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1. Introduction 
 

Flat plates located on columns in bearing systems as 

well as common connections of plates with screws, bolts, 

and rivets are known as practical examples of plates 

containing point supports. Furthermore; since welded plates 

provide a large amount of local stiffness at welding points, 

spot-welded plates have been modeled in some studies as 

point-supported ones (Bapat and Venkatramani 2010, 

Tripathy and Suryanarayan 2008). Due to the concentrated 

shear force and moment at the location of point supports, 

satisfaction of equilibrium conditions at such locations are 

not assumed straightforward. The application of analytical 

methods and the use of impulse and flexibility functions for 

buckling solutions targeting point-supported plates are also 

limited to solution of problems having simple geometry and 

boundary conditions Nowacki (1953).  

Following the development of powerful computers, 

numerical methods have further advanced for solving 

complex problems in the last decades (Dastjerdi 2016, Chen 

et al. 2016). In this respect, (Tan et al. 1983) carried out an 

extensive study on buckling of various shapes of clamped 

and simply supported triangular plates under in-plane 

unilateral and bilateral pressure and shear loads using finite 

element method with six-node triangular quadratic 

polynomial elements Irons (1969). Moreover, (Venugopal et 

al. 1989) made used of a high-precision triangular element  
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for stability analysis of rectangular plates with four corner-

point supports. Within the finite element method, significant 

time and precision could be spent for creating and choosing 

an appropriate mesh on the problem domain. It is noted that 

mesh generation refers to a process for discretizing a 

problem geometry using a proper element. Therefore, 

elements overlapping each other and those not covering any 

region of the problem domain are not allowed during mesh 

generation process. Alongside mesh generation, it is even 

necessary to know how the elements are connected to each 

other in order to form up a system of equations in the finite 

element method Liu and Gu (2005). Furthermore, the cost 

of mesh generation can be higher for plates with 

complicated geometry shapes especially for three-

dimensional domains. For the aforementioned reasons, 

mesh-free methods have been developed in the last two 

decades (Tsiatas and Yiotis 2013, Zhang and et al. 2014, 

Naghsh et al. 2018, Do and Lee 2018). According to these 

methods, there is no need to predefine a mesh on the 

problem domain in order to extract a system of equations. 

The problem domain is also discretized to a set of points in 

most of the meshless methods in order to model the volume 

and the boundary of a problem in a way that there is no 

requirement to define the element type and also get 

involved in the challenge of element connections compared 

with the finite element methods. In this regard, Wang and 

Liew (1994) further solved elastic buckling of triangular 

plates with arbitrary boundary conditions and intermediate 

line support under uniform in-plane pressure via complete 

polynomial shape functions and the Ritz method. As well, 

(Saadatpour et al. 1998) employed the Lagrangian shape 

functions and the mesh-free Galerkin method (Belytschko 
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et al. 1994) for buckling analysis of general quadrilateral-

shaped elastic plates with internal line supports. Lei and 

Zhang (2018) used the meshless Kp-Ritz method to obtain 

the buckling solution of cracked hybrid laminated plates. 

Besides, Krysl and Belytschko (1995) analyzed thin plates 

using the mesh-free Galerkin method in which the moving 

least squares method was utilized for constructing 

approximate functions while the method of Lagrange 

multiplier was employed to meet boundary conditions 

Lancaster and Salkauskas (1981). (Topal et al. 2018) 

proposed the Rayleigh-Ritz method with novel plate 

buckled shape function for obtaining the shear buckling 

load of laminated plates resting on Pasternak foundation. 

(Garcia et al. 2000) also conducted a study on the Mindlin 

thick plate through the Hp-Cloud approximation method to 

prevent shear locking phenomenon Duarte and Oden 

(1995). The Hp-Cloud shape functions were similarly 

developed by (Jamshidi et al. 2015) for calculating neutral 

frequencies of arbitrary shape point-supported plates. 

Furthermore, (Li et al. 2016) introduced a new analytical 

method i.e. simplistic superposition method for the free 

vibration of rectangular thin plates resting on multiple-point 

supports. 

Buckling as a major cause of failure in the structures is 

always a matter of interest for researchers. Kadari used a 

new hyperbolic plate theory for buckling analysis of 

embedded orthotropic nanoplates (Kadari et al. 2018). 

Many studies have also been done for buckling solution of 

functionally graded plates by developing the shear 

deformation theory (Meziane et al. 2014, Abdelaziz et al. 

2017) and the refined plate theory (Bellifa et al. 2017, 

Bourada et al. 2018). Thermal buckling as another concern 

was investigated in cross-ply laminated and functionally 

graded sandwich plates with simplified higher-order shear 

deformation plate theory (HSDT) (Menasria et al. 2017, 

Chikh et al. 2017). 

It should be noted that the Hp-Cloud method has been 

recently considered as an appropriate mesh-free one owing 

to some properties such as: 1) increasing continuity of 

approximation via proper weighting and enrichment 

functions; 2) improving accuracy and quality of 

approximation through changing influence domain of nodal 

points (h-refinement) and enrichment functions (p-

refinement); as well as 3) having compact support property 

producing narrow-band matrix type of coefficient matrix. 

As a whole, new Hp-Cloud shape functions with 

Kronecker delta property (HPCK) were used in the present 

paper to solve the elastic buckling of point-supported thin 

plates. It should be further noted that the HPCK shape 

functions were constructed by considering the special 

conditions for influence radii and selected enrichment 

functions of nodal points, as discussed in Section 2. 

Employing HPCK shape functions, it is easy to satisfy 

boundary conditions compared with other meshless shape 

functions deprived of Kronecker delta property. HPCK 

shape functions give smoother results for calculated stresses 

in comparison with other meshless shape functions. HPCK 

shape functions also need less computational effort for 

achieving the appropriate accuracy because of using less 

nodal points, integrating on the smaller domain 

(subscription surface of clouds) and producing the narrow 

band stiffness matrix. Based on observed HPCK shape 

functions capabilities, it can be utilized with higher order 

plate theories for buckling investigation of plates with other 

type of materials like orthotropic and FGM in future works. 
This paper was outlined as follows. The construction 

procedure of new HPCK shape function was mentioned in 
Section 2. The governing equations of thin plate buckling 
analysis and eigenvalue form of the achieved set of 
equations obtained from the Ritz method were then 
discussed in Section 3. In section 4, different types of test 
cases were solved to demonstrate the capability of the new 
HPCK shape functions. Moreover; point supports were 
distributed on the edges of plates with various shapes for 
the modeling of clamped and simply boundary conditions 
wherein buckling coefficients were obtained with good 
accuracy for validation purposes. The buckling modes were 
also plotted to visualize the given results. In addition, 
interactions of in-plane forces were examined on various 
shapes of quadrilateral corner-supported plates. 

 
 

2. A new HPCK shape function 
 

The HPCK shape functions introduced by (Jamshidi et 
al. 2015) were developed in this paper using different 
samples and shapes of influence domain and enrichment 
functions. In the present paper, appropriate exponential and 
polynomial functions were also proposed as enrichment 
ones. Rectangular influence domain with variable influence 
radii were further used to achieve the Kronecker delta 
property along with more accurate and faster numerical 
integration, which led to a robust and stable solution 
procedure. The corresponding issues about the introduced 
shape functions were expressed as follows. 

It is required to distribute a set of nodal points Qn on the 

plate surface Ω for constructing the Hp-Cloud shape 

functions, such that Duarte and Oden (1995): 

 = xxxxQ   ;  ,...,, 21 nn  (1) 

Where xα is the coordinates of the nodal points on the 

problem domain. A rectangular influence area ωα is also 

defined for each nodal point via the influence radii in x 

direction hαx and y direction hαy. This rectangular domain ωα 

is called cloud of the node xα and the assembly of clouds of 

all nodal points must cover the entire problem domain. 

Considering (x,y) is the coordinate of the arbitrary point; 

then, ωα is defined as: 

 yx hyhxxy  −−= y , :
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Likewise, the Hp-Cloud approximated function can be 

written as follows: 
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Wherein n is the number of nodal points, wαi stands for 

the unknown coefficient, ψα(x) shows the partition of unity 

function, Lαi(x) is the enrichment function (Yosida 1978, 

Melenk and Babuska 1996), and mα refers to the number of 

monomials in the enrichment function of point xα. As a 

whole, the following conditions must be met by the selected 

partition of unity functions: 

( ) ( )
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(5) 

In the present paper, the Shepard function 

accommodating the conditions expressed in Eq. (5) was 

used as the partition of unity part of approximated function 

for nodal points Shepard (1968). Choosing the Shepard 

function, less computational effort was required to make 

compared with other ones like the moving least squares 

method. The Shepard function is stated by Eq. (6): 
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In which β denotes the clouds that include point x and 

Wα(x) is the weight function of nodal point xα. This weight 

function defined for all nodal points on the plate must also 

fulfill the relations in Eq. (7): 
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In which Wα(y) is the distance function giving a positive 

quantity for points placed inside the cloud ωα and is also 

equal to zero for the points located out of the cloud ωα. 

Based on the required continuity of the thin plate buckling 

problem which is C1 continuity and in order to complete 

smooth approximation, compact unity conditions are 

similarly considered for constructing the weight functions 

Liu and Liu (2003). The given function in (Jamshidi et al. 

2015) was also used in this paper. Defining Rx = |x-xα|/hαx 

and Ry = |y-yα|/hαy, the weight function employed can be 

written as: 

( )

yx RRR

RRRRW

=










−+−=

1R                                                    0

1R     
3

8
5

3

10
1 542



 

(8) 

The complete polynomial and exponential functions 

were correspondingly used as enrichment L part of Hp-

Cloud shape function in this paper. These types of 

enrichment functions could provide simplicity in 

computations as well as appropriate continuity. 

Thus, the following two conditions must be satisfied for 

constructing the new HPCK shape functions: 1) influence 

radii of nodal points hαx, hαy must be selected in a way that 

none of the other nodal points are placed in the rectangular 

influence domain of point xα as it was shown in Fig. 1; and 

2) complete polynomial LP or exponential LE enrichment  

 

Fig. 1 Distributed nodal points and influence radii 

 

 

functions need to be used in an appropriate pattern as 

expressed in Eq. (9): 

( ) ( ) ( )

( )( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

2

2

P

2

2

E

[1, , , ,

, , ]

[1,1 e ,1 e , ,1 e ]
n

n

x x y y x x y y x x y y n

x x y y x x

x x y y y y y y

     

 

   

− − − − − −

= − − −

− − − −

= − − −

L

L
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Upon applying the above-mentioned two conditions, the 

achieved shape functions will have the Kronecker delta 

property. So, it is not required to use the method of 

Lagrange multiplier to satisfy the Dirichlet boundary 

conditions. 

To visualize the discussed issues about constructing the 

HPCK shape functions, a rectangular domain shown in Fig. 

1 was also considered. As an appropriate choice, the 

influence radii of all the nodal points illustrated in Fig. 1 

can be selected as hαx = 1, hαy = 0.5 to meet the first 

condition of constructing the HPCK shape functions. The 

complete polynomial of order two with proposed pattern in 

Eq. (9) was also used in this example as enrichment 

function for all nodal points. After applying these 

assumptions, the Hp-Cloud approximation quantity w(x) in 

arbitrary point x = x3 is expressed by: 
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Because of the fulfillment of the first condition in this 

example, point x = x3 is just placed in the cloud of nodal 

point x3, so: 
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Arbitrary nodal point weight function value Wβ(x),( β =1 

to 10) in x = x3 is similarly calculated by Eq. (12): 
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( )




===

==

3           1

3           0

3

3









xx

xx

W

W

 

(12) 

713



 

Sajad Jamshidi and N. Fallah 

 

Fig. 2 Changes of ϕ51 = ψ5L51 in the example domain 

 

 

Fig. 3 Changes of 
𝜕2𝜙51

𝜕𝑥𝜕𝑦
=

𝜕2(𝜓5𝐿51)

𝜕𝑥𝜕𝑦
 in the example 

domain 
 

 

According to Eq. (12), the partition of unity in x = x3 is 

obtained as ψ3(x=x3)=1. Moreover, the enrichment function 

part in x = x3 is L3(x=x3) = [1,0,0,0,0,0]. Finally, the 

following changes can be observed from Eq. (13) for 

w(x=x3): 

313)( ww == xx
 (13) 

It was demonstrated that w(x=xγ)= wγ1,(γ = 1,2,…,9) for 

all nodal points of the given example. Accordingly, it is 

clear that the achieved shape functions are endowed with 

Kronecker delta property. In order to visualize the results, 

the shape functions of some nodal points of this example 

and its derivatives were presented in Figs. 2-5. 

In this paper, the proposed HPCK shape functions were 

utilized to solve the buckling of various shapes of point-

supported plates. The obtained results, presented in Section 

4, also demonstrated proper precision and fast convergence 

of the given method involving the proposed shape 

functions. 
 

 

3. Buckling analysis 
 

The linear strains of a plate can be determined using 

classical thin plate theory. Employing the obtained stress 

and strain relations of elastic materials in energy equation, 

the strain energy can be expressed as follows: 
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Fig. 4 Changes of ϕ31 = ψ3L31 in the example domain 

 

 

Fig. 5 Changes of 
𝜕2𝜙31

𝜕𝑥𝜕𝑥
=

𝜕2(𝜓3𝐿31)

𝜕𝑥𝜕𝑥
 in the example 

domain 

 

 

In which v is the Poisson’s ratio and D shows the 

flexural rigidity Szilard (2004). Determining the non-linear 

strain of applied in-plane loads shown in Fig. 6, the 

potential of corresponding external forces can be stated as: 
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(15) 

Wherein λ stands for buckling coefficient. If the point 

supports are not placed on the nodal points, then the method 

of Lagrange multipliers is used to satisfy the zero deflection 

conditions in the place of corresponding point supports as 

follows: 

 ====
++=+=
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(16) 

In which ∏ is the total energy, ∏a refers to the 

augmented energy functional, (xr, yr) indicates the location 

of the point supports, and Γr shows the Lagrange 

multipliers. Assuming that the plate has only s continuous 

simply supported boundary conditions and t continuous 

clamped ones, the augmented energy functional ∏a can be 

rewritten as: 
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Fig. 6 A Plate with arbitrary shape under in-plane loads 
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Where Γs and Γt are the Lagrange multipliers, Λs is the 

sth simple boundary, Λt shows the tth clamped boundary, and 

nt refers to the normal boundary Λs. In order to attain the 

neutral equilibrium and stationary state, the Ritz method 

was applied to Eq. (16) as follows: 
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Eq. (18) was then transformed to the following 

eigenvalue problem: 
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In which K and KG are respectively the elastic and the 

geometric stiffness matrices, w̅ shows the unknown 

coefficient vector and Γ stands for the Lagrange multipliers 

vector. The components of the K, KG and P matrices can be 

also expressed as: 
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(20) 

It should be noted that the smallest positive value of 

eigenvalues of Eq. (19) is called the buckling load. The 

results are also presented in a dimensionless format such  

  

 
Fig. 7 Rectangular plate under pure shear force 
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(21) 

Wherein ka1, ka2, ks and kb are respectively the buckling 

coefficients corresponding to the uniaxial pressure, biaxial 

pressure (Nx = Ny = N), as well as shear and bending load 

cases; D shows the flexural rigidity of plate, and b refers to 

the plate length parameter. 

Integration domain in the Hp-Cloud method as 

displayed in Eq. (20) is the subscription surface of two 

corresponding clouds. These integration domains are 

rectangular except in cases in which subscription surfaces 

intersect the boundaries. The cell structure method 

(Suwranu and Bathe 2000, Bathe and Suwranu 2001, 

Suwranu and Bathe 2001) and refined cell structure method 

(Jamshidi et al. 2015) were also used in this paper as a 

numerical integration method for calculating the mentioned 

integrations. 

 

 

4. Numerical results 
 

In order to show the efficiency and the accuracy of the 

shape functions, proposed in the present paper, various 

examples including different geometry shapes were 

presented in the following section. These specific 

configurations of point supports were selected just for 

comparison and verification purposes with those existing in 

reliable literature. The proposed method could be used for 

arbitrary distribution of point supports. 

 

4.1 Rectangular plate 
 
4.1.1 Rectangular plates with simply support under 

shear loading 

Elastic buckling of rectangular plates with simply 

support under shear loading shown in Fig. 7 was examined 

in terms of different aspect ratios. So, the HPCK shape 

functions were constructed by distributing nx and ny points 

along the length and the width of the plate. The shear 

buckling coefficient (ks) defined by Eq. (21) were also 

obtained and compared with those reported by (Saadatpour 

et al. 1998) and Allen and Bulson (1980) in Table 1, and  
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Table 1 Shear buckling coefficients ks of simply supported 

rectangular plates 

a/b 1 1.2 1.4 1.5 1.6 1.8 2 

xy nn 
 

1010  1210  1410  1510  1610  1810  2010  

Allen and 

Bulson (1980) 
9.34 8.00 7.30 7.11 6.91 6.80 6.6 

(Saadatpour  

et al. 1998) 
9.32 8.04 7.29 7.08 6.92 6.70 6.57 

Present Study 9.3204 8.0257 7.2941 7.0811 6.9231 6.7028 6.5716 

 

 
consequently a good agreement was observed. Moreover, 

the shear buckling mode shape of the square plate was 

presented in Fig. 8. 

 

 
 
4.1.2 Rectangular plates supported by point 

supports 
Elastic buckling of rectangular plates with aspect ratios 

of a/b = 1,1.5 and 2 and point support arrangement shown 

in Fig. 9 were investigated in the present section. The 

calculated buckling coefficients introduced in Eq. (21) were 

then presented in Table 2. As it was observed, the buckling 

coefficients given in Table 2 were in good agreement with 

the results from the related literature. According to Table 2, 

the values of kal for square plate (a/b =1) got close to the 

corresponding value for a square plate with simply supports 

(kal =4) through increasing the point supports Szilard 

(2004). The value of kal for square plate with point support 

configuration shown in Fig. 9 was obtained as 3.9562 and 

its relevant buckling mode shape was presented in Fig. 10. 

   
Fig. 8 Buckling mode shape of simply supported rectangular plate under pure shear 

 

    

(a) (b) (c) (d) 

Fig. 9 Periodic distributing of one-row point supports along edges of rectangular plate 

 

 

Fig. 10 Uniaxial pressure buckling mode shape of square plate by point supports displayed in Fig. 9(d) 
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Table 3 Uniaxial pressure buckling coefficients of square 

plate presented in Fig. 11 

sn
 5 5 5 4 4 

sd
 

15a
 

18a
 

20a
 

15a
 

5.12a
 

1ak
 11.1086 10.6256 10.3557 9.5949 10.11 

c
ak 1  10.08 10.08 10.08 10.08 10.08 

 

 Theoretically, it would be possible to model fully 

clamped or simply supported plates by choosing a proper 

point support arrangement. The values of kal for square plate 

and point support configuration shown in Fig. 11 are 

expressed in Table 3. In order to model the clamped 

boundary condition using the proper distribution of point 

supports, the achieved buckling coefficients kal for the plate 

are compared with 𝑘𝑎1
𝑐 = 10.08  that is the corresponding 

buckling coefficient for a fully clamped square plate Allen 

and Bulson (1980). It is obvious from the presented results 

in Table 3 that the distribution of four pairs of point 

supports along the edges of the plate with distance of a/12.5 

from each other can be considered as the proper equivalent 

point support configuration of the clamped boundary  

 

Table 4 Buckling coefficients kc of rhombic plate illustrated 

in Fig. 13 

α 
ns 

60° 45° 36° 30° 

17.9447 7.5723 4.8738 3.7059 5 

18.6352 7.6273 4.8814 3.7151 6 

18.9813 7.6615 4.8854 3.7203 7 

19.1477 7.6642 4.8855 3.7210 8 

 

 

condition. The corresponding buckling mode shape was 

illustrated in Fig. 12. 

 

4.2 Rhombic plate 
 

The HPCK shape function is used to calculate the 

critical buckling load of rhombic plate via distributed point 

supports presented in Fig. 13. The buckling coefficients kc 

given in Eq. (22) were calculated and the results were 

reported in Table 4. 

( )

D

aN
k

y

c 2

2
sin2




=

 

(22) 

The small increase in the buckling load coefficient when 

the point support numbers are greater than ns =7 indicates 

that the plate boundary condition approaches the 

corresponding fully simply supported boundary condition as 

point supports along the edges of rhombic plate are added. 

 
4.3 Skew plate 
 

The buckling of skew plate under uniaxial pressure and 

distributed point supports shown in Fig. 14 was examined 

in the present section. The plate buckling coefficients were 

also obtained according to Eq. (23) and the results were 

presented in Table 5.  

Table 2 Buckling coefficients of rectangular plates with point supports shown in Fig. 9 

γ =  
𝑎

𝑏
 

1ak
 2ak

 sk
 bk

 
Present 

study 

Hedayati 

(2007) 

Present 

study 

Hedayati 

(2007) 

Present 

study 

Hedayati 

(2007) 

Present 

study 

Hedayati 

(2007) 

Fig. 9(a) 

1.0 0.9219 0.9217a 0.7391 0.7390a 1.3480 - 2.5072 - 

1.5 0.4099 - 0.3921 - 0.9525 - 1.5300 - 

2.0 0.2304 - 0.2258 - 0.7677 - 1.1095 - 

Fig. 9(b) 

1.0 3.4600 3.52 1.9713 - 4.0065 4 6.9100 6.91 

1.5 1.7062 - 1.4210 - 2.5403 - 3.7749 - 

2.0 0.9509 0.95 0.9292 - 1.8543 1.87 2.5572 2.55 

Fig. 9(c) 

1.0 3.8759 3.95 1.9949 - 6.9619 7.01 13.4861 13.48 

1.5 3.5884 - 1.4398 - 4.7879 - 6.9942 - 

2.0 2.1710 2.17 1.2464 - 3.0963 3.16 4.5309 4.53 

Fig. 9(d) 

1.0 3.9562 3.99 1.9989 - 8.2814 8.51 22.1000 22.14 

1.5 4.1100 - 1.4429 - 6.0091 - 11.1786 - 

2.0 3.5324 3.75 1.2489 - 4.6726 5.08 7.0396 7.04 

aReported in (Venugopal et al. 1989) 

   

Fig. 11 Square plate with distributing two-row point 

supports on its edges under uniaxial pressure buckling 

load 
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Fig. 13 Rhombic plate with periodic distribution of point 

supports along its edges under in-plane uniaxial pressure 

load Ny 
 

 

Fig. 14 A skew plate with periodic distribution of point 

supports along its edges under in-plane uniaxial pressure 

load assigned by Nx 
 
 

The results presented in Table 5 suggested that the 

magnitudes of buckling coefficient approached the buckling 

coefficient of fully simply supported skew plate through 

increasing the point supports along the edges of the skew 

plate (Saadatpour et al. 1998). 

( )4
2

2

cos 
 D

aN
k x

c =

 

(23) 

 

Table 5 Buckling coefficients kc of skew plate shown in Fig. 

14 

β 
sn

 45° 30° 20° 15° 0° 

2.1085 3.0997 3.5693 3.7381 3.9562 5 

2.227 3.1815 3.6462 3.7991 3.9840 6 

2.2799 3.2344 3.6600 3.8085 3.9903 7 

2.439 3.301 - 3.834 4 
Saadatpour et al. 

(1998) 

 

   

Fig. 15 An equilateral triangular plate with ns point 

supports along its edges under biaxial pressure 
 

 

4.4 Triangular plate 
 

Triangular plates have wide applications in industry, so 

that the HPCK shape functions are used to calculate the 

buckling load of various shapes of triangular plates in 

which the point supports along the plate edges are 

distributed. 

 

4.4.1 Equilateral triangular plate 
The buckling load coefficient of point-supported 

equilateral triangular plate under biaxial pressure illustrated 

in Fig. 15 was calculated and presented in Table 6. The 

buckling load coefficient kc is expressed by: 

   

Fig. 12 Uniaxial pressure buckling mode shape of square plate shown in Fig. 11 with ns = 4, ds = a/12.5 
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Table 6 Buckling load coefficients of equilateral triangular 

plates shown in Fig. 15 

 

Table 7 Buckling load coefficients of right-angled isosceles 

triangular plates displayed in Fig. 16 

6 5 sn
 

4.9850 4.9611 cK
 

5 5 𝑘𝑐
𝑠 Wittrick (1954) 

 

 

   
Fig. 16 Right-angled isosceles triangular plate with ns 

point supports along its edges under biaxial pressure 
 

 

D

Na
kc 2

2

4

3


=

 

(24) 

In Table 6, the obtained values of kc were compared with 

those of a fully simply supported boundary condition (𝑘𝑐
𝑠 = 

4) Taylor (1967). According to Table 6, the buckling load 

coefficients of this plate with ns = 6 point supports were 

reported by 99.5% of the buckling load coefficient of the 

corresponding fully simply supported plate. 
 

4.4.2 Right-angled isosceles triangular plate 
 

Exact solution of simply supported right-angled 

isosceles triangular plate under in-plane biaxial pressure 

load had been already determined by Wittrick (1954). The 

buckling coefficient of point-supported right-angled 

isosceles triangular plate presented in Fig. 16 was shown in 

Table 7 and compared with that in Wittrick (1954). The 

buckling coefficient is obtained using the following 

equation: 

D

Na
kc 2

2


=

 

(25) 

According to Table 7, the buckling load coefficient of 

right-angled isosceles triangular plate with ns = 6 was by 

99.7% of the corresponding value for a fully simply 

supported plate (𝑘𝑐
𝑠 = 5) Wittrick (1954). 

Table 8 Buckling load coefficients of isosceles triangular 

plates illustrated in Fig. 17(a) 

(k) Irons (1969) 
ns ℎ

𝑎
 

6 5 

14.926 14.8419 14.648 1 

- 12.1717 11.9645 1.25 

- 10.5923 10.3794 1.5 

- 9.527 9.28 1.75 

8.954 8.761 8.4999 2 

7.976 7.7272 7.2599 2.5 

 

Table 9 Buckling load coefficients of isosceles triangular 

plates shown in Fig. 17(b) 

(
𝑘

𝜋2) Irons (1969) 
ns ℎ

𝑎
 

6 5 

2.4998 2.4911 2.4805 1 

2.9674 2.9598 2.9391 1.25 

3.4825 3.4671 3.4387 1.5 

4.04 4.021 3.9858 1.75 

4.6426 4.6184 4.5806 2 

5.9698 5.9383 5.8971 2.5 

 

 

4.4.3 Isosceles triangular plate 
Elastic buckling of isosceles triangular plates under 

uniaxial pressure illustrated in Fig. 17(a) and biaxial 

pressure shown in Fig. 17(b) were studied for different 

values of angle α as well as numbers of point supports. In 

Table 8, the results of elastic buckling coefficients of 

isosceles triangular plates under uniaxial pressure obtained 

from Eq. (26) were compared with those given by the finite 

element method for simply supported boundary conditions 

Irons (1969). 

D

Na
kc 2

2

4


=

 
(26) 

Furthermore, the buckling coefficients calculated by the 

present method with those reported for simply supported 

isosceles plates in Irons (1969) were compared in Table 9. 

The buckling coefficient is determined by: 

D

Nh
kc 2

2


=

 
(27) 

 

 

Tables 8 and 9 implied that the buckling coefficients got 

close to the corresponding values for a fully simply 

supported plate as the point supports along the boundary of 

isosceles triangular plates were increased. 
 

4.5 Interaction of in-plane loads for quadrilateral 
plates 

 

The effect of interaction of in-plane loads on the 

buckling of quadrilateral plates with four corner supports 

was studied in the present section.  

6 5 sn
 

3.9799 3.9470 ck
 

4 4 𝑘𝑐
𝑠 Taylor (1967) 
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4.5.1 Skew plate 
The interaction curves of skew plates supported at 

corners with side lengths equal to α subjected to the in-

plane compressive loads in both x and y directions and also 

in-plane compressive loads in x direction with the shear 

loads were obtained and presented in Figs. 18(a) and 18(b). 

The buckling coefficients kax, kay and ks are calculated 

according to the following equations: 

( ) ( )

( )

22
4 4

2 2

2
4

2

cos   ,  cos   , 

 cos

yx
ax ay

xy

s

N aN a
k k

D D

N a
k

D

 
 




= =

=

 (28) 

Fig. 18 revealed that the interaction curves of skew 

plates could be in different shapes for different value of β. 

 

4.5.2 Rhombic Plate 
The interaction curves of corner-supported rhombic 

plates with side length of α under the in-plane pressure load 

in x and y directions and the in-plane pressure load in x 

direction with the shear load were depicted in Figs. 19(a) 

and 19(b), respectively. The buckling coefficients are 

obtained from: 

 

 

( ) ( )

( )

22

2 2

2

2

2 sin2 sin
  ,    , 

2 sin
 

yx

ax ay

xy

s

N aN a
k k

D D

N a
k

D



 





= =

=

 
(29) 

Fig. 19 showed that the shape of interaction curves 

depended on the α similar to the skew plates. 

 

5. Conclusions 
 

With the aim of extracting the HPCK shape functions, 

the distribution of the field nodes and the selection of the 

proper influence radii as well as the construction of 

enrichment functions were discussed in the present paper. 

Moreover, various elastic buckling problems of point-

supported plates with arbitrary shapes were investigated. It 

was observed that the results of the buckling coefficients 

approached the corresponding results of fully simply 

supported plates as the point supports along the boundary of 

plates were increased. Furthermore, a proper configuration 

of point supports along the boundary of square plate was 

investigated for the modelling of the clamped boundary 

condition which was consistent with the existing results in  

  

(a) (b) 

Fig. 17 Isosceles triangular plate with periodic distribution of ns point supports along its edges under a) uniaxial pressure 

and b) biaxial pressure 

 

  
(a) (b) 

Fig. 18 Interaction curves of corner-supported skew plate; a) in-plane pressure in x axis with in-plane pressure in y axis and 

b) in-plane pressure in x axis with in-plane shear pressure and b) biaxial pressure 
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the related literature. The findings extracted from the 

developed Hp-Cloud shape functions also showed a good 

agreement in terms of dealing with plates with point 

supports as important cases due to stress singularities at 

point support locations compared with those obtained by 

other researchers. In most examples provided in the present 

paper, the accuracy of four decimal places for calculated 

buckling coefficients was obtained only through 16 to 25 

regularly distributed nodal points. Furthermore, the 

observed convergence and accuracy of the proposed HPCK 

shape functions confirmed it as a favorite method to 

examine other problems of solid mechanics.  
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