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1. Introduction 
 

Todays, plates are widely used in various industries such 

as construction, car manufacturing industries, etc. (Megson 

(2012)). Depending on the geometry, loading conditions 

and also edge supports different studies are carried out to 

investigate the behavior of plates. When plates are 

subjected to compressive in-plane forces, they become 

unstable and buckle (Åkesson (2007), Chen et al. (2009)). 

Previous studies showed that plates’ boundary conditions 

exert linearly and uniform distribute in-plane compressive 

(Chen (1976), Taylor (1933), Wang (1993), Musa (2016)).  

Abolghasemi et al. (2015) investigated buckling of 

rectangular plates under non-uniform in-plane loading. 

Equilibrium equations were extracted based on the first 

order shear deformation theory. They studied buckling of 

plates under four types of in-plane loading, including the 

uniform, parabolic, cosine and triangular loadings and 

considered simply support boundary condition along the all 

edges. They investigated the effects of thickness and plate 

aspect ratio on the buckling load. Chang et al. (2004) 

presented exact solutions for the free vibration and buckling 

of rectangular plates with two edges clamped and the other 

two edges simply supported. It was assumed that in-plane 

stresses vary linearly. Buckling analysis of hybrid laminates 

under in-plane loads and different boundary conditions was 

presented by Belkacem et al. (2018). They used higher 

order shear and normal deformable theory of plate which is 

close to the three dimensional elasticity solution.  

Engineering structures made of different materials such 

as Composites and FGMs are extensively used by  
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researchers (Leissa (1987), Kapania and Raciti (1989), 

Turvey and Marshall (2012), Javaheri and Eslami (2002)). 

Reddy et al. (1989) presented exact analytical and 

numerical finite-element solutions for free vibration and 

buckling of laminated composite plates. The study was 

based on the classical, first-order and third-order plate 

theories and various boundary conditions are considered. 

They investigated the effects of material orthotropy, aspect 

ratio and side-to-thickness ratio on critical buckling loads. 

Thermal buckling behavior of composite laminated plates 

based on the classical theory and finite element method was 

shown by Shiau et al. (2010). They concluded that the 

thermal buckling mode depends on the aspect ratio. 

Javaheri et al. (2002) investigated thermal buckling of 

rectangular FGM plate based on the classical theory, where 

four types of thermal loading including uniform, linear and 

nonlinear temperature rise through the thickness, and also 

linear temperature changes through the length were studied. 

In addition, simply supported boundary conditions were 

supposed along the all edges. They concluded that 

increasing the aspect ratio increases the critical buckling 

temperature. 

Lanhe et al. (2004) studied thermal buckling of thick 

rectangular FG plates based on the first order shear 

deformation theory with simply supported boundary 

conditions. They supposed two types of thermal loads 

including uniform temperature rise and gradient through the 

thickness. It was shown that by increasing the aspect ratio 

of the plate or the thickness to span ratio , critical buckling 

temperature difference increases. Tupal et al. (2018) studied 

shear buckling analysis of rectangular plates resting on 

elastic foundation. They used classical laminates theory for 

deriving the stability equations and also, solved equations 

by Reiliegh-Ritz method.  

 In recent years, many researches were focused on the 

reinforced composites and FG plates used in engineering 
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structures that are reinforced with shape memory alloy 

fibers (Thompson and Loughlan (1997), Ostachowicz et al. 

(2000), Kumar and Singh (2009)), electro-rheological 

fluids, smart materials, piezoelectric materials, etc. Smart 

materials such as shape memory alloys response to 

environment effects by changing their behavior. Park et al. 

(2004) investigated vibration of thermally post-buckled 

composite plates embedded with shape memory alloy fibers 

with simply supported boundary conditions based on the 

first-order shear deformation plate theory and nonlinear 

finite element method. The thermal post-buckling deflection 

was obtained according to the Newton–Raphson method. 

By embedding SMA fibers, the thermal large deflection 

decreases and the critical temperature increases. Although 

by using SMA fibers, weight of plate grows up, but the 

thermal large deflection reduces.  

According to effects of shape memory alloys on 

performance of structures, it is necessary to study the 

behavior of engineering structures made of SMA. Lee et al. 

(2000) studied buckling and post buckling behavior of 

laminated composite (Carbon/Epoxy) shells with embedded 

shape memory alloy (SMA) wires under axial compressive 

forces and thermal loading for the cases of two boundary 

conditions including clamped–clamped and simply 

supported–simply supported boundary conditions by using 

ABAQUS. Liang and Roger’s model was utilized by them. 

They concluded that the critical buckling load increases 

when the SMA wires activate in the direction of in-plane 

loads and decreases as the SMA wires activated in the 

opposite direction to the buckling load. Kou et al. (2009) 

studied buckling behavior of rectangular shape memory 

alloy reinforced composite laminates under in-plane 

boundary loading with simply supported boundary 

conditions. They employed the classical plate theory and 

finite element method in their study. Their Results showed 

that the active strain energy tuning method is much better 

than the active property tuning method in improving the 

buckling performance of plates. Also, it was inferred that 

the increase of SMA fiber volume fraction and pre-strain 

may generate more recovery stress which increase the 

stiffness of SMA reinforced composite laminates. 

Therefore, the critical buckling load varies significantly. 

Ibrahim et al. (2011) presented a new nonlinear finite 

element model for analyzing nonlinear panel flutter and 

thermal buckling characteristics of SMA hybrid composite 

plate based on first-order shear-deformable plate theory 

under thermal and aerodynamic loading. They used 

Newton–Raphson method for determining the deflection 

induced by thermal buckling. It was inferred that critical 

buckling temperature and critical non-dimensional dynamic 

pressure increase while the postbuckling deflection reduces 

in SMA embedded plate. Burton et al. (2006) simulated 

crack propagation in a composite reinforced plate by shape 

memory alloy wires by using ABAQUS software based on 

the one-dimensional constitutive model. Zhu et al. (2014) 

simulated a plate made of shape memory alloy with 

different configurations of pore arrays by ABAQUS 

software on the basis of kinematic hardening theory and 

also Stebner–Brinson model at high localized stresses. 

Thermal post-buckling analysis of shape memory alloy 

hybrid composite (SMAHC) shell panels based on the 

layer-wise theory by finite element method was investigated 

by Roh et al. (2004). They used Brinson’s model to 

investigate the behaviors of shape memory alloy (SMA) 

wire. The composite and SMAHC panel’s boundary 

conditions were supposed to be simply supported along all 

edges.  Results showed that embedding SMA wires in 

composites prevent unstable post-buckling behaviors while 

they are lighter than composite panels.  

 According to the past researches, SMAs have great 

efficient on performance improvement of engineering 

structures. As the above literatures study reveals, there is no 

study on the buckling of SMA plates to investigate the 

stability of SMA plate. In the present article, buckling 

analysis of plates made of shape memory alloys under 

linearly and uniform distributed compressive in-plane 

forces is investigated. Kirchhoff plate theory is used for thin 

plate. Also, material properties are modeled based on 

Brinson’s model. Finally the effects of loading conditions, 

boundary conditions, temperature and dimensions on the 

critical buckling loads are investigated in detail. 

 
 
2. Material and constitutive model 
 

Shape memory alloys are a new group of smart 

materials with special characteristics in thermal 

environment. Variation in SMA properties is due to solid 

phase transformation and molecular rearrangement. Two-

phases are formed in the shape memory alloys including 

martensite and austenite phases. Martensite phase deforms 

easily and the molecular structure is twin in this phase. This 

phase is formed at low temperatures. Austenite phase is 

harder and firmer in comparison with martensite that forms 

at high temperature. Martensite phase deformation starts 

and finishes at temperatures Ms , Mf  while the same 

temperature for austenite phase are defined as As and Af. 

Shape memory alloys have two unique characteristics 

including shape memory effect and super elastic property. 

Different models were proposed for modeling the properties 

of SMAs. Brinson developed the model of Liang and 

Tanaka and suggested a new model for predicting the 

thermodynamic behavior of SMAs. Brinson’s model is able 

to provide both shape memory effect and super elastic 

property by separating the volume fraction of martensite (ξ) 

into two parts: Stress-induced martensite (non-twinned 

martensite:  ξS ) and temperature-induced martensite 

(twinned martensite: ξT). This division is for justification of 

the micromechanical behavior of shape memory alloys. 

Hence, the proposed relation for volume fraction of 

martensite considering temperature and stress is stated as 

(Brinson (1993)) 

ξ = ξS + ξT (1) 

On the basis of Brinson’s model (Brinson (1993)), the 

constitutive equation of SMAs can be expressed as  

σ − σ0 = E(ξ)(ε − εLξS) + αΔT (2) 

where σ is stress, σ0 is initial stress,  ԑ is strain, ξ is 

the internal variable representing the stage of the  
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Fig. 1. Recovery stress versus temperature for SMA plate 
 

 

Fig. 2. The dependence of martensite fraction on temperature 

 

 

transformation, εL  is the maximum residual strain 

(obtained experimentally by converting to detwinned 

martensite and the unloading at a temperature less than the 

austenite start temperature), α  is thermal expansion 

coefficient of the SMA material and T  is the temperature. 

In addition, Young module of SMA plate is expressed as 

(Auricchio and Sacco (1997)) 

E(ξ) =
EA

1 + (
EA

EM
− 1)ξ

 
(3) 

in which EA and EM are the Young moduli of SMA in the 

pure austenite and the pure martensite phases, respectively. 

Two relations to determine the martensite volume fractions 

during heating stage for T > As  and CA(T − Af) < σ <
CA(T − As) state are (Brinson (1993)) 

ξ =
(ξ0)

2
{cos [

π

Af − As

(T − As −
σ

CA

)] + 1} 

ξS = ξS0 −
ξS0

ξ0

(ξ0 − ξ) 

ξT = ξT0 −
ξT0

ξ0

(ξ0 − ξ) 

(4) 

where the subscript ′0′ demonstrates initial condition and 

the constants CA  is the slopes of the critical stress- 

Table 1 Thermomechanical properties of NiTi plate 

Modulus 

( )GPa  
Transformation 

temperature 

Transformation 

constant 
Material properties 

67AE =  
 

8( )
M

MPa
C

C
=  

 

 
13.8( )

A

MPa
C

C
=  6 1

22 10 ( )
A

C
 −=   

26.3mE =    
6 1

10 10 ( )
M

C
 −=   

   

 

 
temperature diagram for the austenite to martensite 

transformation and the reverse transformation, respectively. 

In Fig. 1, variation of recovery stress with respect to the 

change of the temperature for Nitinol SMA is plotted for 

various pre-strains based on the Brinson’s model. The 

transformation to austenite is the reason of large internal 

stresses. The effect of temperature on the SMA martensite 

volume fraction is depicted in Fig. 2. In this study, initial 

conditions and properties for rectangular plate made of 

SMA is presented in Table 1 (Asadi (2015)). 

 

 

3. Formulation, analysis and solution method 
 

3.1 Classical plate theory and energy method 
 
Since it is assumed that SMA plate is thin, thus the 

classical plate theory (Kirchhoff plate theory) is used. 

According to this theory, components of displacement field 

are defined as 

U(x, y, z) = u0(x, y) − zw(x, y),x 

V(x, y, z) = v0(x, y) − zw(x, y),y 

W(x, y, z) = w(x, y) 

(5) 

In Eq. (5), U(x, y, z), v and w are the components of 

the displacement field in x, y and z directions respectively. 

 Also, u0 and v0 are the in-plane components of 

displacement field and w is the transverse displacement of 

the mid-plane in z  direction. In addition,  w,x  and w,y 

indicate the first derivative of plate deflection with respect 

to the x, y variables, respectively. Strain components of 

SMA plate considering the Von-Karman hypothesis are 

simplified as 

εx =
∂u

∂x
+

1

2
(
∂w

∂x
)2 

εy =
∂v

∂y
+

1

2
(
∂w

∂y
)2 

γxy =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
 

(6) 

Variational approach and principle of minimum total 

potential energy is used for deriving the components of Eq. 

(6). Accordingly, the variation of total energy of SMA plate 

is defined as (Ventsel and Krauthammer (2001)). 
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∆Π = Π − Π0 = ∆U0 + Ub + ∆Ωг (7) 

where ∆U0 is the increment of the strain energy of the 

plate , Ub is the strain energy of bending and twisting and 

∆Ωг is the increment in the potential energy of in-plane 

external edge forces applied to the plate edges. The strain 

energy stored in an elastic body considering plane stress 

state is given by 

∆U0 =
1

2
 ∭ ( σx εx + σy εy + τxy γxy)dV 

V

 (8) 

Equation (8) is simplified using the following 

expression 

σx =
N̂x

h
 

σy =
N̂y

h
 

τxy =
N̂xy

h
 

(9) 

where N̂x , N̂y , and N̂xy are resultant forces in x, y and 

xy directions, respectively. Substituting the above equation 

and Eq. (6) into Eq. (8) and integrating over the plate 

thickness, results in the following expression for the 

increment in the strain energy of plates’ middle surface is 

expressed as 

∆U0 = ∬[N̂x

∂u

∂x
+ N̂y

∂v

∂y
A

+ N̂xy (
∂u

∂y
+

∂v

∂x
) dxdy

+
1

2
∬[N̂x(

∂w

∂x
)2

A

+ N̂y (
∂w

∂y
)2 + 2 N̂xy (

∂w

∂y

∂w

∂x
)] dxdy 

(10) 

The first integral on the right-hand side of Eq. (10) 

represent the work, We  done by the in-plane external 

forces applied to the middle surface of plate. Thus, the 

expression (10) is written as 

∆U0 = We +
1

2
∬[Nx̂(

∂w

∂x
)2

A

+ Nŷ (
∂w

∂y
)2 + 2 Nxŷ (

∂w

∂y

∂w

∂x
)] dxdy 

(11) 

It can be shown that the expression for ∆U0 in the form 

of Eq. (11) is valid for plates of any geometry, not 

necessarily, rectangular. The increment in the potential of 

the external, in-plane forces applied to the plate is equal to 

the negative work done by these forces, i.e. 

∆Ωг = −We (12) 

By introducing the generalized Hooke’s law for 

isotropic materials, Eq. (8) for strain energy is reduced to 

the following form as 

Ub = ∭[
1

2E
(σx

2 + σy
2 − 2νσxσy

V

) +
1 + ν

E
τxy

2]dV (13) 

By substituting Eq. (6) and Hooke’s law into Eq. (13) 

and integrating over the thickness of plate, strain energy of 

deformation is expressed as 

Ub =
1

2
∬D{(

∂2w

∂x2
+ 

∂2w

∂y2
)2 − 2(1 − ν)[ 

A

∂2w

∂x2
 
∂2w

∂y2

− (
∂2w

∂x ∂y
)2]} 

(14) 

Where D  is flexural rigidity of plate that is defined so 

that 

D =
Eh3

12(1 − ν2)
 (15) 

Therefore, the increment in the total potential energy of 

the plate upon buckling according to Eq. (7) is written in the 

following form  

∆Π =
1

2
∬D{(

∂2w

∂x2
+ 

∂2w

∂y2
)2 + 2(1 − ν)[

∂2w

∂x ∂y
)2

A

− 
∂2w

∂x2
 
∂2w

∂y2
]}dxdy +

1

2
∬[N̂x

A

(
∂w

∂x
)2

+ N̂y(
∂w

∂y
)2 + 2 N̂xy

∂w

∂x
 
∂w

∂y
]dxdy 

(16) 

where N̂ is the resultant force in the middle surface of 

SMA plate due to the applied in-plane loads that is 

expressed as 

N̂ = N0 + Nr − NT (17) 

In the above equation, N0 is the stress resultant due to 

the mechanical external loads, Nr  is the resultant force 

induced by recovery stress and NT is the thermal resultant 

force which are obtained from Eq. (18) as (Mahabadi et al. 

(2016)) 

[

Nx
T

Ny
T

Nxy
T

]=∫

[
 
 
 
 

E(ξ)

1−v2

E(ξ)v

1−v2 0

E(ξ)v

1−v2

E(ξ)

1−v2 0

0 0
E(ξ)

2(1+v)]
 
 
 
 

h

2

−
h

2

× [
α
α
0
]ΔTdz 

[

Nx
r

Ny
r

Nxy
r

]=∫ σr
h

2

−
h

2

× [
α
α
0
] ΔTdz 

(18) 

Bifurcation of an initial configuration of equilibrium 

occurs when 

ΔΠ = 0 (19) 

This is the general energy criterion for the buckling 

analysis of plates. The latter can also be employed for 

constructing an approximate solution of the plate buckling  
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Fig. 3 Loading condition on SMA plate: (a) uniform (b) 

linearly 
 

 

Fig. 4 Boundary condition of SMA plate 
 

Table 2 Algebraic polynomials for typical boundary 

conditions 

Boundary 

conditions   

S-S-S-S 
 

(
𝑦

𝑏
)

𝑗+1

− 2(
𝑦

𝑏
)

𝑗+2

+ (
𝑦

𝑏
)

𝑗+3

 

C-C-C-C 
  

C-C-S-S 
  

 

 
problems. In the following, the critical buckling load of 

SMA rectangular plate will be determined under linearly 

and uniformly distributed compressive in-plane forces and 

various boundary conditions by using Ritz method. 
 

3.2 Loading and boundary conditions 
 
The plate is loaded by linearly distributed compressive 

in-plane forces with equation qx = −q(1 + η
y

b
)   along 

the plate width (See Fig. 3). By setting 0 for η the SMA 

plate is loaded uniformly and if η = 1, the SMA plate is 

subjected to linearly distributed loads. 

Also, various boundary conditions may be considered 

for rectangular SMA plate. Hence, as shown in Figure 4, 

two cases of boundary conditions are assumed in the 

present study.  
 

3.3 Ritz method 
 

In this paper, Ritz method is used for solving the 

stability equations for buckling analysis of rectangular plate 

made of SMA with various boundary conditions. According 

to the Ritz method, the deflection surface of plate 

considering the boundary conditions is approximated as 

(Reddy (2017)) 

w(x, y) = ∑∑ wij

m

i=1

n

j=1

Xi(x)Yj(y) (20) 

Table 3 Comparing the critical buckling load (N / m) for 

SMA simply supported plate subjected to uniform loading 

based on the Ritz and Navier methods 

/a b  Ritz method Navier method 

0.5  
165.2 167.3 

1  
103. 103.4 

1.5  
81.1 82.0 

 

Table 4 The convergence study of the Ritz method for 

critical buckling load of SMA plate subjected to uniform 

load 

,i j  / 0.5a b =  / 1a b =  / 1.5a b =  

(1,1) 165.2 110.2 240.7 

(1,2) 165.3 103.0 81.1 

(1,3) 165.1 102.9 81.1 

(2,2) 165.2 103.0 81.1 

 

 

It is clear that accuracy of solution depends on the 

number of terms in series presented in Eq. (20). In the 

following, the first two terms are considered. One of the 

choices for the functions Xi  and Yj  are algebraic 

polynomials. For the assumed boundary condition consist of 

S-S-S-S, C-C-C-C and C-C-S-S , these functions are given 

in Table 2 (Reddy (2017)). 

 

3.4 Validation 
 

In order to validate the presented study, an exact 

solution is obtained for simply supported plate based on the 

Navier solution (Ventsel and Krauthammer (2001)). 

According to the Navier solution which is an exact and 

closed form solution, critical buckling load for S-S-S-S 

plate is determined as 

𝐷

𝑎4𝑏4 (
𝐷𝜋2𝑎4𝑛2 + 2𝐷𝜋2𝑎2𝑏2𝑚2𝑛2

+𝐷𝜋2𝑏4𝑚4 + 𝑁𝑥𝑎
2𝑏4𝑚2 + 𝑁𝑦𝑎4𝑏2𝑛2) = 0 (21) 

In Table 3, a comparison is presented for the critical 

buckling loads based on the Navier and Ritz methods for 

simply supported plates in room temperature subjected to 

uniform load.  

According to the table, there is a good agreement 

between the presented results based on the Ritz method and 

Navier method.  

Since Ritz method is used for determining the results, 

convergence study is done on the solution. Hence, in Table 

4, numerical results for simply supported SMA plate 

subjected to uniformly distributed load in room temperature 

is tabulated(T = 25 ℃). 

According to the presented results in Table 4, in the 

following two terms are considered for 𝑖 and 𝑗. 
 

 
4. Results and discussion 
 

According to Fig. 3, pre-buckling forces are determined 

as Nx
0 = qx and Ny

0 = Nxy
0 = 0. Using equations (16), (19)  

( )X x
i

( )Y y
j

1 2 3( ) 2( ) ( )
x x xi i i

a a a

+ + +− +

1 2 3( ) 2( ) ( )
x x xi i i

a a a

+ + +− +
1 2 3

( ) 2( ) ( )
y y yj j j

b b b

+ + +
− +

1 2 3( ) 2( ) ( )
x x xi i i

a a a

+ + +− +
1

( ) ( )
y yj j

b b

+
−

665



 

Fatemeh Salemizadeh Parizi and Meisam Mohammadi 

 

Fig. 5 The critical buckling load for a C-C-C-C plate versus 

the aspect ratio under uniform loading 

 

 

Fig. 6 The critical buckling load for a C-C-S-S plate versus 

the aspect ratio under uniform loading 

 

 
Fig. 7. The critical buckling load for a C-C-C-C plate versus 

the thickness at ( 
𝑎

𝑏
= 1.5 ) under uniform loading 

Table 5 Critical buckling load (N) for SMA plate subjected 

to uniform loading 

Temperature a / b C-C-C-C C-C-S-S 

25T C=  

0.5  40.0 37.4 

1  23.9 15.5 

1.5  18.7 13.5 

37T C=  

0.5  42.5 39.3 

1  26.5 20.0 

1.5  22.1 15.4 

 

 
Fig. 8. The critical buckling load for a C-C-S-S plate versus 

the thickness at ( 
𝑎

𝑏
= 1.5 ) under uniform loading 

 

 

and (20), the critical buckling loads are determined. It 

should be noted that Nr  and NT  are the same as pre-

stresses due to recovery stress and thermal loads. Also, for 

determining the flexural rigidity of SMA plate, Young 

modulus of SMA plate must be calculated for each 

temperature and martensite volume fraction (ξ) based on 

Fig. 2.  

 

4.1 Uniform compressive in-plane forces 
 

Consider a rectangular SMA plate with thickness 

0.05 mwhich is subjected to uniform compressive load 

(η=0) so that qx = −q. In tables 5 and 6, critical buckling 

loads for different aspect ratios, thickness to side ratios and 

various temperatures are tabulated.  

In figures 5 and 6, the effect of aspect ratio and 

temperature on the critical buckling load is shown. 

According to these figures, increasing the aspect ratio 

usually decreases the critical buckling load. Also, the 

critical buckling mode may change as the aspect ratio 

increases. As figures show, increasing the temperature from 

the room temperature (T = 25 ℃)  to body temperature 

(T = 37 ℃), leads to increasing the critical buckling load.  

 The effect of thickness on the critical buckling load of 

SMA plate for different boundary conditions and various 

temperatures are depicted in figures 7 and 8. According to 

these figures, increasing the thickness of SMA plate  
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Fig. 9 The critical buckling load for a C-C-C-C plate versus 

the aspect ratio under linearly loading 

 

 
Fig. 10 The critical buckling load for a C-C-S-S plate versus 

the aspect ratio under linearly loading 

 

Table 6 The effect of thickness on the critical buckling load 

of SMA plate under uniform loading (a/b =1.5) 

Thickness 

(m) 

C-C-C-C C-C-S-S 

25T C=  37T C=  25T C=  37T C=  

0.01 0.1 0.1 0.01 0.02 

0.02 1.1 1.1 0.8 0.7 

0.03 3.8 4.1 2.8 2.9 

0.04 9.4 10.6 6.8 7.4 

0.05 18.7 22.3 13.5 15.4 

0.06 33.0 41.4 23.8 28.2 

0.07 53.6 70.7 38.4 47.6 

0.08 81.6 114.0 58.4 75.3 

0.09 18.7 176.3 84.5 114.1 

 

 
increases the critical buckling load. Also, this variation is 

more apparent for thick plates.  

 
a) C-C-C-C plate 

 
b) C-C-S-S plate 

Fig. 11. The critical buckling load versus the thickness ( 
𝑎

𝑏
=

1.5 ) under linearly loading 
 

 

4.2 Linearly distributed in-plane forces 
 

In this case, it is assumed that SAM plate is subjected to 

linearly distributed loads by the function qx = −q (1 +
y

b
).  

In tables 7 and 8, the effects of thickness, aspect ratio, 

temperature and boundary conditions on the critical 

buckling loads are presented.  

In order to have a qualitative study, variation of critical 

buckling load versus the aspect ratio and thickness is 

depicted in figures 9 to 12. According to these figures, 

critical buckling mode changes as the temperature and 

aspect ratio change. 

 
4.3 Special case: Triangular loading 
 

In order to study different loading conditions, it is assumed 

that SMA simply supported plate is subjected to in-plane 

triangular distributed load. In Fig. 12 , the effect of aspect ratio 

on the critical buckling load is shown at room temperature 
(T = 25 ℃). As shown in this figure, critical buckling load 

decreases by increasing the aspect ratio until 
𝑎

𝑏
= 1 . The 
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Table 7 Critical buckling load (N) for SMA plate subjected 

to linearly distributed loads 

Temperature /a b  C-C-C-C C-C-S-S 

25T C=  

0.5  26.4 24.5 

1  15.9 10.3 

1.5  12.4 9.0 

37T C=  

0.5  28.1 25.9 

1  17.6 13.3 

1.5  15.5 10.3 

 
Table 8 The effect of thickness on the critical buckling load 

of SMA plate under linearly distributed load (a /b = 1.5) 

Thickness 

(m) 

C-C-C-C C-C-S-S 

25T C=  37T C=  25T C=  37T C=  

0.01 0.07 0.05 0.05 0.02 

0.02 0.7 0.7 0.5 0.5 

0.03 2.5 2.7 1.8 1.9 

0.04 6.2 7.1 4.5 4.9 

0.05 12.4 14.8 9.0 10.3 

0.06 21. 27. 15.8 18.8 

0.07 35.6 47.2 25.5 31.7 

0.08 54.3 76.2 38.8 50.2 

0.09 79.0 118.0 56.2 76.1 

 

 

Fig. 12 Variation of critical buckling load for a S-S-S-S plate 

versus the aspect ratio under triangular loading 

 

 

minimum buckling load is obtained for square SMA plate. 

Also, variation of critical buckling load is more apparent for 

SMA plate with aspect ratio less than 0.5. 
 

 

5. Conclusion 
 
In the present study, a semi-analytical solution was 

presented to investigate the buckling behavior of SMA 

plate. Brinson’s model was used for predicting the behavior 

SMA plate. Critical buckling load was calculated based on 

classical theory plate where the SMA plate was subjected to 

uniform and linearly distributed loads. Two types of 

boundary conditions were considered for SMA plate at body 

and room temperatures. 

According to the numerical results, increasing the aspect 

ratio may increase the critical buckling loads. Also, it was 

concluded that critical buckling mode may change as the 

aspect ratio, temperature or boundary condition changes. 

Based on the numerical results, it was concluded that as the 

boundary constraint changes to all clamped edges, critical 

buckling load increases in comparison with the other 

studied case.  
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