applied 

load increases, the fundamental frequency around the upper 

branch decreases and then increases monotonically. In  

  
(a) C-C armchair and zigzag CNTs 

  

(b) SS-SS armchair and zigzag CNTs. 

Fig. 4 Variation of the static response with the applied axial load of CNT at 𝑔 = 2, 𝐿 = 20𝑛𝑚 and 𝑘𝐿 = 𝑘𝑁𝐿 = 𝑘𝑠 = 0 

  
(a) Armchair CNT (b) Zigzag CNT 

Fig. 5 effect of slenderness ratio on the critical buckling load of SS-SS armchair and zigzag CNTs for at 𝑛 = 14 and 𝑘𝐿 =
𝑘𝑁𝐿 = 𝑘𝑠 = 0 
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Table 5 Effects of elastic foundations on critical buckling loads (nN) of C-C armchair and zigzag CNTs using DIQM, 𝐿 =
40𝑛𝑚. 

CNTs type 𝑔 
(𝑘𝐿 , 𝑘𝑁𝐿) = (0,0) (𝑘𝑠, 𝑘𝑁𝐿) = (0,0) (𝑘𝑠, 𝑘𝐿) = (0,0) 

𝑘𝑠 = 5 𝑘𝑠 = 10 𝑘𝑠 = 20 𝑘𝐿 = 5 𝑘𝐿 = 10 𝑘𝐿 = 20 𝑘𝑁𝐿 = 5 𝑘𝑁𝐿=10 𝑘𝑁𝐿 = 20 

Armchair (7, 

7) 

0 5.90562 6.56917 7.896278 5.289843 5.340273 5.441133 5.23941 5.23941 5.239413 

1 9.515347 10.1789 11.50601 8.891608 8.942038 9.042898 8.98317 9.11588 9.356095 

2 10.84245 11.5060 12.83311 10.21739 10.26782 10.36868 10.3925 10.6009 10.98047 

3 11.13442 11.7979 13.12507 10.51731 10.56641 10.66728 10.7601 11.0322 11.52591 

4 10.57703 11.24058 12.56769 9.951965 10.0077 10.10326 10.2572 10.5863 11.17954 

 

zigzag (14, 

0) 

0 8.19472 9.11547 10.957 7.340258 7.410235 7.55019 7.27028 7.27028 7.27028 

1 13.2036 14.1244 15.9659 12.33812 12.40809 12.54805 12.46518 12.64933 12.98264 

2 15.0451 15.9659 17.8074 14.17778 14.24776 14.38772 14.42086 14.70998 15.23665 

3 15.4503 16.371 18.2125 14.59396 14.6621 14.80206 14.93096 15.30847 15.99351 

4 14.6768 15.5976 17.4391 13.80948 13.88683 14.01941 14.23303 14.68972 15.51288 

  
(a) 𝑘𝑠 = 0 

  
(b) 𝑘𝑁𝐿 = 0 

 
 

(c) 𝑘𝐿 = 0 

Fig. 6 Effect of elastic foundations on critical buckling load of SS-SS CNTs at 𝑔 = 1, 𝐿 = 40𝑛𝑚 and 𝑛 = 10 
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contrast, around the lower branch, it increases 

monotonically with increasing the applied axial load. 

Figure 8 shows the variation of the fundamental 

frequency of C-C and SS-SS curved CNTs for both 

armchair and zigzag at different values of chiral numbers. 

Here, only the frequencies associated with the upper branch 

are considered. The figures illustrate the significant effect of 

the chiral number on the first natural frequency. 
 
 

5. Conclusions 
 

Buckling, postbuckling configurations and dynamic 

behaviors around buckled position of C-C and SS-SS 

curved SWCNT for both armchair and zigzag resting on 

nonlinear elastic medium were numerically investigated. 

The DIQM with the Newton's iterative method were 

proposed to determine the buckling load and postbuckling 

equilibrium path of the CNTs. The convergence and 

accuracy of the present method were investigated by 

comparing the results with those available in the literature.  

Numerical results show that the currently proposed 

DIQM has excellent stability and can achieve high 

 

The effects of the imperfection amplitude, chiral 

number, slenderness ratio and elastic foundation parameters 

on buckling load, the postbuckling configurations and linear 

vibration of CNTs were discussed in detail. It was found 

that the critical buckling load and the lateral deflection of 

CNTs can be significantly enhanced by manipulating the 

imperfection amplitude. The critical buckling load could be 

doubled provided that a proper imperfection is employed. 

Also, it was concluded that increasing the elastic foundation 

parameters, the critical buckling load increases. Moreover, 

the buckling load and amplitude of static response increase 

by increasing the chiral number of CNTs. It is also noted 

that, the armchair orientation is stiffer than the zigzag 

orientation of CNTs. Furthermore, it was noticed that the 

chiral number has a great influence on the fundamental 

frequency of CNTs 

 

 

 
 
 
  

  
(a) C-C armchair and zigzag CNTs 

  
(b) SS-SS armchair and zigzag CNTs. 

Fig. 7 Variation of the natural frequencies of the first three vibration modes with the applied axial load of C-C and SS-SS 

CNTs when 𝑔 = 1, 𝐿 = 𝟐0𝑛𝑚, 𝑛 = 1𝟓 and 𝑘𝐿 = 𝑘𝑁𝐿 = 𝑘𝑠 = 0 
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