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1. Introduction 
 

Numerous factors including rain, storm, fire, fatigue, 

and corrosion may cause damage to structural elements. 

Disregarding these damages leads to disruption of the 

elements. Therefore, different methods of structural health 

monitoring have drawn researchers’ attention. Modal 

properties including natural frequencies and mode shapes 

have been used in damage detection in the past three 

decades (Abdo 2002). Use of evolutionary algorithms and 

minimization of objective function as mechanisms of 

damage detection is widely spreading (Gordan et al. 2017). 

Mares and Surace (1996) published one of the earliest 

papers on application of Genetic Algorithm (GA) for 

detecting damage in two-dimensional truss structures and 

cantilever beam. Ruotolo and Surace (1997), Friswell et al. 

(1998), Hao et al. (2002), Perera and Torres (2006), Vakil-

Baghmisheh et al. (2008) have also studied damage 

detection based on GA. Vaez and Fallah (2017) have 

presented one of the newest applications of GA for damage 

detection on thin plates. Tiachacht et al. (2018) have 

proposed a new damage detection and quantification 

method for two and three-dimensional structures, using GA 

and Modified Cornwell Indicator (MCI). MCI is thereby 

utilized as an objective function to compare between 

measured and calculated indicators. 

A number of studies have been conducted based on 

incomplete modal data and optimization algorithms. For 
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instance, Kourehli et al. (2013a, b) investigated damage 

detection in continuous and discretized structures, using 

reduced models (Guyan method was used for model 

reduction) and different optimization algorithms such as 

Pattern Search and Simulated Annealing. Another damage 

detection method based on incomplete modal data and 

Particle Swarm Optimization (PSO) was proposed by 

Rasouli et al. (2014). However, Dinh-Cong et al. (2018a) 

have introduced the newest method that uses reduced 

models (Neumann series expansion was used for model 

reduction) and a Teaching-Learning-Based optimization 

algorithm. Moreover, Ghannadi and Kourehli (2018) 

studied different Finite Element Model (FEM) reduction 

techniques. A laboratory example of crack detection in 

cantilever beams, using Hybrid Particle Swarm-Nelder-

Mead optimization was presented by Vakil Baghmisheh et 

al. (2012). In a laboratory example, Moezi et al. (2018) 

have recently used Hybrid Cuckoo-Nelder-Mead 

optimization for crack detection. Following the line of 

utilizing optimization methods in crack detection, Fatahi et 

al. (2018) have studied a laboratory example of three-story 

frame by Swarm-based optimization method. Khatir et al. 

(2018) have also presented a method of detection and 

localization of open crack in beam-like structures using 

PSO and experimentally natural frequencies. 

Charged System Search (CSS) is among optimization 

algorithms that has gained popularity in recent years (Kaveh 

and Talatahari 2010). Kaveh and Zolghadr (2015) have 

studied damage detection in truss structures using improved 

CSS and objective function consisted of natural frequencies 

and mode shapes. Hosseinlou et al. (2017) developed a new 

and effective damage detection strategy for offshore jacket 

structures by performing CSS for model updating. One 
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other efficient study for model updating in large-scale steel 

truss bridge using PSO and GA was conducted by Tran-

Ngoc et al. (2018). Giagopoulos et al. (2019) have 

presented a fatigue damage estimation method using 

vibration measurements and FEM updating. 

Recently, Jaya optimization algorithm has been 

introduced (Rao 2016). Dinh-Cong et al. (2018b) used Jaya 

algorithm and hybrid objective function in order to detect 

damages. Thermal exchange optimization is another newly 

developed optimization algorithm (Kaveh and Dadras 

2017). In their article, Kaveh and Dadras (2018) have 

indicated capabilities of this algorithm to detect damages in 

different structures. Wei et al. (2018) have performed a 

comparative study using improved PSO and GA for damage 

prediction. A number of other researchers have also 

proposed two-stage methods based on optimization 

algorithm and modal data. (Seyedpoor 2012, Rasouli et al. 

2015, Seyedpoor and Montazer 2016). Fallah et al. (2018) 

have suggested a new two-stage method using Crow Search 

Algorithm and Damage Locating Vector for damage 

detection in structures with a large number of elements. 

They used an objective function based on Modal Assurance 

Criterion (MAC) flexibility.  

Some of the structural damage detection methods have 

been recently introduced through Transmissibility Function. 

Transmissibility is derived from structural dynamic 

responses. Results of this approach indicated a good 

performance of damage detection (Zhou et al. 2017, Zhou 

et al. 2018). Gillich et al. (2019) have presented a method 

based on Multi-Modal Analysis, which enables damage 

assessment in beams subjected to axial forces caused by 

temperature variations. One other efficient study for 

damage localization under varying environmental 

conditions was conducted by Shokrani et al. (2018).  

Online structural health monitoring methods have been 

recently developed. Eftekhar Azam et al. (2017) have 

proposed an approach based on Synergy of Proper 

Orthogonal Decomposition and Recursive Bayesian Filters 

for the online health monitoring of damaged structures. 

Following the line of developing online structural health 

monitoring methods, Eftekhar Azam and Mariani (2018) 

have presented a framework for the joint state tracking and 

parameter estimation of partially observed structural 

systems characterized by a relatively large number of 

Degrees Of Freedom (DOFs).  

Minimization of different objective functions may affect 

the quality of damage diagnosis. Khatir et al. (2015) 

performed a comparative study to detect the location and 

severity of damage in a cantilever beam. It was found that 

minimization of objective function based on MAC and 

natural frequencies, was more accurate. Shabbir et al. 

(2017) used objective functions based on natural frequency, 

mode shape, modal flexibility and strain energy. 
Gomes et al. (2018) presented a review paper comparing 

vibration-based inverse methods using optimization 
algorithms and Artificial Neural Networks (ANN). 
Elsewhere in their study, they have reviewed different 
objective functions.  

Eftekhar Azam et al. (2019) developed an effective 

damage identification method for railway truss bridge by 

ANN and Proper Orthogonal Decomposition. Another 

damage detection approach based on output-only strain 

measurements and ANN was proposed by Rageh et al. 

(2018).  

Moth-Flame is an optimization algorithm inspired by 

nature, formulated by Mirjalili (2015). Gholizadeh et al. 

(2017) used this algorithm for optimal design in frame 

structures. Another paper has studied damage detection for 

three-dimensional truss structures based on objective 

function consisted of natural frequencies and Hybrid Radial 

Basis Function. This study has evaluated several 

optimization algorithms such as Moth-Flame Optimization 

(MFO). Results showed that MFO failed to completely 

minimize the objective function, thus it did not demonstrate 

a successful function in damage detection. But Inverse 

Problem-Based Differential Evolution (IPB-DE) was 

partially effective. The said study was performed under 

conditions where no noise was applied to modal data 

(Bureerat and Pholdee 2018). 

The present study introduces a new and robust damage 

detection method. The novelty of the present study is the 

using of the MFO algorithm and new objective function 

consisted of natural frequency and MAC flexibility to detect 

damage in structures. To show the performance of the 

proposed method, two numerical examples including truss 

and shear frame have been studied. Furthermore, Los 

Alamos National Laboratory (LANL) test structure was 

used for validation purposes. In the meantime, to show the 

performance of the MFO, PSO was compared with it. It is 

shown that MFO provides more accurate damage detection 

and localization than PSO. 

 

 

2. Problem formulation 
 

Structural damage is caused by various factors including 

erosion, corrosion, and reduced cross-section. Damage 

reduces structural elements’ stiffness. The stiffness matrix 

of the damaged structure (Bureerat and Pholdee 2018) is 

formulated in Eq (1) as shown below. 
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Where, de is defining parameter of damage. This parameter 

ranges between 0 and 1, indicating undamaged and 

fractured structure, respectively. Also, kelement represents 

element stiffness matrices. nel is the total number of 

elements. 

In this study, the objective function introduced in Eq (2) 

was used to detect location and severity of damage. 

Objective function is composed of two parts: natural 

frequency and MAC flexibility. 

( ) ( )

( )

0.5
2

1

0.5

2

1

1
:   

               1 ( , )

n
ex nu

i i

i

n
ex nu

j j

j

Minimize f x
n

MacFlex F F

 
=

=

 
= − 
 

 
+ − 
 





 

(2) 

 1: ,...,
T

nelFind x d d=
 

(3) 

650



 

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm 

 

: 0 1eBound d 
 (4) 

In Eq (2), 𝜔𝑖
𝑒𝑥and 𝜔𝑖

𝑛𝑢 represent experimental natural 

frequency and numerical natural frequency of i-th mode, 

respectively. n is the sum of DOFs.  

In order to minimize Eq (2), a vector in number of 

structural elements (according to Eq (3)) in 0 and 1 interval 

(according to Eq (4)) should be found. Furthermore, 

MACflex is obtained from Eq (5). 
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Where, {𝐹𝑗
𝑛𝑢} and {𝐹𝑗

𝑒𝑥} are numerical and experimental 

flexibility vectors, respectively.  

Modal flexibility matrix is obtained from Eq (6). 
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( ) 0i iK M  − =  (8) 

Where, 𝜑𝑖  and
i are mode shape vector and square of 

natural frequency of i-th mode, respectively (Perera et al. 

2009). 

Natural frequency and mode shapes calculated by modal 

analysis are slightly different with those obtained from 

numerical calculations, due to different factors such as 

measurement conditions. In this study, noise-polluted 

natural frequencies have been obtained from Eq (9). 

( )1 . [ 1,1]level

i i N random = + −  (9) 

In Eq (9), i is noise-polluted natural frequency and 

levelN  represents noise level. Noise-polluted mode shapes 

have been obtained from Eq (10). 

( )1 . [ 1,1]level

j j N random = + −  (10) 

In Eq (10), 
j is mode shape vector polluted with 

noise (Kaveh and Dadras 2018). 
 

 
3. MFO algorithm 

 

MFO is a nature-inspired algorithm presented by 

Mirjalili (2015). Based on this algorithm, moth’s ability to 

navigation in dark, is identified as transverse orientation. 

Moths enjoy an efficient ability of flying along a straight 

line in long distances. In MFO, every moth is assumed to 

have a position in a D-dimensional solution space (Bozorg-

Haddad 2018). Since MFO algorithm is population-based, 

the position of moths can be shown as: 
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Where n is the number of moths and d is the number of 

dimensions. For every moth, the corresponding fitness 

values are sorted in an array as follows: 
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The other important component of MFO is flames. The 

matrix of flames is considered as follows, similar with the 

matrix of moths: 
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For every flame, the corresponding fitness values are 

sorted in an array as follows: 
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In this algorithm, moths and flames are the solutions. 

Moth is search agent, while flame is the best position of 

moth. Flames are flags dropped by moth during the search 

and flying around the position, updated accordingly 

afterwards. By this account, the moths never lose the best 

solution (Mohanty 2018). The position of every moth is 

updated as follows: 

( ), ,i j i jM S M F=  (15) 

Where 
iM denotes i-th moth, 

jF denotes j-th flame, and S 

is the spiral function. The logarithmic spiral is determined 

for MFO algorithm as follows: 

( ) ( ), . cos 2bt

i j i jS M F D e t F= +  (16) 
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Where b is a constant to define the shape of the logarithmic 

spiral, t is a random number between [-1,1], and 
iD  

represents the distance between i-th moth and j-th flame.  

i j iD F M= −  (17) 

To enhance exploitation of MFO algorithm, Eq. (18) is 

used to reduce the number of flames, therefore moths would 

only fly around the best solution. 

1
*

N
flameNo round N I

T

− 
= − 

 
 (18) 

Where I, T, N are number of iterations, maximum number 

of iterations, and maximum number of flames, respectively. 
 

 

. PSO algorithm4 
 

PSO is a population-based optimization algorithm 

presented by Eberhart and Kennedy (1995). The PSO 

algorithm was based on swarm intelligence and has been 

utilized extensively in recent years. The PSO algorithm is 

based on two equations. Eq. (19) updates the position of a 

particle and Eq. (20) updates the velocity of a particle 

(Tran-Ngoc et al. 2018). 

( 1) ( ) ( 1)i i ix t x t v t+ = + +  (19) 

1 1 2 2( 1) ( ( ) ( )) ( ( ))i i i i i

bestv t wv C r p t x t C r G x t+ = + − + −  (20) 

Where ( )ix t , and ( 1)ix t +  indicate the position vectors 

of particle i at time t and t + 1, respectively. v is the velocity 

vector of particle, w represents the inertia weight parameter. 

C1, C2 indicate the cognition learning factor and the social 

learning factor, respectively, r1 and r2 are random numbers 

in the range of (0,1), ( )ip t  is the best position of each 

particle, and Gbest is the best position of all particles. When 

the objective function is minimum, the Gbest is achieved. 

 
 

5. Examples 
 

This paper studies numerical and experimental examples 

to show performance of the presented method in 

determining location and severity of the damage. Numerical 

examples include a truss with 29 elements and a 40-floor 

shear frame. The experimental example consists of a LANL 

test structure with three floors. 

In practice, the measured signals are corrupted by noise 
and the uncertainty is propagated to the identified modal 

properties like frequencies and the mode shapes. In the 

present study, the efficiency of the proposed method has 

been investigated using noisy modal properties and noisy 

measured signals for the numerical and experimental 

examples, respectively. 

The applied noise level is 1% and 10% for natural 

frequencies and mode shapes, respectively. Simple bar 

elements were used to model the truss structures. Each truss 

bar element consists of two nodes, each having two DOFs 

Table 1 Parameters of MFO 

Number of search agents Number of iterations Structure 

170 400 29-bar truss 

150 400 40-floor shear frame 

80 250 LANL test structure 

 

 

Fig. 1 Flowchart of the damage detection steps 
 

Table 2 Material properties of 29-bar truss 

Young’s modulus 

(GPa) 

Mass density 

)3(kg/m 

Cross-section 

)2(m 

E = 199.9 ρ =  7830 4-A= 1.122×10 

 

Table 3 Damage scenarios for 29-bar truss 

Severity Element(s) Scenarios 

0.2 8 1 

0.3 6, 16 2 

0.4 21, 25, 28 3 

 

in X and Y directions. Additionally, boundary conditions 

were applied on support locations. In the shear frame, the 

mass of each floor was idealized to lump to the center of the 

mass. Stiffness matrix of the shear frame was assembled 

according to equivalent stiffness of each floor. For each 

numerical example, three scenarios including single and 

multiple damages were considered. Yet in the experimental 

example, some states including different damaged 

conditions were investigated. In total, during this study 12 

runs of MFO have been performed. 

Moreover, to show the performance of the MFO, PSO 

was compared with it. Table 1 shows parameters of MFO 

for each of the examples, while the flowchart in Fig. 1 

illustrates a summary of damage detection steps.  

All calculations were performed by MATLAB (2018) 

software. 
 

 

5.1 A 29-bar truss 
 

The truss shown in Fig. 2 consists of 29 elements and 16 

nodes. Length of horizontal and vertical elements is 0.4 m.  

Table 2 represents material properties of this example. 

Additionally, Table 3 indicates damage scenarios. The 

predicted values of damage are shown in Figs. 3, 4, and 5. 
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5.2 A 40-floor shear frame 
 

The shear frame shown in Fig. 6 consists of 40 floors. 

Lateral stiffness and mass of the floors are assumed to be 

250 kN/m and 200 kg, respectively. Table 4 indicates 

damage scenarios and Figs. 7, 8 and 9 demonstrate 

predicted damage values. 
 

5.3 LANL test structure 
 

The four-DOFs frame structure shown in Fig. 10 is used 

as a vibration-based damage detection test structure.  

 

 

 

 

The frame consists of aluminum columns and plates 

attached with bolted joints, moving on rails that enable 

movement in X direction. On every floor, four aluminum 

columns are connected to the top and bottom of aluminum 

plates forming a four-DOFs system. Dimensions of columns 

and plates are 17.7 × 2.5 × 0.6 cm, 30.5 × 30.5 × 2.5 cm, 

respectively.  

An electrodynamic shaker imposes a lateral excitation to 

the base floor of the frame.  

The frame and shaker are fixed together on an aluminum 

baseplate and the whole system rests on rigid foam. 

 

bar truss-Fig. 2 A 29 

 

Scenario 1 –bar truss -Fig. 3 Results of damage detection for 29 

 
Scenario 2 –bar truss -Fig. 4 Results of damage detection for 29 

 

 

Scenario 3 –truss bar -Results of damage detection for 29 Fig. 5 
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Table 4 Damage scenarios for 40-floor shear frame 

Severity Floor(s) Scenarios 

0.3 20 1 

0.2 7, 8 2 

0.4 4, 19, 25  3 

 

 

Fig. 6 A 40-floor shear frame  

 

 

 

 

A load cell with a nominal sensitivity 2.2 mV/N was 

connected to the end of a stinger to measure the input force 

exerted from the shaker to the frame. Four accelerometers 

were connected to the center line of each floor on the 

reverse side of the excitation source to measure the 

structure response. 

Nominal sensitivities of each accelerometer were 1000 

mV/g. The accelerometers were installed to the centerline 

of all floors thus insensitive to torsional modes of the frame. 

Dactron Spectrabook data acquisition system was used 

to collect and process the data.  

Location of five sensor channels, and dimensions of 

theframe used in these experiments can be seen in Fig. 11. 

During this experiment, 8192 data points were measured 

at 3.125 ms intervals. Also, the duration of time histories 

and sampling frequency are 25.6 s and 320 Hz, respectively 

(Figueiredo et al. 2009). In order to transform these data 

into frequency domain, MATLAB Signal Processing 

Toolbox was used. Figs. 12 and 13 show the force-time 

 

Scenario 1 –floor shear frame -Results of damage detection for 40 Fig. 7 

 

Scenario 2 –floor shear frame -detection for 40Results of damage  Fig. 8 

 

Scenario 3 –floor shear frame -Results of damage detection for 40 Fig. 9 
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Fig. 10 LANL test structure (Figueiredo et al. 2009)  

 

 

history from channel 1 and acceleration-time history from 

Channel 4, respectively.  

Experimental and numerical mode shapes from state #1 

were illustrated in Fig. 14. Conditions of different states of  

 

 

Fig. 12 Force-time history from Channel 1 of State #1 

 

 

Fig. 13 Acceleration-time history from Channel 4 of State 

#1 

 

LANL test structure are collected in Table 5. Table 6 

presents experimental and numerical natural frequencies for 

different states. Predicted values of damage are shown in 

Figs. 15 to 20. 

 

. 2009)et alFig. 11 Location of the sensor channels and dimensions of the LANL test structure (Figueiredo  
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Table 5 LANL test structure state conditions 

Description Condition State 

Undamaged Baseline 1#  

%21.8  1st-floor stiffness 

reduction 

87.5% stiffness reduction in 

column 1BD 
2#  

43.7 % 1st-floor stiffness 

reduction 

87.5% stiffness reduction in 

column 1AD and 1BD 
3#  

%21.8  2nd-floor 

stiffness reduction 

87.5% stiffness reduction in 

column 2BD 
4#  

43.7 % 2nd-floor 

stiffness reduction 

87.5% stiffness reduction in 

column 2AD and 2BD 
5#  

%21.8  3rd-floor stiffness 

reduction 

87.5% stiffness reduction in 

column 3BD 
6#  

43.7 % 3rd-floor stiffness 

reduction 

 %87.5  stiffness reduction in 

column 3AD and 3BD 
7#  

 

 

( )
100

NM Exp

Exp

f f
Difference

f

−
=   (21) 

Differences between experimental and numerical 

frequencies are calculated by Eq (21), where NMf and  

 

 

Expf indicate numerical and experimental frequencies, 

respectively. 

 
 

6. Conclusion 

 

The present study introduces a vibration-based method 

of damage detection in truss structures and shear frame. 

Moreover, the presented method of damage detection is 

validated by LANL test structure. In numerical examples, 

natural frequencies and mode shapes were contaminated 

with 1% and 10% levels of noise, respectively. To find 

location and severity of damage, a new objective function 

composed of a term with MAC flexibility and natural 

frequency was minimized. To minimize objective function, 

a new optimization algorithm called moth-flame was 

applied. Results indicated that the proposed method is 

efficient and accurate in detecting damage as an inverse 

problem. 

 
 

 

Fig. 14 Numerical (NM) and experimental (Exp) mode shapes of the state #1 

 

State #2  –Results of damage detection for LANL test structure  Fig. 15 

 

State #3  –Results of damage detection for LANL test structure  Fig. 16 
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Table 6 Experimental and numerical natural frequencies of LANL 

test structure 

Difference (%) 
Frequency (Hz) 

State Numerical Experimental 

4th 3rd 2nd 4th 3rd 2nd 4th 3rd 2nd 

2.8 2.2 2.0 72.7 55.4 31.3 70.7 54.2 30.7 #1 

2.2 1.6 -1.6 70.7 52.0 30.4 69.2 51.2 30.9 2#  

2.1 1.7 -5.6 69.2 47.8 28.6 67.8 47.0 30.3 3#  

4.4 2.6 -1.0 68.7 55.3 29.4 65.8 53.9 29.7 4#  

4.2 1.7 -7.3 64.8 55.1 26.5 62.2 54.2 28.6 5#  

3.2 2.0 -0.7 71.5 52.1 30.0 69.3 51.1 30.2 6#  

3.8 2.3 -4.2 70.6 48.5 27.7 68.0 47.4 28.9 7#  

 

 
 

References 
 

Abdo, M.A.B. (2002), “A numerical study of structural damage 

detection using changes in the rotation of mode shapes”, J. 

Sound Vib., 251(2), 227-239. 

Bureerat, S. and Pholdee, N. (2018), “Inverse problem based 

differential evolution for efficient structural health monitoring 

of trusses”, Appl. Soft Comput., 66, 462-472. 

https://doi.org/10.1016/j.asoc.2018.02.046. 

Bozorg-Haddad, O. (2018), Advanced Optimization by Nature-

Inspired Algorithms, Springer, Singapore.  

http://doi.org/10.1007/978-981-10-5221-7. 

Dinh-Cong, D., Vo-Duy, T. and Nguyen-Thoi, T. (2018a), 

“Damage assessment in truss structures with limited sensors 

using a two- stage method and model reduction”, Appl. Soft 

Comput., 66, 264-277. 

https://doi.org/10.1016/j.asoc.2018.02.028. 

 

State #4  –Results of damage detection for LANL test structure  Fig. 17 

 

State #5  –Results of damage detection for LANL test structure  Fig. 18 

 

State #6  –Results of damage detection for LANL test structure  Fig. 19 

 

State #7  –Results of damage detection for LANL test structure  Fig. 20 

657

https://doi.org/10.1016/j.asoc.2018.02.046
http://doi.org/10.1007/978-981-10-5221-7
https://doi.org/10.1016/j.asoc.2018.02.028


 

Parsa Ghannadi and Seyed Sina Kourehli 

Dinh-Cong, D., Ho-Huu, V., Vo-Duy, T., Ngo-Thi, H.Q., Nguyen 

Thoi, T. (2018b), “Efficiency of Jaya algorithm for solving the 

optimization-based structural damage identification problem 

based on a hybrid objective function”, Eng. Opt., 50(8), 1233-

1251. 

Eftekhar Azam, S., Mariani, S. and Attari, N. K. A. (2017), 

“Online damage detection via a synergy of proper orthogonal 

decomposition and recursive Bayesian filters”, Nonlinear 

Dynam., 89(2), 1489-1511. 

Eftekhar Azam, S. and Mariani, S. (2018), “Online damage 

detection in structural systems via dynamic inverse analysis: A 

recursive Bayesian approach”, Eng. Struct., 159, 28-45. 

https://doi.org/10.1016/j.engstruct.2017.12.031. 

Eftekhar Azam, S., Rageh, A. and Linzell, D. (2019), “Damage 

detection in structural systems utilizing artificial neural 

networks and proper orthogonal decomposition”, Struct. Control 

Health Monitor., 26(2), https://doi.org/10.1002/stc.2288. 

Eberhart, R. and Kennedy, J. (1995), “A new optimizer using 

particle swarm theory”, Proceedings of the Sixth International 

Symposium, Nagoya, Japan, 4–6 October. 

Friswell, M., Penny, J. and Garvey, J. (1998), “A combined genetic 

and eigensensitivity algorithm for the location of damage in 

structures”, Comput. Struct., 69(5), 547-556. 

Fatahi, L. and Moradi, S. (2018), “Multiple crack identification in 

frame structures using a hybrid Bayesian model class selection 

and swarm-based optimization methods”, Struct. Health 

Monitor., 17(1), 39-58. 

Fallah, N., Vaez, SRH. and Mohammadzadeh, A. (2018), “Multi-

damage identification of large-scale truss structures using a two-

step approach”, J. Build Eng., 

https://doi.org/10.1016/j.jobe.2018.06.007. 

Figueiredo, E., Park, G., Figueiras, J., Farrar, C. and Worden, K. 

(2009), “Structural health monitoring algorithm comparisons 

using standard data sets”, Report No. LA-14393; Los Alamos 

National Laboratory, Los Alamos. 

Gordan, M., Razak, H.A., Ismail, Z. and Ghaedi, k. (2017), 

“Recent Developments in Damage Identification of Structures 

Using Data Mining”, Latin American J. Solid Struct., 14(13), 

2373-2401. 

Gomes, G.F., Mendez, Y.A.D., Alexandrino P.D.S.L., Da Cunha, 

S.S. and Ancelotti, A.C. (2018), “A review of vibration based 

inverse methods for damage detection and identification in 

mechanical structures using optimization algorithms and ANN”, 

Arch. Comput. Method Eng., 1-15. 

https://doi.org/10.1007/s11831-018-9273-4. 

Gholizadeh, S., Davoudi, H. and Fattahi, F. (2017), “Design of 

steel frames by an enhanced moth-flame optimization 

algorithm”, Steel Compos Struct., 24(1), 129-140. 

Ghannadi, P. and Kourehli, S.S. (2018), “Investigation of the 

accuracy of different finite element model reduction 

techniques”, Struct. Monitor Maintenance., 5(3), 417-428. 

Gillich, G.R., Furdui, H., Wahab, M.A. and Korka, Z.I. (2019), “A 

robust damage detection method based on multi-modal analysis 

in variable temperature conditions”, Mech. Syst. Signal 

Process., 115, 361-379.  

https://doi.org/10.1016/j.ymssp.2018.05.037  

Giagopoulos, D., Arailopoulos, A., Dertimanis, V., Papadimitriou, 

C., Chatzi, E. and Grompanopoulos, K. (2019), “Structural 

health monitoring and fatigue damage estimation using 

vibration measurements and finite element model 

updating”, Struct. Health Monitor. 

https://doi.org/10.1177/1475921718790188 

Hao, H. and Xia, Y. (2002), “Vibration-based damage detection of 

structures by genetic algorithm”, J. Comput. Civil Eng., 16(3), 

222-229. 

Hosseinlou, F., Mojtahedi, A. and Yaghin, MAL. (2017), 

“Developing a SIM strategy for offshore jacket platforms based 

on the FE model updating and a novel simplified method”, 

Ocean Eng., 145, 158-176.                                                                 

https://doi.org/10.1016/j.oceaneng.2017.08.013 

Khatir, S., Belaidi, I., Serra, R., Benaissa, B. and Saada, A. A. 

(2015), “Genetic algorithm based objective functions 

comparative study for damage detection and localization in 

beam structures”, J. Physics: Conference Series. 

http://doi.org/10.1088/1742-6596/628/1/012035 

Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Wahab, M. 

A. (2018), “Crack identification method in beam-like structures 

using changes in experimentally measured frequencies and 

Particle Swarm Optimization”, Comptes Rendus 

Mécanique., 346(2), 110-120.  

Kourehli, S.S., Amiri, G.G., Ghafory-Ashtiany, M. and Bagheri, A. 

(2013a), “Structural damage detection based on incomplete 

modal data using pattern search algorithm”, J. Vib. Control., 

19(6), 821-833. 

Kourehli, S.S., Bagheri, A., Amiri, G.G. and Ashtiany, M.G. 

(2013b), “Structural damage detection using incomplete modal 

data and incomplete static response”, KSCE J. Civil Eng., 17(1), 

216-223. 

Kaveh, A. and Talatahari, S. (2010), “A novel heuristic 

optimization method: charged system search”, Acta Mechanica., 

213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4 

Kaveh, A. and Zolghadr, A. (2015), “An improved CSS for 

damage detection of truss structures using changes in natural 

frequencies and mode shapes”, Adv. Eng. Software., 80, 93-100. 

https://doi.org/10.1016/j.advengsoft.2014.09.010                                                                                       

Kaveh, A., Dadras, A. (2017), “A novel meta-heuristic 

optimization algorithm: thermal exchange optimization”, Adv. 

Eng. Software., 110, 69-84. 

https://doi.org/10.1016/j.advengsoft.2017.03.014 

Kaveh, A. and Dadras, A. (2018), “Structural damage 

identification using an enhanced thermal exchange optimization 

algorithm”, Eng. Opt., 50(3), 430-451. 

Mares, C. and Surace, C. (1996), “An application of genetic 

algorithms to identify damage in elastic structures”, J. Sound 

Vib., 195(2), 195-215. 

Moezi, S.A., Zakeri, E. and Zare, A. (2018), “Structural single and 

multiple crack detection in cantilever beams using a hybrid 

Cuckoo-Nelder-Mead optimization method”, Mech. Syst. Signal 

Process., 99, 805-831.                                    

https://doi.org/10.1016/j.ymssp.2017.07.013  

Mirjalili, S. (2015), “Moth-flame optimization algorithm: A novel 

nature-inspired heuristic paradigm”, Knowledge-Based Syst., 

89, 228-249. https://doi.org/10.1016/j.knosys.2015.07.006 

Mohanty, B. (2018), “Performance analysis of moth flame 

optimization algorithm for AGC  system”, J. Model. Simul., 1-

15. https://doi.org/10.1080/02286203.2018.1476799 

MATLAB (2018), MATLAB Documentation.; MathWorks, 

Massachusetts, USA. https://www.mathworks.com/help/matlab 

Perera, R. and Torres, R. (2006), “Structural damage detection via 

modal data with genetic algorithms”, J. Struct. Eng., 132(9), 

1491-1501. 

Perera, R., Ruiz, A. and Manzano, C. (2009), “Performance 

assessment of multicriteria damage identification genetic 

algorithms”, Comput. Struct., 87(1-2), 120-127. 

Ruotolo, R. and Surace, C. (1997), “Damage assessment of 

multiple cracked beams: numerical results and experimental 

validation”, J. Sound Vib., 206(4), 567-588. 

Rasouli, A., Amiri, G.G., Kheyroddin, A., Ashtiany, G.M. and 

Kourehli, S.S (2014), “A new method for damage prognosis 

based on incomplete modal data via an evolutionary algorithm”, 

Europe. J. Environ. Civil Eng., 18(3), 253-270. 

Rao, R. (2016), “Jaya: A simple and new optimization algorithm 

for solving constrained and unconstrained optimization 

problems”, J. Industrial Eng. Comput., 7(1), 19-34. 

658

https://doi.org/10.1016/j.engstruct.2017.12.031
https://doi.org/10.1002/stc.2288
https://doi.org/10.1016/j.jobe.2018.06.007
https://doi.org/10.1007/s11831-018-9273-4
https://doi.org/10.1016/j.ymssp.2018.05.037
https://doi.org/10.1177/1475921718790188
https://doi.org/10.1016/j.oceaneng.2017.08.013
http://doi.org/10.1088/1742-6596/628/1/012035
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1016/j.advengsoft.2014.09.010
https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1016/j.ymssp.2017.07.013
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1080/02286203.2018.1476799
https://www.mathworks.com/help/matlab


 

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm 

 

Rasouli, A., Kourehli, S.S., Amiri, G.G. and Kheyroddin, A. 

(2015), “A two-stage method for structural damage prognosis in 

shear frames based on story displacement index and modal 

residual force”, Adv. Civil Eng.                                    

http://dx.doi.org/10.1155/2015/527537 

Rageh, A., Linzell, D. G. and Azam, S. E. (2018), “Automated, 

strain-based, output-only bridge damage detection”, J. Civil 

Struct. Health Monitor., 8(5), 833-846. 

Seyedpoor, S. (2012), “A two stage method for structural damage 

detection using a modal strain energy based index and particle 

swarm optimization”, J. Non-Linear Mech., 47(1), 1-8. 

Seyedpoor, S.M., Montazer, M. (2016), “A two-stage damage 

detection method for truss structures using a modal residual 

vector based indicator and differential evolution algorithm”, 

Smart Struct. Syst., 17(2), 347-361. 

Shabbir, F., Khan, M.I., Ahmad. N., Tahir, M.F., Ejaz, N. and 

Hussain, J. (2017), “Structural Damage Detection with Different 

Objective Functions in Noisy Conditions Using an Evolutionary 

Algorithm”, Appl. Sci., 7(12), 1-26. 

Shokrani, Y., Dertimanis, V. K., Chatzi, E. N. and N. Savoia, M. 

(2018), “On the use of mode shape curvatures for damage 

localization under varying environmental conditions”, Struct. 

Control Health Monitor., 25(4), 

https://doi.org/10.1002/stc.2132. 

Tiachacht, S., Bouazzouni, A., Khatir, S., Abdel Wahab, M., 

Behtani, A. and Capozucca, R. (2018), “Damage assessment in 

structures using combination of a modified Cornwell indicator 

and genetic algorithm”, Eng. Struct., 177, 421-430. 

https://doi.org/10.1016/j.engstruct.2018.09.070 

Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-

Ngoc, L. and Abdel Wahab, M. (2018), “Model Updating for 

Nam O Bridge Using Particle Swarm Optimization Algorithm 

and Genetic Algorithm”. Sensors., 18(12), 4131. 

Vakil Baghmisheh, M.T., Peimani, M., Sadeghi, M.H. and 

Ettefagh, M.M. (2008), “Crack detection in beam-like structures 

using genetic algorithms”, Appl. Soft Comput., 8(2), 1150-1160. 

Vaez, S.R.H. and Fallah, N. (2017), “Damage detection of thin 

plates using GA-PSO algorithm based on modal data”, Arabian 

J. Sci. Eng., 42(3), 1251-1263. 

Vakil Baghmisheh, M.T., Peimani, M., Sadeghi, M.H. and Tabrizi, 

A.F. (2012), “A hybrid particle swarm–Nelder–Mead 

optimization method for crack detection in cantilever beams”, 

Appl. Soft Comput., 12(8), 2217-2226. 

Wei, Z., Liu, J. and Lu, Z. (2018), “Structural damage detection 

using improved particle swarm optimization”, Inverse Problems 

Sci. Eng., 26(6), 792-810. 

Zhou, Y. L., Maia, N. M., Sampaio, R. P. and Abdel Wahab, M. 

(2017), “Structural damage detection using transmissibility 

together with hierarchical clustering analysis and similarity 

measure”, Struct. Health Monitor., 16(6), 711-731. 

Zhou, Y. L., Maia, N. M. and Abdel Wahab, M. (2018), “Damage 

detection using transmissibility compressed by principal 

component analysis enhanced with distance measure”, J. Vib. 

Control., 24(10), 2001-2019. 

 

 

CC 

659

http://dx.doi.org/10.1155/2015/527537
https://doi.org/10.1002/stc.2132
https://doi.org/10.1016/j.engstruct.2018.09.070



