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1. Introduction 
 

Due to the continuous depletion of the ozone layer and 

global warming, awareness of the eco-friendlier 

construction materials has been increasing. In view of this, 

GPC has gained significant attention by the research 

community, construction practitioners, and design 

engineers.  

 It is very well known that GPC can be produced by 

utilizing several industrial by-products such as fly ash (FA), 

metakaolin (MK), slag (SG), rice husk ash (RHA), and high 

calcium wood ash (HCWA) through polymerization and 

using alkaline solution. The quality and efficiency of GPC 

will depend upon activators and type and source of 

aluminosilicates. It possesses superior mechanical and 

durability properties against conventional concrete and 

several studies were reported on GPC (Guo et al. 2010, 

Pacheco-Torgal et al. 2011, Shi et al. 2012, Hardjito et al. 

2004, Sumajouw et al. 2007, Fernandez-Jimenez et al. 

2006).  

In view of difficulty in conducting experiments 

numerous times and to reduce time and effort, analytical 

models/numerical models will be useful to predict the 

mechanical properties of several concretes. Several  
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advanced statistical models, namely, Artificial Neural 

Network,  Gaussian regression process, relevance vector 

machine, least squares support vector machine, extreme 

learning machine and multivariate adaptive regression 

splines are available in the literature to train the data and to 

predict the response of the structural components or 

mechanical and durability properties of concrete mixes 

(Yuvaraj et al. 2013a, Yuvaraj et al. 2013b, Yuvaraj et al. 

2014a, Yuvaraj et al. 2014b, Shantaram et al. 2014, Vishal 

et al. 2014, Susom Dutta et al. 2017, Jaideep Kaur et al. 

2017, Erdem 2017, Engin et al. 2015, Mansouri et al. 2016, 

Prasanna et al. 2018).  

An artificial neural network (ANN) is a mathematical 

model developed from the inspiration of biological neural 

networks. ANN consists of group of artificial neurons 

interconnected to each other, and it processes information 

using a connectionist approach to computation. ANN model 

for predicting fracture toughness and tensile strength was 

successfully demonstrated by Mohammed and Sudhakar 

(2002). Ince (2004) predicted facture parameters of concrete 

by artificial neural networks and compared the results of 

two-parameter model (TPM) and ANN. ANN was proven to 

be successful in civil engineering (Hakan 2009, Siddique et 

al. 2011, Loizos and Karlaftis 2006).  

MARS is relatively a new technique used for modeling 

data depicting non-linear relationship (Friedman, 1991). It 

establishes the relationship in non-linear form between the 

response and predictor variables and identifies the 

interactions and conditional relationships among the 

predicator variables. MARS was successfully applied in 
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Abstract.  This paper examines the applicability of artificial neural network (ANN) and multivariate adaptive regression 

splines (MARS) to predict the compressive strength of bacteria incorporated geopolymer concrete (GPC). The mix is composed 

of new bacterial strain, manufactured sand, ground granulated blast furnace slag, silica fume, metakaolin and fly ash. The 

concentration of sodium hydroxide (NaOH) is maintained at 8 Molar, sodium silicate (Na2SiO3) to NaOH weight ratio is 2.33 

and the alkaline liquid to binder ratio of 0.35 and ambient curing temperature (28°C) is maintained for all the mixtures. In ANN, 

back-propagation training technique was employed for updating the weights of each layer based on the error in the network 

output. Levenberg-Marquardt algorithm was used for feed-forward back-propagation. MARS model was developed by 

establishing a relationship between a set of predictors and dependent variables. MARS is based on a divide and conquers 

strategy partitioning the training data sets into separate regions; each gets its own regression line. Six models based on ANN and 

MARS were developed to predict the compressive strength of bacteria incorporated GPC for 1, 3, 7, 28, 56 and 90 days. About 

70% of the total 84 data sets obtained from experiments were used for development of the models and remaining 30% data was 

utilized for testing. From the study, it is observed that the predicted values from the models are found to be in good agreement 

with the corresponding experimental values and the developed models are robust and reliable. 
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various fields including biological sciences, cancer research 

(Mallick et al. 1997), communication (Ekman and Kubin 

1999), Engineering (Jin et al. 2000, Nii et al. 2009) and 

genetics (York and Eaves 2001). From the available 

literature, it is observed that MARS is employed in various 

fields and to the best of authors’ knowledge, no research 

investigations are reported in the field of GPC. 

In the present investigation, it is proposed to employ 

artificial neural network and MARS to predict the 

compressive strength of various bacterial based GPC mixes. 

 

 
2. Compressive strength of various GPC mixes 

 

Materials used for preparation of GPC are manufactured 

sand (M-sand), ground granulated blast furnace slag 

(GGBS), silica fume (SF), metakaolin (MK) and low 

calcium fly ash (ASTM class F). Physical properties of fly 

ash (FA), GGBS, SF and MK are presented in Table 1.  

Combination of NaOH solution and Na2SiO3 solution 

was used as alkaline activator solution (AAS). SP used was 

Master Glenium Sky 8233. Several trial mixes (range of 

molarity: 4 to 16; the ratio of alkaline liquids to GGBS: 0.3 

to 0.45; the ratio of sodium silicate to sodium hydroxide: 2 

to 2.5) were carried out and the desired mechanical 

properties were obtained for the combination of 8 Molar, 

the ratio of sodium silicate (Na2SiO3) to NaOH weight 

ratio as 2.33 and the ratio of alkaline liquid to binder ratio 

as 0.35. Ambient curing temperature (28oC) is maintained 

for all the mixtures. Two new Bacillus strains such as 

Bacillus pumilus (B1) and Bacillus velezensis (B2) isolated 

from manufacturing sand were used for preparation of GPC. 

The cell concentration was 106 cells/ ml. Compressive 

strength is determined for four broader mixes with and 

without bacteria. The size of the cube is 150mm. For all the 

mixes, GGBS is fixed as 70%. Molarity is 8M and SP is 

2.5% of total cementitious materials. There are total four 

control mixes (without bacteria), namely, 8M1C (GGBS = 

70% and FA = 30%), 8M2C (GGBS = 70%, FA=15%, 

SF=10%, MK=5%), 8M3C (GGBS=70%, FA=17%, 

SF=5%, MK=8%) and 84M4C (GGBS=70%, FA=12%, 

SF=10%, MK=8%). Each control mix is incorporated with 

bacteria (B1 or B2) in varied proportions i.e. 12.5, 25, 37.5, 

50, 62.5, 75, 87.5 and 100 ml/litre. Detailed input and 

output data is shown in Table 3. 

Table 2 shows the physical properties coarse and fine 

aggregates. 

 
 

3. Artificial neural network 
 

ANNs learn through the example problems rather than 

programming. Although detailed methodology of ANN has 

been reported in literature (Mohammed et al. 2002, Ince 

2004, Kamarthi and Pittner 1999), a brief description about 

the development of model is described below. Neural 

networks can be classified into two different categories, 

feed-forward and feed-back networks. The feedback 

networks contain nodes that can be connected to them, 

enabling a node to influence other nodes as well as it. In 

Feed-Forward Networks (FFNs), the signals from the input  

Table 1 Physical properties of GGBS, SF, MK and FA 

Physical Properties GGBS SF MK FA 

Specific gravity 2.25 2.95 2.5 2.05 

Mean Particle size 

(MPS) (µm) 
12.56 79.38 6.25 14.06 

Multipoint BET 

Fineness (m²/kg) 
3,700 21,410 14,970 2,270 

Density (Kg/m3) 1275 410 840 800 

 

Table 2 Physical properties of coarse aggregates and Fine 

Aggregates 

Physical Properties 20mm 12.5mm M-sand 

Specific gravity 2.84 2.84 2.78 

Water Absorption (%) 0.48 0.51 2.35 

Dry Loose Bulk 

Density (Kg/m3) 
1499 1472 1627 

Material finer than 

75-µ IS Sieve (%) 
0.12 0.16 4.40 

Fineness Modulus 6.5 6.3 2.68 

Impact Value (%) 18 17 - 

Crushing Value (%) 21 22 - 

Flakiness Index (%) 7 5 - 

Elongation Index (%) 8 9 - 

Clay Lumps (%) Nil Nil Nil 

 

 

neurons to the output neurons flow only in one direction. 

Feed-forward ANNs are straight forward networks (no 

loops) that associate inputs with outputs. They are 

extensively used in pattern recognition. This type of 

organisation is also referred to as top-down. The 

information distribution is parallel for all the nodes of the 

succeeding layer. Back-propagation neural networks are 

adopted in the present study, as they have a high capability 

of data mapping (Hecht 1990). 

The Back-propagation learning is based on the gradient 

descent along the error surface where in the weight 

adjustment is proportional to the negative gradient of the 

error with respect to the weight.  

In mathematical form 

Wk+1 = W +ndk (1) 

where, Wk is the weight matrix at η epoch k. The direction 

vector dk is negative of the gradient of the output error 

function ‘E’ and is given by the equation 2. 

dk = - E(wk) (2) 

There are two standard learning schemes for the back 
propagation algorithm, namely, on-line learning and batch 
learning. In on-line learning, the weights of the network are 
updated immediately after the presentation of each pair of 
input and target patterns. In batch learning, all the pairs of 
patterns in the training sets will be treated as a batch and the 
network is updated after processing of all training patterns 
in the batch. In either case the vector wk contains the 
weights computed during kth iteration, and the output error 
function E is a multivariate function of the weights in the 
network (Kamarthi et al. 1999) and is as follows (equation 
3). 
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Table 3 Compressive strength of bacteria incorporated geo polymer concrete 

Mix ID FA SF MK 
Bacillus 

bacteria ml/litre 

Average compressive strength, MPa 

1 Day 3 day 7 day 28 day 56 day 90 day 

8M1C 30 0 0 0 18.62 30.48 39.57 44.87 48.31 50.08 

8M1B112.5 30 0 0 12.5 19.24 31.97 42.37 48.39 51.09 53.17 

8M1B125 30 0 0 25 19.31 32.35 42.66 49.44 52.84 54.81 

8M1B137.5 30 0 0 37.5 19.38 32.63 42.97 50.46 53.43 55.96 

8M1B150 30 0 0 50 19.68 33.15 43.68 51.48 55.04 57.11 

8M1B162.5 30 0 0 62.5 19.72 33.93 46.17 53.71 57.49 59.17 

8M1B175 30 0 0 75 20.14 34.28 46.67 54.82 58.59 60.82 

8M1B187.5 30 0 0 87.5 20.21 34.39 46.78 54.96 58.74 60.98 

8M1B1100 30 0 0 100 20.24 34.5 46.89 55.1 58.89 61.13 

8M1B1112.5 30 0 0 112.5 20.17 34.29 46.66 54.91 58.77 60.95 

8M1B1125 30 0 0 125 19.98 34.06 46.58 54.73 58.47 60.78 

8M1B212.5 30 0 0 12.5 19.38 32.43 42.19 48.91 52.09 55.07 

8M1B225 30 0 0 23 19.41 32.73 43.26 50.65 54.17 56.32 

8M1B237.5 30 0 0 37.5 19.46 33.14 43.94 51.99 55.68 57.37 

8M1B250 30 0 0 50 19.94 33.55 45.1 53.42 57.18 59.35 

8M1B262.5 30 0 0 62.5 20.39 34.88 47.27 56.19 60.08 62.67 

8M1B275 30 0 0 75 20.44 35.64 47.66 57.06 61 63.31 

8M1B287.5 30 0 0 87.5 20.46 35.76 47.96 57.20 61.16 63.49 

8M1B2100 30 0 0 100 20.65 35.87 48.25 57.33 61.31 63.66 

8M1B2112.5 30 0 0 112.5 20.49 35.71 47.99 57.27 61.13 63.46 

8M1B2125 30 0 0 125 20.41 35.59 47.52 57.13 61.03 63.33 

8M2C 15 10 5 0 30.47 50.17 65.14 74.02 79.97 83.07 

8M2B112.5 15 10 5 12.5 31.68 52.87 68.98 80.07 85.67 89.17 

8M2B125 15 10 5 25 31.72 53.63 70.81 82.46 88.37 91.94 

8M2B137.5 15 10 5 37.5 31.87 53.98 71.36 83.53 89.07 92.08 

8M2B150 15 10 5 50 32.32 54.53 71.91 84.6 90.69 94.47 

8M2B162.5 15 10 5 62.5 32.89 55.58 75.19 88.43 94.17 98.07 

8M2B175 15 10 5 75 33.02 56.62 76.98 89.7 96.26 100.16 

8M2B187.5 15 10 5 87.5 33.09 56.73 77.15 90.26 96.90 100.75 

8M2B1100 15 10 5 100 33.15 56.84 77.32 90.82 97.54 101.34 

8M2B1112.5 15 10 5 112.5 33.11 56.75 77.13 90.61 96.91 100.73 

8M2B1125 15 10 5 125 33.07 56.6 77.29 90.09 96.37 100.59 

8M2B212.5 15 10 5 12.5 31.69 52.67 70.09 80.11 86.73 90.07 

8M2B225 15 10 5 25 31.75 53.89 71.19 83.57 89.63 93.26 

8M2B237.5 15 10 5 37.5 31.92 54.09 72.11 85.12 91.87 97.08 

8M2B250 15 10 5 50 32.54 55.14 74.06 88.45 94.9 98.75 

8M2B262.5 15 10 5 62.5 32.97 57.29 76.67 91.39 98.07 102.17 

8M2B275 15 10 5 75 33.18 57.72 77.99 92.23 99.15 103.06 

8M2B287.5 15 10 5 87.5 33.21 58.07 78.21 93.97 100.39 104.34 

8M2B2100 15 10 5 100 33.76 59.15 79.21 94.67 101.62 105.62 

8M2B2112.5 15 10 5 112.5 33.45 58.53 78.54 93.48 100.48 104.12 

8M2B2125 15 10 5 125 33.29 58.08 78.08 92.97 99.81 103.87 

8M3C 17 5 8 0 29.58 50.02 64.96 74.07 80.09 83.36 

8M3B112.5 17 5 8 12.5 30.69 52.97 68.99 81.19 86.09 89.39 

8M3B125 17 5 8 25 30.81 53.47 70.88 83.01 89.15 92.93 

8M3B137.5 17 5 8 37.5 31.07 54.01 71.52 83.97 90.34 93.97 
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Where, Ep(Wk) signifies the half - sum – of – squares 

error functions of the network output for a certain input 

pattern ‘p’. The purpose of the supervised learning (or 

training) is to ascertain a set of weight that can minimize 

the error E over the complete set of training pair. Every  

 

 

cycle in which each one of the training patterns is presented 

once to the neural network is called an epoch. The direction 

vector dk, expressed in terms of error gradient depends upon 

the choice of activation function. When the sigmoid 

function i.e. f(x) = (1+exp(-x))-1 is adopted, the back 

propagation algorithm turns as ‘Back propagation for the 

Sigmoid Adaline’(Widrow et al. 1990). Generally, the back-

propagation learning apply the weight change proportional 

to the negative gradient of the instantaneous error. It 

considers the only the first derivative of the instantaneous 

Table 3 (continued) 

8M3B150 17 5 8 50 31.38 54.54 72.15 85.31 91.52 95.36 

8M3B162.5 17 5 8 62.5 31.97 56.07 75.57 86.83 95.71 99.17 

8M3B175 17 5 8 75 32.09 56.66 76.83 90.51 97.21 101.29 

8M3B187.5 17 5 8 87.5 32.18 56.78 77.12 90.73 97.43 101.53 

8M3B1100 17 5 8 100 32.27 56.9 77.41 90.95 97.64 101.76 

8M3B1112.5 17 5 8 112.5 32.23 56.75 77.24 90.86 97.55 101.56 

8M3B1125 17 5 8 125 32.14 56.69 75.48 90.44 97.28 101.3 

8M3B212.5 17 5 8 12.5 30.62 52.81 68.99 80.37 86.97 90.08 

8M3B225 17 5 8 25 30.83 53.78 71 83.76 89.84 93.59 

8M3B237.5 17 5 8 37.5 31.01 54.11 71.97 85.39 91.32 97.09 

8M3B250 17 5 8 50 31.66 55.07 74.07 88.27 94.8 98.75 

8M3B262.5 17 5 8 62.5 32.10 57.09 76.31 91.17 97.19 101.73 

8M3B275 17 5 8 75 32.23 57.57 77.93 92.05 98.82 103.01 

8M3B287.5 17 5 8 87.5 32.53 58.28 78.11 93.07 100.39 104.62 

8M3B2100 17 5 8 100 32.83 58.98 79.23 94.89 101.96 106.23 

8M3B2112.5 17 5 8 112.5 32.5 58.19 78.43 93.11 100.28 105.17 

8M3B2125 17 5 8 125 32.08 57.97 77.99 92.63 99.12 104.11 

8M4C 12 10 8 0 30.32 51.73 67.88 77.97 84.39 88.11 

8M4B112.5 12 10 8 12.5 31.20 54.17 72.91 84.37 91.97 95.01 

8M4B125 12 10 8 25 31.47 55.34 74.04 87.4 93.93 98.27 

8M4B137.5 12 10 8 37.5 31.81 55.84 74.73 88.62 94.97 99.64 

8M4B150 12 10 8 50 32.15 56.33 75.41 89.83 96.56 101 

8M4B162.5 12 10 8 62.5 32.34 56.75 78.19 93.09 100.11 105.04 

8M4B175 12 10 8 75 32.53 57.16 79.49 94.45 101.5 106.09 

8M4B187.5 12 10 8 87.5 32.81 58.15 80.24 95.26 102.36 107.00 

8M4B1100 12 10 8 100 33.09 59.13 80.98 96.06 103.22 107.91 

8M4B1112.5 12 10 8 112.5 32.96 58.31 80.07 95.79 102.96 106.87 

8M4B1125 12 10 8 125 32.71 57.98 79.81 94.97 101.97 106.13 

8M4B212.5 12 10 8 12.5 31.40 54.17 72.67 85.07 92.19 95.17 

8M4B225 12 10 8 25 31.62 55.71 74.4 88.24 94.74 99.09 

8M4B237.5 12 10 8 37.5 31.92 56.39 75.17 89.99 96.37 101.08 

8M4B250 12 10 8 50 32.47 57.06 77.53 93.74 100.82 105.31 

8M4B262.5 12 10 8 62.5 33.20 59.87 80.37 97.53 104.81 109.81 

8M4B275 12 10 8 75 33.45 60.93 82.26 98.09 106.74 111.64 

8M4B287.5 12 10 8 87.5 33.56 61.01 82.58 99.59 107.31 111.98 

8M4B2100 12 10 8 100 33.66 61.09 82.9 99.87 107.44 112.31 

8M4B2112.5 12 10 8 112.5 33.47 60.98 82.47 99.47 107.13 111.17 

8M4B2125 12 10 8 125 33.11 59.18 82.07 99.03 106.79 109.57 
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error with respect to the weight. A more effective method 

can be derived by using Taylor series expansion of the error 

as a function of the weight vector 

...
2

1
)()( +++=+ wwgwEwwE T

 (4) 

Where, 𝑔 =
∆𝐸

∆𝑤
 is the gradient vector, and H =  

𝜕2𝑤

𝜕𝑤2 the 

hessian matrix. Newton’s method of Back propagation 

learning uses this Hessian matrix as a component of weight 

update. 
 

 

4. Multivariate adaptive regression splines  
 

The ultimate aim of the Multivariate adaptive regression 

splines (MARS) model is to capture the relationship 

between the dependent variable and the independent 

variable from the data. In general, MARS function can be 

represented by using the following equation (Friedman, 

1991) 

 

(5) 

where, 

a0 = coefficient of the constant basis function, or the 

constant term  

{a𝑚}1
𝑀 = vector of coefficients of the non-constant basis 

functions, m = 1, 2, …, M 

B𝑚
(𝑞)

 are the basis functions that are selected for 

inclusion in the model of qth order  

 

(6) 

where 

B𝑚
(𝑞)

(𝑥)  = vector of non-constant (truncated) basis 

functions, or the tensor product spline basis 

m = number of non-constant basis functions (1, 2… M) 

q = the power to which the spline is raised in order to 

control the degree of smoothness of the resultant function 

estimate, which in this case is equal to 1‘+’ = denotes that 

only positive results of the right-hand side of the equation 

are considered; otherwise, the functions evaluate to 0. 

Skm = indicates the (left/right) sense of truncation, which 

assumes only 2 values (± 1), representing the standard basis 

function and its mirror image. For Skm equal to +1, the basis 

function will have a value x-t if x>t and 0 if x≤ t. If it is -1, 

the basis function will have a value t-x when x<t, while 0 if 

x ≥ t 

Xv(k,m) = value of the predictor 

v(k,m) = label of the predictor (1≤v(k,m) ≤ n  

n = number of predictors 

tkm = “knot” location on the corresponding predictor 

space or region, or value that defines an inflection point 

along the range of the predictor 

K= maximum level or order of interaction, or the 

number of factors, in the mth basis function (1, 2,…, Km) 

Basis functions are a set of functions used to represent the 

information contained in one or more variables. Like 

principal components, basis functions re-express the 

relationship of the predictors with the dependent variable.  

Parameters of Mars can be estimated by the Penalized 

Least Squares (PLS) with the form: 

 

(7) 

In the above equation the first term represents the 

residual sum of squares and the second term represents the 

roughness penalty term, which is weighted by λ (known as 

the smoothing constant). 
The penalty term is large when the integrated second 

derivative of the regression function fʺ(x) is large – that is, 
when f (x) is ‘rough’ (with rapidly changing slope). At one 
extreme, when the λ is set to zero (and if all the values of x 
are distinct), the objective function simply interpolates the 
data. At the other extreme, if λ is very large, then the 
objective function will be selected so that its second 
derivative is everywhere zero, implying a globally linear 
least-squares fit to the data. 

When fitting a MARS model, knots are chosen in an 

iterative (recursive, i.e., from low to high interaction order) 

forward stepwise procedure. After over-fitting the model 

with so many basis functions, a backward spurning or 

snubbing procedure is applied in which those basis 

functions that contribute least to model fit are progressively 

removed. At this stage, a predictor variable can be dropped 

from the model completely if none of its basis functions 

contribute meaningfully to predictive performance. The 

sequence of models generated from this process is then 

evaluated using the Generalized Cross-Validation (GCV), 

and the model with the best predictive fit is finally selected. 

The GCV can be expressed as follows 

 

(8) 

Where, the numerator denotes lack-of-fit on the training 

data (sort of “bias”) and the denominator accounts the 

(inverse) penalty for increasing model complexity C(M) 

(sort of “variance”) 

N = observations 

C(M) = Cost penalty measures of a model  

M = basis functions 

Fm(xi)= basis function model 

MARS minimizes GCV (M), which reduces the bias of 

the model estimates but at the same time increases the 

variance due to additional parameters included to improve 

the fit of the model.  

In order to reveal considerable information about the 

predictive relationship between the dependent variable and 

a set of predictors, eq. (5) can be recast into the following 

form: 

 
(9) 

This is referred to as the ANOVA decomposition of the 
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Fig. 1 Typical Architecture of ANN 

 

 

MARS model. The first sum is over all basis functions that 

involve only a single variable. The second sum is over all 

basis functions that involve exactly two variables, 

representing (if present) two-variable interactions. 

Similarly, the third sum represents (if present) the 

contributions from three-variable interactions and so on. 

MARS can also handle the missing value problems using 

dummy variable skills. By allowing any arbitrary shape for 

the function and interactions, MARS is capable of tracking 

very complex data structures that hide in high dimensional 

frequently data. More details regarding the model building 

process can be found in Friedman (1991). 

 

 

5. Development of models  
 

Six individual ANN models and six individual MARS 

models were developed for the prediction of compressive 

strength of various GPC mixes. The compressive is 

primarily dependent on fly ash, GGBS, SF, MK, Bacteria 1 

or Bacteria 2 and SP. The compressive strength was 

predicted for 1, 3, 7, 28, 56 and 90 days. MATLAB 

software was used to develop models. The data that forms 

an input vector has different quantitative limits as shown in 

Table 3. Normalization of the data is to be carried out 

before presenting the input patterns to ANN and MARS. 

Eq. (7) is used for the linear normalization of the data to the 

data values between 0 and 1. 

 

(10) 

Where, 𝑥𝑖
𝑎  and 𝑥𝑖

𝑛  are the ith components of the input 

vector before and after normalization, respectively, and 

𝑥𝑖
𝑚𝑎𝑥 and xi are the maximum and minimum values of all 

the components of the input vector before the 

normalization.  
 

5.1 ANN based analysis 
 

On successful completion of ANN training with 60 

dataset, the model is verified with remaining 24 dataset. 

The output vector obtained from the ANN model is a 

normalized data and hence, the normalized data is reverted 

to its actual value by using eq. (11). 
 

 

 
(a) Compressive strength – 1 day 

 
(b) Compressive strength – 3 days 

 
(c) Compressive strength – 7 days 

 
(d) Compressive strength – 28 days 
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(e) Compressive strength – 56 days 

 
(f) Compressive strength – 90 days 

Fig. 2 Predicted through ANN vs experimental 

compressive strength 

 

The training phase of the ANN converged at 900 - 1000 

iterations or epochs. 

 
(11) 

where, 𝑥𝑖
𝑛 is the normalized result obtained after the 

test for the ith component. 𝑥𝑖
𝑎 is the actual result obtained 

for ith component, and 𝑥𝑖
𝑚𝑎𝑥 and 𝑥𝑖

𝑚𝑖𝑛 are the maximum 

and minimum values of all the components of the 

corresponding input vector before the normalization. The 

result is converged at 950 - 1050 iterations or epochs and 

the average error value is 1.8e-5. The coefficient 

determination (R2) is 0.98765, 0.98965, 0.99342, 0.9812, 

0.9801 and 0.9721 respectively for 1, 3, 7, 28, 56 and 90 

days compressive strength. Fig. 2 presents ANN output vs 

corresponding experimental values. From Fig. 2, it can be 

observed that the ANN prediction is quite closer to 

corresponding experimental values. 

 

5.2 MARSs based analysis 
 

The MARS equation for the prediction of compressive 

strength for one day is given in eq. (9). It can be directly 

identified that the number of interaction effects and, in 

particular, interactions between efforts (as captured by basis 

function B4(x)). Such interactions can be seen in eq. (12), 

when basis functions are part of the definition of other basis 

functions, e.g., B2(x) in B7(x), B8(x) etc. The presence of 

many such interactions suggests that the model is far from 

being additive and those interactions will play an important 

role in building an accurate model for code inspections. The 

user defined basis functions for over fitting the model was 

limited to 8 basis functions and the allowable highest 

degree of interaction was set to 2. The final model had 8 

Basis functions as listed below. 

 

Model I- Compressive strength (1 day) 

The predicted model for compressive strength (one day) 

is given below 

)(0.356 . . )1(
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(12) 

Where  
Basis 

function 

𝐵𝑚
(1)

(𝑥)  

Equation Co-efficient (am) 

B1(x) max(0, GGBS -0.3) -0.501 

B2(x) max(0, 0.7-FA) * max(0, FA -0.12) -7.782 

B3(x) max(0, 0.7-FA) * max(0, 0.12- SF) 3.746 

B4(x) max(0, 0.7-FA) * max(0, MK-0.1) 0.182 

B5(x) max(0, 0.7-FA) * max(0, 0.1 -MK) -3.54 

B6(x) B4(x) * max(0, FA -0.12) 10.12 

B7(x) B4(x) * max(0, 12- FA) 3.65 

B8(x) max (0, 0.7-FA) * max(0, FA-0.1) 1.213 

 

Model II – Compressive strength (3 days) 

The predicted model for compressive strength (3 days)  

is given below. 

)x(Ba478.0Compy )1(
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8
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(13) 

Where, 
Basis 

function 

𝐵𝑚
(1)

(𝑥) 

Equation Co-efficient (am) 

B1(x) max(0, GGBS -0.3) -0.342 

B2(x) max(0, 0.7-FA) 0.635 

B3(x) B2(x) * max(0, FA -0.12) -1.079 

B4(x) B2(x)* max(0, 0.12-SF) -2.055 

B5(x) B2(x)* max(0, SF-0.12) 0.634 

B6(x) B2(x)* max(0, FA-0.12) -0.421 

B7(x) max(0, MK-0.1) 0.321 

B8(x) max(0, 0.1-MK) 0.231 

 

Model III – Compressive strength (7 days) 

The predicted model for compressive strength (7 days)  

is given below. 

)x(Ba492.0Compy )1(
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8
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Where, 
Basis function  

𝐵𝑚
(1)

(𝑥) 
Equation 

Co-efficient 

(am) 
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i xxxxx +−=

677



 

John Britto X. and Muthuraj M.P. 

B1(x) max(0, GGBS -0.3) -0.301 

B2(x) max(0, 0.7-FA) 0.161 

B3(x) B2(x) * max(0, FA-0.12) -1.031 

B4(x) B2(x) * max(0, 0.12-SF) 0.621 

B5(x) B4(x) * max(0, SF-0.12) -2.654 

B6(x) B1(x) * max(0, FA-0.12) 0.854 

B7(x) 
max (0, 0.7-FA) * max(0, SF-

0.12) * max(0, FA-0.1) 
6.231 

B8(x) 
max (0, 0.7-FA) * max(0, SF-

0.12) * max(0, 0.1-MK) 
10.342 

 

Model IV – Compressive strength (28 days) 

The predicted model for compressive strength (28 days)  

is given below. 
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8
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(15) 

Where, 
Basis 

function  

𝐵𝑚
(1)

(𝑥) 

Equation 
Co-efficient 

(am) 

B1(x) max(0, GGBS -0.3) -0.589 

B2(x) max(0, 0.7-FA) 0.94 

B3(x) B2(x) * max(0, FA-0.12) -3.785 

B4(x) B2(x) * max(0, 0.12-SF) 2.863 

B5(x) B4(x) * max(0, SF-0.12) -5.902 

B6(x) B4(x) * max(0, FA-0.12) 1.692 

B7(x) 
max (0, 0.7-FA) * max(0, SF-0.12) * 

max(0, MK-0.1) 
6.451 

B8(x) 
max (0, 0.7-FA) * max(0, SF-0.12) * 

max(0, 0.1-MK) 
13.402 

 

Model V – Compressive strength (56 days) 

The predicted model for compressive strength (56 days) 

is given below. 
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(15) 

Where, 
Basis function  

𝐵𝑚
(1)

(𝑥) 
Equation 

Co-efficient 

(am) 

B1(x) max(0, GGBS -0.3) -0.602 

B2(x) max(0, 0.7-FA) 0.163 

B3(x) B2(x) * max(0, FA-0.12) -4.200 

B4(x) B2(x) * max(0, 0.12-SF) 2.904 

B5(x) B4(x) * max(0, SF-0.12) -5.432 

B6(x) B4(x) * max(0, FA-0.12) 2.345 

B7(x) 
max (0, 0.7-FA) * max(0, SF-

0.12) * max(0, FA-0.1) 
9.154 

B8(x) 
max (0, 0.7-FA) * max(0, SF-

0.12) * max(0, 0.1-MK) 
12.632 

 

Model VI – Compressive strength (90 days) 

The predicted model for compressive strength (90 days) 

is given below. 
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Where, 
Basis function  

𝐵𝑚
(1)(𝑥) 

Equation 
Co-efficient 

(am) 

B1(x) max(0, GGBS -0.3) -0.176 

B2(x) max(0, 0.7-FA) 0.689 

B3(x) B2(x) * max(0, FA-0.12) -1.098 

B4(x) B2(x) * max(0, 0.12-SF) 2.076 

B5(x) B4(x) * max(0, SF-0.12) -3.905 

B6(x) B4(x) * max(0, FA -0.12) 0.893 

B7(x) 
max (0, 0.7-FA) * max(0, SF -

0.12) * max(0, FA-0.1) 
10.876 

B8(x) B2(x) * max (0, MK-0.1) 14.703 

Table 4 shows the complete statistics for all the 

developed MARS models. The GCV was computed using 

the eq. (5) and the coefficient of correlation (R) was 

computed using eq. (18). 

The value of coefficient of correlation (R) is determined 

by using the following formula 

 

(18) 

 

 

 

(a) Compressive strength – 1 day 

 
(b) Compressive strength – 3 days 
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(c) ) Compressive strength – 7 days 

 
(d) Compressive strength – 28 days 

 
(e) Compressive strength – 56 days 

 
(f) Compressive strength – 90 days 

Fig. 3 Predicted vs experimental compressive strength 

Table 4 Testing of MARS 

MARS results 
Compressive strength 

1 day 3 days 7 days 
28 

days 
56 

days 
90 

days 

User defined max. no. of Basis 

functions 
8 10 12 12 12 12 

Interactions Ratio allowed 2 3 4 4 4 4 

Final number of basis functions 8 8 8 8 8 8 

Mean Square Error (MSE) 
Train 

4.32E-

04 

1.83E-

04 

3.79E-

04 

2.32

E-04 

1.76

E-04 

4.76

E-04 

Test 0.001 0.0037 0.003 0.002 
0.003

2 
0.004 

Generalized Cross Validation 0.0010 0.0024 0.0032 
0.003

1 

0.001

4 

0.002

5 

Coefficient of correlation 

(R) 

Train 0.9991 0.9938 0.9939 
0.996

6 

0.992

7 

0.996

0 

Test 0.9977 0.9993 0.9959 
0.995

6 

0.991

0 

0.992

7 

 

Table 5 R2 values for training and testing datasets 

Fracture 

characteristics 

ANN MARS 

R2 Train R2 Test R2 Train R2 Test 

Comp. Str 

(1 day) 
0.9876 0.9735 0.9982 0.9954 

Comp. Str 

(3 days) 
0.9896 0.9808 0.9876 0.9986 

Comp. Str 

(7 days) 
0.9934 0.9900 0.9879 0.9920 

Comp. Str 

(28 days) 
0.9812 0.9732 0.9932 0.9912 

Comp. Str 

(56 days) 
0.9801 0.9800 0.9854 0.9821 

Comp. Str 

(90 days) 
0.9721 0.9702 0.9921 0.9854 

 

 

where, Eai and Epi are the actual and predicted values, 

respectively, Ea 𝐸̅𝑎  and 𝐸̅𝑃 are mean of actual and 

predicted E values corresponding to n patterns. 

On successful development of MARS model with 60 

dataset, the model is verified with remaining 24 dataset. 

The MARS output values versus Experimental values are 

plotted below (Fig. 3). From Fig. 3, it can be observed that 

the coefficient of determination R2 is pretty much closer to 

the experimental values. Thus, developed MARS models 

are robust and reliable. 

Table 5 presents the coefficient of determination (R2) 

values for the various ANN models and MARS models for 

training dataset and testing dataset. Both the techniques 

scores R2 values closer to 1 indicating robust to predict 

compressive strength of various GPC mixes. However, the 

R2 values of MARS models scores bit higher values for 

testing datasets than that of the ANN models. In some cases 

the ANN prediction values show large variation from the 

experimental results compared to that of the MARS. 

 
 

6. Summary and conclusions 
 

Artificial neural network (ANN) and multivariate 

adaptive regression splines (MARS) based models have 

been developed to predict the compressive strength of 

bacteria incorporated GPC mixes. Compressive strength has 
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been predicted for 1 day, 3, 7, 28, 56 and 90 days of curing. 

GPC was made by using several ingredients like 

manufactured sand, GGBS, fly ash, silica fume, metakaolin, 

two new strains isolated from manufactured sand. For all 

the studies, the percentage of GGBS has been kept as fixed 

(70%) and molarity of NaOH is fixed at 8. From the results 

of ANN and MARS models, it is observed that the MARS 

models are preferred than the ANN models for the 

following reasons although both have good coefficient of 

determination: 

•  The computational resource required by MARS 

program is quite less than ANN. 

•  MARS models provide a relationship between the 

basis functions obtained from the dependent and the 

independent variables whereas ANN does not provide such 

a feature. 

•  In spite of ANN models prediction being fairly 

similar to that of the MARS models, MARS is found to be 

more stable for the dataset used in this study and ANNs are 

not stable (i.e. the predictions obtained using MARS model 

for a same parameter setting would remain same whereas in 

case of ANN this is unstable). 

The developed ANN and MARS models can be used for 

prediction of compressive strength of bacteria incorporated 

GPC mixes. The predicted values will be useful for design 

of concrete structural components made up of bacteria 

incorporated GPC.  
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