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1. Introduction 
 

Nowadays scientists are trying to find out new materials 

properties to use them in different structures to achieve the 

best results. Since the composite materials have great 

mechanical properties, they are used in engineering 

structures extensively. In recent decades, studies on 

reinforced composites which caused improvement in the 

mechanical behavior of the structures are developing. One 

of the best reinforcement materials used in reinforced 

composites is carbon nanotubes (CNTs). After detection of 

the CNTs in the 1990s by Iijima (1991) and by considering 

their significant properties by other researchers, CNTs 

reinforced composites (CNTRCs) are selected as one of the 

most valuable materials to use in the engineering structures. 

Very high elastic modulus and magnetic property are the 

main features of CNTs. It should be noted that CNTs are 

often used as the reinforcement of the polymeric composites 

and mechanical behavior of the reinforced composite are 

affected by their arrangement direction. Due to the 

mentioned properties of CNTRCs, they can be used in 

aerospace industries, electronic engineering and smart 

structures (Abdel-Rahman et al. 2002, Ashrafi et al. 2006).  

In the last several years, various analyses of the 

structures had been investigated by many authors (Forsberg  
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1964, Hu 1964, Leissa 1973, Qatu 2002, Soedel 1983, 

Soedel 2004, Mohammadimehr and Shahedi 2017). 

Vibrational behavior of a thin cylindrical shell analyzed by 

Li (2006). Vibrations of orthotropic and laminated 

orthotropic cylindrical shells is presented by Das and Dong, 

respectively (1964, 1968). Ganesan and Sivasan (1990) 

researched about the vibration analysis of orthotropic shells  

with variable thickness. The vibration analysis of circular 

cylindrical shells of finite length is studied by Vronay and 

Smith (1970). Qatu (Qatu et al. 2010, Qatu 2004) 

researched about laminated composite shells and plates and 

their dynamic response. Liu et al. (2012) discussed 

orthotropic cylindrical shells and analyzed their vibrations. 

Also, many kinds of research about reinforced composite 

and size dependent effect have been done in the literature 

(Ghorbanpour Arani et al. 2016a, b, 2017a, 2108c, 2019, 

Mehar et al. 2017, Mohammadimehr and Rahmati 2013). 

Shen and Zhang (2010) studied about functionally graded 

(FG) CNTRC plates. They considered thermal buckling and 

post-buckling of them and assumed temperature variations 

affected on single-walled carbon nanotubes (SWCNTs) 

properties and achieved their results using multi-scale 

approach. Malekzadeh and Shojaee (2013) considered 

buckling of quadrilateral laminated plates with CNTRCs 

layers. Some researchers studied about size dependent 

effect as well as CNTRCs in their works (Mohammadimehr 

et al. 2010, 2014, 2015, 2016a,b,c,d, Ghorbanpour Arani et 

al. 2011a,b, Mohammadimehr and Mostafavifar 2016). 

They considered CNTRCs as face sheets in sandwich 

structures, considered their properties to be temperature-
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dependent, studied about them in small scales and 

investigated their behaviors subjected to electric and 

magnetic fields and presented their findings and illustrated 

the effect of different parameters on the results. Effect of 

thermal environment on the dynamic response of CNTRCs 

plates is investigated by Wang and Shen (2011, 2012). They 

considered two patterns for CNTs distribution along the 

thickness of the plate and concluded that as the CNTs 

volume fraction increases, it leads the natural frequency to 

higher values. Shen and his co-authors presented their 

studies about post-buckling and nonlinear vibration of 

CNTRCs shells and panels (Shen 2011a,b, 2012, Shen and 

Xiang 2012, 2013). They investigated thermal and 

mechanical buckling and also the vibration of them. Aragh 

et al. (2012) analyzed vibration of continuously graded 

CNTs reinforced cylindrical panels for various boundary 

conditions using 2D generalized differential quadrature 

method (GDQM) solution method. Jam et al. (2012) 

employed 3D elasticity to analyze vibration of CNTRCs 

panels. They used the extended mixture rule to determine 

the effective properties values. The aspect ratio and 

waviness of CNTs are the most important parameters that 

they discussed about. Yas et al. (2013) presented a 

vibrational analysis using 3D elasticity about CNTRC 

panels and compared different patterns for distribution of 

CNTs in the panel. Shen and Xiang (2014) with regard to 

large amplitude deflection, considered vibration of 

CNTRCs cylindrical panels and used higher-order shear 

deformation theory (HSDT) to extract the motion equations. 

HSDT can be used for thick structures due to accounting the 

shear deformation effects. Therefore, the equations were 

governed based on it are more complex than other theories 

but the results are more accurate, too. One of the most 

popular types of HSDT is the third-order shear deformation 

theory (TSDT) which is also called Reddy’s theory (Cong et 

al. 2018, Reddy 2004, Wattanasakulpong and Bui 2018). 

Also, other types of TSDT which are in refined forms are 

used recently by the researchers. A novel third-order shear 

deformation theory employed by Bui et al. (2016) to 

investigate the effect of high temperature on mechanical 

behaviors of FG plates. In another study, Vu et al. (2018) 

used a four-variable TSDT to consider bending, buckling 

and vibration behaviors of FG plates. A similar theory was 

employed by Do et al. (2017) to investigate the bending and 

buckling behaviors of a bi-directional FG plate. Yin et al. 

(2016b) analyzed buckling and free vibration of FG plates 

based on a refined TSDT which allowed them to account 

shear deformation effect without requiring any shear 

correction factors.  

Moreover, in the case of the structures with crack or 

internal defects, some studies are done (Yu et al. 2016, 

Bhardwaj et al. 2015). According to the FSDT, effect of 

internal defects on the vibration and buckling behaviors of 

the FG imperfect plates considered by Yin et al. (2016a). 

They investigated effect of imperfection and other 

important parameters on the natural frequencies and critical 

buckling loads of the considered plate. Effect of crack 

length on the buckling load of a composite FG plate 

presented by Liu et al. (2015). They found that the crack 

causes degradation in stiffness of the structure and 

following it, the buckling load will strongly be affected. 

About small-scaled structures, Liu et al. (2017) considered 

the mechanical behaviors of a moderately thick micro plate 

based on FSDT. Liu et al. (2018) also presented an effective 

numerical model based on extended isogeometric analysis 

for assessment of vibration and buckling of FG micro plates 

with cracks. They captured the size effects using the 

modified couple stress theory. A computational approach for 

mechanical behavior of nanoplates presented Liu et al. 

(2019). They concluded that both microstructure and 

surface energy effects increase the rigidity of nanoplates. 
Recently, mechanical analysis of the structures in multi-

physical fields attracted the researchers. The most noted of 

them are electric and magnetic ones. Ansari and Gholami 

(2016) considered magneto-electro-thermo fields’ effect on 

the vibration of rectangular nano plates. Similar effect but 

about buckling and vibration of FG cylindrical shells 

performed by Lang and Xuewu (2013). Magneto-electro-

elastic (MEE) composite structures optimization 

investigated by Loja et al. (2014). They used differential 

evolution for their analysis. Razavi and Shooshtari (2015) 

discussed nonlinear vibration of MEE rectangular plates. 

Amir et al. (2018) presented vibration analysis of a thick 

sandwich plate with piezo-electro-magnetic face sheets 

subjected to pre electro-magnetic and mechanical pre loads. 

Also, analyze of CNTRCs subjected multi-physical loads 

have been done by some researchers. Ghorbanpour Arani et 

al. (2012) considered the effect of CNTs volume fraction on 

the behavior of smart composite cylinder. Alibeigloo (2014) 

investigated FG-CNTRC plate which was located between 

two piezoelectric layers as sensor and actuator. Dynamic 

stability of viscoelastic piezoelectric FG-CNTRC plate 

under multi-physical loadings studied by Mohammadimehr 

et al. (2017a). They considered multi-physical loadings and 

investigated the effect of surface stress and agglomeration 

of nanotubes. Nasihatgozar et al. (2016) discussed buckling 

of piezoelectric cylindrical CNTRCs panels and 

Mohammadimehr et al. (2018a) used high order sandwich 

panel theory to investigate MEE cylindrical panel vibrations 

which was integrated with FG-CNTRCs layers. They 

considered the properties temperature dependent and 

discussed various circuit boundary conditions. Vibration 

analysis of MEE cylindrical CNTRCs panel developed by 

Mohammadimehr et al. (2018b). They considered open and 

closed circuits conditions and various distributions of CNTs 

in their analysis.  
By reviewing the literature it can be seen that up to date 

there are no researches about MEE analysis of FG-CNTRCs 
cylindrical circular shells based on TSDT considering the 
material properties as temperature-dependent and also be 
rested on a viscoelastic foundation. The CNTs distribution 
is assumed to be FG in the thickness of the shell and the 
extended rule of mixture (ERM) is used to determine the 
effective values of different properties of the shell. The 
structure is subjected to the electro-magnetic fields and 
loads. The governing equations of motion will be obtained 
using Hamilton’s principle and variational formulation and 
will be solved analytically via Navier’s method to obtain 
the results. The results for simpler states will be verified 
with the previous studies and the effect of different 
parameters on the results will be discussed in details.  

684



 

Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs… 

 
Fig. 1 Schematic of the MEE FG-CNTRC cylindrical 

circular shell subjected to electro-magnetic fields and 

resting on visco-Winkler-Pasternak elastic foundation 

 
 
2. Theoretical formulation 
  

An MEE FG-CNTRC thick cylindrical shell which is 

resting on visco-Pasternak elastic foundation and its 

properties change with temperature variations is under 

consideration and is shown in Fig. 1. Radius, length, 

thickness and rotation angle of the shell respectively are 

presented by R, L, h and ϕr. It also supposed that the CNTs 

are used as the reinforcement of the nano-composite with 

PVDF matrix and are placed in longitudinal direction. 

The displacement components of the shell are described 

using cylindrical coordinate system (x, θ, z) which the axial 

and circumferential directions are respectively shown by x 

and θ and also z is in normal to the mid-surface direction. 

The corner of the shell in the middle plane is selected to 

locate the origin of the coordinate system. 

 

2.1 Material properties 
 

The effective properties of the considering shell can be 

achieved using ERM. According to ERM, the properties of 

the shell i.e. Young’s and shear moduli can be obtained 

using the following relations (Amir et al. 2017, 

Ghorbanpour Arani et al. 2018a): 

11 1 11

CNT

CNT m mE V E V E= +
 (1) 

2

22 22

CNT m

CNT

m

V V

E E E


= +

 
(2) 

3

12 12

CNT m

CNT

m

V V

G G G


= +

 
(3) 

in which
11

CNTE ,
22

CNTE ,
12

CNTG ,
mE and

mG  are longitudinal 

and transversely Young’s and shear moduli of the CNTs and 

matrix, respectively. Also, VCNT is CNTs volume fraction 

which depends on CNTs distribution pattern and Vm 

represents volume fraction of matrix and VCNT + Vm =1. It 

should be noted that PVDF is considered as matrix in this 

paper. η1, η2, and η3 are efficiency parameters of CNTs 

which are determined by molecular dynamics simulation.  

Also the mixture rule can be developed for other 

properties of the CNTRC shell i.e. magnetic and electric 

ones as follows (Ghorbanpour Arani et al. 2012): 

CNT m

ij CNT ij m ijP V P V P= +  (4) 

where Pij represents the effective properties of the shell and  

𝑃𝑖𝑗
𝐶𝑁𝑇and 𝑃𝑖𝑗

𝑚 demonstrate the same property for the CNTs 

and matrix, respectively. Pij indicates different mechanical 

and electro-magnetic properties of the shell such as density, 

piezoelectric and magnetic coefficients, electro-magnetic 

coupling and dielectric and magnetic permeability. 

However, the Poisson’s ratio varies through the following 

relation (Mohammadimehr et al. 2016c): 

*

12 12

CNT

CNT m mV V  = +  (5) 

Also, the CNTs volume fraction is presented by *

CNTV  

and defined as: 

* CNT
CNT

CNT CNT
CNT CNT

m m

w
V

w w
 

 

=
   

+ −   
     

(6) 

in which wCNT denotes the mass density of the CNTs and 

ρCNT and ρm are densities of the CNTs and matrix, 

respectively. 

The CNTs are distributed FG in the thickness direction 

of the cylindrical shell as five different following patterns 

(Mohammadimehr et al. 2018c): 

( )* for  distributionCNT CNT UniformV V=
 

(7) 
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= − − 
   
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 
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(10) 

( )* for  distribution
2

2 1CNT CNT

z
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h

 
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
−
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(11) 

Fig. 2 shows the mentioned patterns respect to the 

thickness of the shell. 

Furthermore, the properties of the CNTs reinforcement 

and PVDF are considered as temperature-dependent. The 

following polynomial function is estimated for dependence 

to temperature for CNTs (Jooybar et al. 2016): 

2 3

0 1 2 3( ) (1 )CNTfP T P P T P T P T= +  +  + 
 

(12) 

P0, P1, P2, and P3 are temperature-dependent properties 

coefficients of CNTs and ΔT indicates temperature change 

from the room temperature. 

Temperature-dependent properties of PVDF can be 

obtained using experimental methods (Laiarinandrasana et 

al. 2009). The following function is estimated to this 

purpose as follows: 

5 3 4

5 3 8 2

10 12

( ) (1.1905) (1.5783 10 )

(8.3608 10 ) (2.2122 10 )

(2.9257 10 ) (1.5519 10 )

mfP T T T

T T

T

= − + 

−  + 

−  + 

 
(13) 
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Fig. 2 Various patterns of CNTs distribution along the 

thickness of the FG-CNTRC shell. ( *

CNTV =0.17) 

 

 

where T is the temperature in Kelvin. 

 

2.2 Displacement field  
 

Since the considering shell is thick, the TSDT or 

Reddy’s theory is employed to describe the displacement 

components as follows (Reddy 2004): 

1
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( ) ( ), , , , ,zu x z t w x t =
 

By satisfying the stress-free condition in the surfaces of 

the shell which is equivalent to 0xz z = =  at / 2z h= 

, Eq. (14) can be simplified in the following form (Yahiaoui 

et al. 2018): 
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( ) ( ), , , , ,zu x z t w x t =
 

in which ux, uθ and uz are the displacements of an arbitrary 

point of the shell in x, θ and z directions, respectively and u, 

v and w represent the middle plane of the shell displacement 

components in x, θ and z directions, respectively. Also, φ1 

and φ2 are the rotation of the middle plane about θ and x 

axes and 2

1 4 3c h= , respectively. 

The strain-displacement relations based on the TSDT 

displacement field can be written as:  

(0) (1) 3 (3)

1xx xx xx xxzk c z k = + +
 

(16) 

(0) (1) 3 (3)
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(0) 2 (2)

13z z zc z k   = −
 

where (0)

xx , (0)

 , (0)

x , (0)

xz  and (0)

z  are the middle 

plane strain components and ( )k

ijk (i, j=x, θ, z and k=1, 2, 3) 

are the curvatures and are given in “Appendix A”. 

 

2.3 Stress-strain relations 
 

The constitutive relations for an MEE FG-CNTRC 

cylindrical shell are defined as follow (Mohammadimehr et 

al. 2018a): 
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(17) 

where eij piezo-electric coefficients, qij piezo-magnetic 

coefficients, Ei, and Hi are electric and magnetic fields 

components, respectively and Qij are stiffness matrix 

components and are defined as follow (Mohammadimehr et 

al. 2018b): 
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Also, the electric and magnetic displacements can be 

introduced using the following relations (Shooshtari and 

Razavi 2016): 
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(20) 

where sii, dii, and µii are dielectric permeability, magneto-

electric coefficients and magnetic permeability, respectively 

and Di and Bi represent electric and magnetic 

displacements, respectively. 

The electric and magnetic fields should be selected in 

such a way to satisfy Maxwell’s relation. So they can be 

expressed as follows (Arshid et al. 2019): 

,E = −  (21) 

H = −  (22) 

The electric and magnetic potentials are distributed 

through the thickness as follows (Arefi et al. 2018): 
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where VE and Ω are the external applied electric and 

magnetic potential, respectively. Accordingly, the electric 

and magnetic fields components in three directions are as: 
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3. Governing equations 
 

3.1 Hamilton’s principle 
 

Hamilton’s principle is used to extract the motion 

equations. This principle expresses that the difference of 

strain energy and the sum of kinetic energy and external 

work variations in a specific period should be equal to zero 

as follow (Arshid and Khorshidvand 2018, Bennoun et al. 

2016, El-Haina et al. 2017):  

∫ (𝛿𝑈 − 𝛿𝐾 − 𝛿𝑊)d𝑡 = 0

𝑡2

𝑡1

 (27) 

Here strain and kinetic energies respectively are shown 

by U and K. Also W indicates the external work.  
 

3.2 Strain energy 
 

Following relation can be employed to obtain the strain 

energy of the shell (Amir et al. 2018): 

𝑈 =  
1

2
∭(𝜎𝑖𝑗𝜀𝑖𝑗 − 𝐷𝑖𝐸𝑖 − 𝐵𝑖𝐻𝑖)𝑅d𝑥d𝜃d𝑧

𝑥 𝜃 𝑧

 (28) 

Using variational formulation, Eq. (28) is written in the 

following form: 

𝛿𝑈 =  ∫ ∬ (

𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝜃𝜃𝛿𝜀𝜃𝜃 + 𝜏𝑥𝜃𝛿𝛾𝑥𝜃

+𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜏𝜃𝑧𝛿𝛾𝜃𝑧

−𝐷𝑥𝛿𝐸𝑥 − 𝐷𝜃𝛿𝐸𝜃 − 𝐷𝑧𝛿𝐸𝑧

−𝐵𝑥𝛿𝐻𝑥 − 𝐵𝜃𝛿𝐻𝜃 − 𝐵𝑧𝛿𝐻𝑧

)

𝑥 𝜃

ℎ/2

−ℎ/2

𝑅𝑑𝑥𝑑𝜃𝑑𝑧 (29) 

Substituting stress-strain relations using Eq.s (17), (19) 

and (20) in Eq. (28), yields: 
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(30) 

The mentioned coefficients in Eq. (30) are defined as: 
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(31) 
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(36) 

 

3.3 Kinetic energy 
 

The kinetic energy of the MEE FG-CNTRC shell can 

be determined using the following relation (Arshid & 

Khorshidvand 2017, Belmahi et al. 2018): 

𝐾 =  
1

2
∭ 𝜌(𝑧) ((

𝜕𝑢𝑥

𝜕𝑡
)

2

+ (
𝜕𝑢𝜃

𝜕𝑡
)

2

+ (
𝜕𝑢𝑧

𝜕𝑡
)

2

) 𝑅d𝑥d𝜃d𝑧

𝑥 𝜃 𝑧

 (37) 

The variations of the kinetic energy in a specific period 

is as follow: 
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(38) 

Substituting displacements from Eq. (15) into Eq. (38), 

the following relation for the kinetic energy variations can 

be obtained: 

 

(39) 

Accordingly: 
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(40) 

in which: 

( ) d , 0,1,...,6k

k
z

I z z z k= =  
(41) 

 

3.4 External work 
 

In the present research the total work is the sum of 

electro-magnetic potentials and viscoelastic foundation 

force (Ozdemir 2018): 

ext foundW W W= +
 (42) 

in which Wext and Wfound respectively indicate the work of 

electro-magnetic loads and viscoelastic foundation force. 

The following expression can be used to obtain the work 

of electro-magnetic loads (Ghorbanpour Arani et al. 2017b, 

Mohammadimehr et al. 2017b): 

2 2
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1 1
d d
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ext x
x

w w
W N N R x

x R
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
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= +    

      
 

 
(43) 

where ext

xN  and extN
 are the external loads in the axial 

and circumferential directions and consist of electro-

magnetic loads as follows: 

,ext E H

x x xN N N= +
 (44) 

ext E HN N N  = +
 (45) 

Here, E

iN  and H

iN (i= x, θ) are the electro-magnetic 

loads and are defined as: 

   31 322 ,E

E E

x eN eN V = −
 

(46) 

   31 322H H

xN qN q = − 
 

(47) 

Also, the variations of work done by the visco-Pasternak 

elastic foundation which the shell is resting on it can be 

written as (Duc & Quan 2015, Meksi et al. 2015): 

d ?found found
A

W F w A =   
(48) 

in which the foundation force consists of three parts: the 

spring force, the shear layer force and the damping force 

(Amir 2016, Ghorbanpour Arani et al. 2018b): 

2  found W G d

w
F K w K w C

t


= −  +

  
(49) 

It is noticeable that KW, KG, and Cd represent Winkler, 

Pasternak and damping constants, respectively and 

Laplacian operator is shown by 2 . 

 

3.5 Governing motion equations 
 

The motion equations are achieved based on Eqs. (30), 

(40), (42) and Hamilton’s principle as follows: 
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4. Navier’s method 
 

According to Navier’s method, the displacement 

components are defined such a way to satisfy the boundary 

condition for the simply supported ends cylindrical shell. 

Therefore, the displacement variables can be expressed as 

follows (Zaoui et al. 2019): 
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(57) 

where 

,m n

r

m n
P

L

 



= =

 
(58) 

Maximum values of displacements, electric and 

magnetic potentials which are unknown respectively are 

shown by u , v , w , 
1 , 

2 ,   and  . Should be 

noted that m and n are the axial and circumferential wave 

numbers, respectively, and ω represents the natural 

frequency. Substituting the functions of Eq. (57) in the Eq.s 

(50)-(56), yields: 

     ( )   2 0K C M di + − =
 

(59) 

Table 1 Temperature-independent material properties of 

SWCNTs (Mohammadimehr et al. 2018a) 

Properties Value 

ν 0.175 

ρ (kg/m3) 1400 

e31 (C/m2) 0 

q31 (N/Am) 22 

d33 (Ns/CV) 0 

μ33 (Ns2/C2) 0.25 

s33 (C/Vm) 0 

 

Table 2 Efficiency parameters of CNTs (Mohammadimehr 

et al. 2018a) 

*

CNTV  η1 η2 η3 

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 

 

Table 3 Temperature-independent material properties of 

PVDF (Mohammadimehr et al. 2018b) 

Properties Value 

ρ (kg/m3) 1780 

e31 (C/m2) -0.13 

e32 (C/m2) -0.45 

e24 (C/m2) -0.276 

e15 (C/m2) -0.009 

d33 (Ns/CV) -46 10-12 

μ33 (Ns2/C2) 12.5664 10-7 

s11=s22=s33 (C/Vm) 16 10-9 

 

 

in which: 

   1 2, , , , , ,
T

d u v w    =
 

(60) 

The components of [K], [M] and [C] matrices are given 

in “Appendix B”. In order to determine the natural 

frequencies of the shell, the eigenvalue problem of Eq. (59) 

should be solved. 

 

 

5. Results and discussion 
 

5.1 Validation of the results 
 

The results for free vibration of MEE FG-CNTRC thick 

cylindrical shell are presented in this section. The MEE 

composite shell is made up from PVDF which is reinforced 

by CNTs. The temperature-independent properties and the 

efficiency parameters of CNTs and also the temperature-

independent properties of PVDF are presented in Tables 1-

3. 

The temperature-dependent properties of CNTs and its 

coefficients are listed in Tables 4 and 5. 
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Table 4 Temperature-dependent material properties of CNTs 

(Jooybar et al. 2016) 

T (Kelvin) E11 (TPa) E22 (TPa) G12 (TPa) 

300 5.6466 7.0800 1.9445 

500 5.5308 6.9348 1.9643 

700 5.4744 6.8641 1.9644 

1000 5.2814 6.6220 1.9451 

 

Table 5 Coefficients of temperature-dependent material 

properties for CNTs (X0ij=Xij at 300 K) (Jooybar et al. 2016) 

 P0 P1 P2 P3 

E11/E011 1 -1.584910-4 3.539010-7 -3.707010-10 

E22/E022 1 -1.585210-4 3.540810-7 -3.709010-10 

G12/G012 1 8.309310-5 -1.780310-7 8.565110-11 

 

Table 6 Temperature-dependent material properties of 

PVDF (Laiarinandrasana et al. 2009) 

T (oC) E (GPa) ν 

-50 3.5 0.384 

-30 3 0.384 

-20 2.8 0.384 

-10 2.6 0.384 

0 2.4 0.384 

20 2 0.384 

 

Table 7 The natural frequencies (Hz) for a cylindrical panel. 

(L=5.0 m, R=1.0 m, h= 0.01 m, Ex= 120 GPa, Ey= 10 GPa, 

Gxy= 5.5 GPa, ρ= 1700 kg/m3, νy= 0.27, n=1) 

 m 

 1 2 3 4 5 6 

Liu et al. 2012 (S-

DQFME) 
741 416 258 198 209 266 

Liu et al. 2012 

(Exact) 
741 416 258 198 209 266 

Greenberg & 

Stavsky 1980 
765 430 266 202 211 270 

Mohammadimehr 

et al. 2018b 
725 - - - - - 

Present study 741.324- 415.846- 256.596- 194.350- 203.539- 259.921 

 

 

Fig. 3a shows the variation of mechanical properties of 

CNTs versus temperature according to Eq. (12). It’s seen 

that increasing the temperature caused smooth decreasing in 

mechanical properties of CNTs. In Table 6 the temperature-

dependent properties of PVDF are seen and Fig. 3b shows 

the effect of temperature variations on properties of PVDF 

according to Eq. (13).  

By comparison Figs. 3a and b, it can be found that 

PVDF mechanical properties depend on temperature more 

than CNTs.  

To validate the results, firstly the frequencies of a 

cylindrical panel are obtained and presented in Table 7.  

The results show a good agreement between the present 

results and previous studies, especially in the lower modes. 

In addition, the results for CNTRC panel are obtained and 

 
(a) 

 
(b) 

Fig. 3. Effect of temperature variations on mechanical 

properties of a) CNTs; b) PVDF 
 

 

compared with those of Shen and Xiang (2014) in Table 8. 

The natural frequencies are given in this table for different 

volume fractions and CNTs distribution patterns. In this 

case, also the results have good agreement with the previous 

one, so the reliability of the present study results is verified. 

Accordingly, the results of the present research will be 

obtained in the following. 
 

5.2 Parametric study 
 

A detailed case study is presented to consider the effects 

of different parameters such as CNTs volume fraction 

variations, various CNTs distribution types, temperature 

variations, aspect ratios, viscoelastic foundation parameters, 

orientation angle, electro-magnetic potentials and wave 

numbers in axial and circumferential directions on natural 

frequencies. Also, a comparison between FSD and TSD 

theories results are presented in some cases. It is noted that 

by setting c1 is equal to zero, the equations and results are 

obtained based on FSDT. 
Fig. 4a and b show the effect of temperature variations 

on the frequency of two patterns of CNTs distribution i.e. 

UD and FG-V. By increasing the temperature, as shown in 

Fig. 3a and b the stiffness of the structure will be reduced 

and since the frequency is generally related to the root of 

ratio of stiffness to density, it decreases, as seen in Figs. 4a 
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Table 8 The natural frequencies of a FG-CNTRC cylindrical 

panel (L=R=2 cm, h= 0.1 cm, ϕr= 1 rad 

(Ω=ω[(Rϕr)2/h]√(ρm/Em)) 

   (m,n) 

Distribution 

pattern 
 *

CNTV  (1,1) (2,1) (1,2) (2,2) 

UD 

Shen 

and 

Xiang 

(2014) 

0.12 18.5407 21.0260 49.3244 50.0089 

0.17 23.0831 26.4252 61.8074 62.7873 

0.28 26.5256 29.6410 69.6560 70.4044 

Present 

study 

0.12 17.9196 20.6091 48.5177 49.4781 

0.17 22.3094 25.8875 60.8132 62.1155 

0.28 25.6388 29.0766 68.4888 69.6662 

FG-V 

Shen 

and 

Xiang 

(2014) 

0.12 17.1701 19.8495 45.6217 46.5280 

0.17 21.4163 25.0139 56.8414 58.1277 

0.28 24.4865 27.9233 65.0400 66.0279 

Present 

study 

0.12 16.2408 19.0724 44.7678 45.7315 

0.17 20.2374 24.0801 55.8335 57.1777 

0.28 23.6196 27.2616 64.1162 65.4257 

FG-A 

Shen 

and 

Xiang 

(2014) 

0.12 17.0885 20.4248 47.3984 52.8486 

0.17 21.1943 25.5235 58.8255 65.2632 

0.28 24.9235 29.3936 68.3134 76.8264 

Present 

study 

0.12 16.5416 19.5730 44.7566 46.1010 

0.17 20.6176 24.6564 55.7308 57.5732 

0.28 23.5909 27.4804 63.7875 65.2758 

FG-X 

Shen 

and 

Xiang 

(2014) 

0.12 22.0781 26.1749 56.9005 66.2032 

0.17 27.3541 32.7020 71.2389 82.7012 

0.28 32.1718 38.7997 79.1357 94.2125 

Present 

study 

0.12 19.8521 22.5305 52.2571 53.2012 

0.17 24.7420 28.4712 65.5765 66.9202 

0.28 28.3729 32.4865 72.0374 73.5316 

 
 

and b that the natural frequency is a decreasing function of 

temperature. Also by comparing these two figures, it can be 

found that the natural frequency of the UD is more than 

FG-V. Also, it is seen that the radius to thickness ratio (R/h) 

has a significant impact on the natural frequency. As the R/h 

ratio increases, the natural frequency will be reduced due to 

reducing the stiffness of the plate. 
Table 9 illustrates the frequency of different vibration 

modes. The results of this table are for the room 

temperature, in the absence of elastic foundation and are for 

five mentioned CNTs distribution patterns. By enhancement 

the CNTs volume fraction, the stiffness of the shell will be 

increased due to high elasticity modulus of CNTs, so the 

frequency leads to increases. Comparing different CNTs 

distribution patterns shows that the FG-X pattern has the 

most values of the frequency because of this in this type, the 

CNTs are more in the surfaces of the shell rather than the 

mid-surface. But in FG-O distribution, the CNTs are more 

distributed in around of mid-surface that there isn’t any 

strain there. Consequently, the most and the least values of 

the natural frequencies are respectively for FG-X and FG-O 

patterns. For other patterns of FG distribution of CNTs a 

similar thing happens. 

 
(a) 

 
(b) 

Fig. 4 Effect of Temperature variations on the 

fundamental natural frequency of the MEE FG-CNTRC 

Cylindrical circular shell for a) UD; b) FG-V CNTs 

distribution. (L=1.92 cm) 

 

Table 9 The Dimensionless natural frequencies of an MEE 

FG-CNTRC thick circular cylindrical shell (R/L=2, R=3.84 

cm, h=1 cm) 

  (m,n) 

Distribution 

pattern 
*

CNTV  (1,1) 

103 

(2,1) 

103 

(1,2) 

103 

(2,2) 

103 

(1,3) 

103 

(2,3) 

103 

UD 

0.12 5.2945 5.4627 10.491 10.582 15.707 15.768 

0.17 6.9154 7.1361 13.704 13.823 20.517 20.597 

0.28 7.4184 7.6527 14.703 14.829 22.014 22.098 

FG-V 

0.12 5.2732 5.3525 10.499 10.556 15.727 15.767 

0.17 6.9045 6.9886 13.756 13.823 20.606 20.654 

0.28 7.5360 7.5955 15.020 15.072 22.487 22.529 

FG-A 

0.12 4.8862 5.3535 10.523 10.610 15.753 15.807 

0.17 6.2603 6.2973 13.800 13.916 20.659 20.732 

0.28 7.3530 7.3967 15.027 15.212 22.536 22.106 

FG-X 

0.12 5.3101 5.4748 10.566 10.735 15.786 15.886 

0.17 6.9639 7.1805 13.923 14.240 20.724 20.888 

0.28 7.6180 7.8443 15.097 15.702 22.609 22.695 

FG-O 

0.12 4.3121 4.4852 9.525 9.618 14.757 14.821 

0.17 5.9655 5.1940 12.802 12.925 19.664 19.747 

0.28 6.6219 6.8729 14.106 14.241 21.617 21.709 
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(a) 

 
(b) 

 
(c) 

Fig. 5 Effect of orientation angle variations on the 

fundamental natural frequency of Magneto electro elastic 

thick cylindrical panel for a) R/h ratio variations; b) axial 

half sine wave number and both FSD and TSD theories; 

c) L/h ratio variations. (n=1) 

 

 

Fig. 5a shows the effect of orientation angle on the 

results. It is seen that as the panel cross-section becomes 

circular, the natural frequency raises and Fig. 5b illustrates 

the effect of the axial wave number (m) variations on the 

results for both of FSD and TSD theories. Although the 

frequency reduced in the first numbers of axial wave 

number, it increases after a specific value of m. Also the  

 

Fig. 6 Effect of various types of CNTs distribution and 

axial half sine wave number (m) on the fundamental 

natural frequency (n= 1) 

 

 
(a) 

 
(b) 

Fig. 7 Comparing the FSD and TSD theories results on 

the influence of *

CNTV on the natural frequency of MEE 

FG-CNTRC shell versus a) R-to-h ratio; b) L-to-h ratio 

 

 

decreasing rate of frequency with regard to R/h ratio, for the 

higher orientation angle is more than lower ones. This fact 

can be found by comparing different orientation angle and 

their slope. Fig. 5b also depicts that the obtained results 

based on FSDT have higher values rather than those of 

TSDT due to higher accuracy of TSDT. In Fig. 5c, it is seen  
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Fig. 8 Effect of orientation angle variations and CNTs 

volume fraction on the fundamental frequency for TSD 

and FSD theories. (R/L=2, m=n= 1) 

 

 
Fig. 9 Effect of Winkler-Pasternak elastic foundation 

parameters on the fundamental natural frequency of 

cylindrical circular shell. (R/L=2) 

 

 

that as the shell becomes more cylinder, the frequency 

decreases. By increasing the aspect ratio of the shell, the 

stiffness will be reduced and so the frequency decreases. 

Fig. 5 is presented for UD, *

CNTV =0.12 and room 

temperature. 

Fig. 6 is comparing different FG distribution patterns of 

CNTs respect to half axial sine wave number and it 

confirms the previous statements that the FG-X has the 

maximum and FG-O has the minimum values of the 

frequencies. This figure is plotted for the circular cross-

section, *

CNTV =0.12 and the room temperature.  

Influence of increasing volume fraction of CNTs for 

both FSD and TSD theories versus R/h and L/h ratio is 

presented in Figs. 7a and b. It is found that as stated before, 

due to the high elastic modulus of CNTs, their increasing 

will leads the stiffness and following it, the frequency of the 

structure to increase. Also, it can be concluded that the 

TSDT results for thicker states are more accurate rather 

than FSDT, while their difference in the shell with low 

thickness is negligible. 

Fig. 8 shows the effect of orientation angle increasing 

on the fundamental natural frequency.  

 
(a) 

 
(b) 

Fig. 10 Effect of damping constant of elastic foundation 

on the natural frequency of the shell for a) various types 

of CNTs distribution; b) different orientation angle. 

(KW=10e6, KG=10e4) 
 

 

The results that have been presented so far are in 

absence of viscoelastic foundation but in Fig. 9 the effect of 

Pasternak foundation on the natural frequency of the shell is 

considered. This figure depicts the effect of both Winkler or 

spring constant and Pasternak or shear layer constant 

simultaneously. It is seen that enhancement both of the 

mentioned constants, will increase the stability and rigidity 

of the shell and reduce its vibrations, so its frequency leads 

to higher values. Also, it can be found that the effect of 

Pasternak constant is more than that of Winkler. 

Effect of damping constant is presented in Fig. 10. Fig. 

10a shows this effect for various patterns of CNTs 

distribution and Fig. 10b shows it for different orientation 

angle of the cross-section. Both of the mentioned figures 

indicate that unlike the Winkler and Pasternak constants, by 

enhancing the viscous constant, the structure’s rigidity 

reduces and following it the vibration of the shell increases.  

Fig. 11 compares different types of elastic foundation 

and depicts the effect of them on the vibrational behavior of 

the shell. As it can be seen in this figure, the Winkler-

Pasternak foundation has the most stability and vice versa, 

the visco-Winkler has the least. It means adding the 

viscoelastic foundation to the structure will increase its 

vibrations. But regardless of the viscous models, it can be  
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Fig. 11 Comparing effect of different models of elastic 

foundation on the results 

 

 
(a) 

 
(b) 

Fig. 12 Effect of different values of (m, n) on the 

fundamental frequency of the structure versus a) length to 

thickness ratio; b) radius to thickness ratio. (R/L=2) 

 

 

concluded adding the elastic foundation generally can be 

reduced the vibrations of the structure and consequently the 

frequencies are raising.  

In Figs. 12a, and b, the natural frequencies of first for 

vibrational modes are plotted respect to L/h and R/h ratios. 

As it can be expected the influence of L/h and R/h ratios 

variations on the higher modes are more than the lower  

 
Fig. 13 Effect of electric and magnetic potentials on the 

natural frequency of the MEE FG-CNTRC cylindrical 

circular shell 

 

 

ones. This can be found by noting the slope of the curves. 

Effect of applied electric and magnetic potentials is 

investigated in Fig. 13 simultaneously. Although the 

frequency is an increasing function of electric potential, it is 

seen that increasing the magnetic potential, leads the natural 

frequency to decrease. So electric and magnetic potentials 

manner are different from each other. 

 

 

6. Conclusions 
 

The present study investigated vibrational behavior of 

MEE composite cylindrical shell which was reinforced by 

CNTs and was rested on visco-Pasternak elastic foundation. 

The matrix of the composite shell was made up of PVDF 

and the composite properties were assumed to be varied by 

temperature variations. Since the shell was thick, TSDT was 

used to describe the displacement components and based on 

Hamilton’s principle and variational formulation the motion 

equations were obtained and solved via Navier’s method for 

the simply supported ends shell and effect of different 

parameters such as temperature variations, orientation angle 

variations, increasing CNTs volume fractions, various 

patterns for CNTs distribution, axial and circumferential 

wave numbers, L/h and R/h ratios, electro-magnetic 

potentials and adding viscoelastic foundation to the 

structure were considered and the following results were 

obtained: 

•  By temperature raising, due to decreasing the 

stiffness of the nano-composite, and because of the direct 

relationship between frequency and stiffness, the natural 

frequency of the shell decreases. 

•  Enhancement of CNTs volume fraction leads to 

increase the stiffness and the frequency. 

•  By comparing different patterns of CNTs FG 

distribution, it is found FG-X pattern has the most values of 

frequency and FG-O has the least ones. Since in FG-X the 

CNTs are more in the exterior and interior surfaces of the 

shell, so its frequency increases, but for FG-O pattern, the 

CNTs are distributed more around mid-surface. 

•  As the radius of the shell respect to its thickness 
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increases leads the frequency to decrease. 

•  As the shell becomes more cylinder the frequency 

decreases. 

•  By increasing the orientation angle of the panel, the 

frequency increases. So the circular shell has the lowest 

value of the frequency. 

•  Increasing axial wave number leads the frequency to 

increases. 

•  Adding elastic foundation enhances the stiffness of 

the shell and so the frequency increases. 

•  Increasing damping constant reduces the stiffness 

and natural frequency of the structure. 

•  As the shell becomes thicker, TSDT presents more 

accurate results rather than FSDT. 

•  Unlike the electric potential, increasing the magnetic 

potential lead the frequency to reduce. 
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Appendix A 
 
The middle plane strain components and the curvatures 

based on Sanders assumptions are as follows: 
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Appendix B 
 

The non-zero arrays of [K], [M] and [C] matrices are as 

follows: 
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The used coefficients in “Appendix B” are defined as 

follows: 
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