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1. Introduction 
 

Micro-nanoelectromechanical devices (MEMS-NEMS), 

due to their accuracy and ultra-high sensitivity are widely 

used in research areas relating to the spin detection 

(Budakian et al. 2006, López 2013), mass detection (Yang 

et al. 2006, Li et al. 2007, Naik et al. 2009), damage 

detection (Shinozuka et al. 2010, Domaneschi et al. 2013), 

coupled resonance (Sato et al. 2003, Shim et al. 2007, 

Huber et al. 2010) and biochemistry (Leng and Lin 2011, 

Hwang et al. 2017, Pan and Chen 2017). Micro-

nanomechanical resonators are a main branch of these 

devices highlighted for their excessive frequency (Huang et 

al. 2005, Baghelani 2016). Better detection of the physical 

quantities by these resonators highly depends on 

characterizing their dynamic behavior, accurately (Ekinci et 

al. 2004, Braun et al. 2005, Tajaddodianfar et al. 2017). 

Therefore, it is necessary to illustrate and realize their 

dynamic characteristics to design new sensing instruments. 

Clearly, the dynamic characteristics of these resonating 

devices are highly influenced by their specific mechanical 

properties such as elasticity and viscoelasticity. Recently, 

some new experiments showed that the viscoelastic  
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properties extensively present in materials such as silicon 

(Elwenspoek and Jansen 2004) and polysilicon (Teh and 

Lin 1999) used widely in MEMS/NEMS. Moreover, the 

viscoelastic characteristics of graphene oxide layers were 

demonstrated by tensile tests on these plates (Su et al. 

2012). Furthermore, the viscoelastic properties of the 

nanostructures were also studied (Karlicic et al. 2014, 

Mohammadimehr et al. 2015, Khaniki and Hosseini-

Hashemi 2017). Recently, Ajri et al. (2018a, 2018b) studied 

the viscoelasticity effects on the nonlinear dynamics of a 

viscoelastic nano-plate. 

 Experimental results revealed that the viscoelasticity 

effects significantly influence the system behavior 

(Elwenspoek and Jansen 2004, Tuck et al. 2005). In 

general, in viscoelastic structures, a part of deformation 

energy is recoverable where the other part is not. The 

irrecoverable part of the deformation energy produces 

thermally actuated mechanical fluctuations and the 

frequencies of oscillators are highly influenced by the 

viscoelastic dissipation (Saulson 1990, Paolino and Bellon 

2009). As a result, it is necessary to consider the viscous 

dissipation in dynamic analysis of the nano-resonators. 

In addition to the less-concentrated viscoelasticity in 

formulating the deformation of micro and nanostructures, 

the small-scale effects play very crucial roles. Many 

researchers all around the world investigate the different 

mechanical properties of the micro-nanostructures by 

applying the classical continuum theories. However, as 

mentioned at the micro-nanoscales, the surface and size 

effects often become noticeable that cannot be disregarded. 

Experimental findings and atomistic simulations showed 

significant size-effects (Mindlin and Tiersten 1962, Jiang et 
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al. 2009) on the mechanical properties at micro-nanoscales. 

The small-scale effects usually increase the stiffness of the 

nanostructures and the stiffness changes the dynamic 

behavior of these elements, remarkably. Classical 

continuum models are supposed to be scale-free, so their 

application leads to inaccurate results.  In order to 

compensate the lacks of the size-independent classical 

concepts, several theories taking the size effects have been 

introduced (Toupin 1962, Gurtin and Murdoch 1975, 

Aifantis 1999, Yang et al. 2002, Lam et al. 2003) for the 

elastic materials. One of the most important size-dependent 

continuum models is the modified couple stress theory 

(MCST) (Yang et al. 2002) used in this paper. In this theory, 

when the couples, couples moments and applied forces 

resultant have zero values, the materials reach the 

equilibrium state. The MCS theory was applied to examine 

the mechanical behavior of the elastic micro-nanostructures 

such as vibration (Babaei et al. 2017, Ehyaei and 

Akbarizadeh 2017, Ghadiri et al. 2017, Setoodeh and 

Rezaei 2017), nonlinear dynamics (Akbas 2016, Park et al. 

2016, Ghayesh et al. 2017) and electromechanical 

characteristics (Ghayesh et al. 2013, Kalyanaraman et al. 

2013).  
The literature regarding the static and dynamic size-

dependent behavior of the micro-nanoplates with elastic 
model is relatively wide. For example, based on the MCST 
for linear case, Ma et al. (2011) analyzed the static and free 
vibration of the microplates using the first-order shear 
deformation plate model. Furthermore, Ke et al. (2012) and 
Jomehzadeh et al. (2011) applied the MCS theory to study 
the free linear vibrations of Mindlin and Kirchhoff 
microplates. For the nonlinear case, Asghari (2012) applied 
the MCST to study the size-dependent nonlinear motion of 
the microplates. However, despite the extensive research on 
the viscoelastic models at the macro-scales (Mockensturm 
and Guo 2005, Ghayesh and Amabili 2012, Tang and Chen 
2012), the large amount of literatures on the 
dynamics/statics of micro-nanostructures are on the base of 
the elastic model. Recently, a number of researchers 
considered the viscoelastic models on dynamic/static 
modeling of the micro-nanostructures. For example, 
Ebrahimi and Hosseini (2016) studied the viscoelasticity 
effects on vibration behavior of a nanoplate with 
viscoelastic material in thermal environments. Liu et al. 
(2017) investigated the vibration of a viscoelastic 
functionally Graded nanoplate. In addition, Jamalpoor et al. 
(2017) discussed the out-of-plane vibration of a orthotropic 
multi-layer microplate with viscoelastic material via the 
modified strain gradient theory. In all of the mentioned 
studies, no solutions were provided for the nonlinear 
dynamics of viscoelastic micro-nanoplates and only the 
equations of motion were achieved and reported. Moreover, 
the mentioned studies used the Kelvin-Vigot material, 
allowing modeling the linear viscoelasticity while many 
viscoelastic materials do not have linear behavior clearly 
showing nonlinear mechanical responses. In order to solve 
this problem, an evaluation study (Smart and Williams 
1972) revealed that the nonlinear Leaderman relation 
(Leaderman 1962) is useful when prediction and easiness 
are important. The recent paper studies the viscoelastically 
coupled nonlinear dynamics of a plate-shape nano-resonator 
made of the viscoelastic material following the Leaderman 

integral nonlinear relation. 

To the best of the author’s knowledge, there is no study 

in the previous literature that examines the free vibration 

and nonlinear forced vibration of the viscoelastic nano-

resonators including secondary resonance. This paper 

analyzes the time-dependent natural frequencies and 

secondary resonance in super-harmonic motions of a 

viscoelastic nano-resonator. The resonator is assumed as a 

nanoplate with simply supported boundary conditions. 

Then, a new coupled size dependent model is developed for 

viscoelastic material with using the MCS theory. In order to 

capture the system oscillative behavior at relatively large 

deformations, the von-Karman theory is considered in this 

model. The virtual work induced by the viscous forces 

calculated with using the Leaderman integral. With 

incorporating the size-dependent potential energy, kinetic 

energy, and an external excitation force work based on the 

Hamilton’s principle, the viscous work equation is 

balanced. The obtained coupled equations are a set of 

nonlinear second order integro-differential partial equations. 

These equations are converted to Duffing equation by 

applying expansion theory. The coupled nonlinear Duffing 

and van der Pol systems were studied by the multiple scales 

method and the homotopy analysis method, previously 

(Qian and Fu 2017, Qian and Zhang 2017, Fu and Qian 

2018, Qian et al. 2018). Along with the mentioned research 

studies, the fourth-order Runge–Kutta technique considered 

in this paper can also be used to solve these equations. 

Then, the transient vibration of the system is analyzed by 

performing Hilbert–Huang Transform. In addition, the 

nonlinear forced vibration characteristics and secondary 

resonance, in super-harmonic motions, of the system 

exposed to distributed harmonic load are examined in the 

form of the frequency response, force response, Poincare 

map, phase portrait and fast Fourier transforms.  

 

 

2. Theory of viscoelastically coupled nonlinear 
models 
 

To get develop the governing equation of motion, the 

generalized Hamilton’s principle is applied (Ajri et al. 

2018a): 

∫ [𝑈 + 𝑊 − 𝐾]𝑑𝑡 = 0
𝑡2

𝑡1

 (1) 

In which, δ is the variation operator. In addition, T and 

U are the kinetic energy and elastic strain energy, 

respectively. Besides, W is viscous dissipation or external 

forces work. Hence, W can be found as: 

𝑊 = 𝑊𝑒𝑥𝑡 + 𝑊𝑣𝑖𝑠 (2) 

Inserting Eq. (2) into Eq. (1), and applying the variation 

operator the Hamilton principle get the following form 

∫ [𝑈 + 𝑊𝑒𝑥𝑡 + 𝑊𝑣𝑖𝑠 − 𝐾]𝑑𝑡 = 0
𝑡2

𝑡1

 (3) 

In this paper, the formulation is restricted to small 

strains, and moderate rotations. Consequently, there is no 

need to update of the domain, and therefore, the Cauchy and 
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second Piola–Kirchhoff stress tensors are the same. In the 

MCST proposed by Yang et al. (2002), the symmetric part 

of the curvature tensor χ can obtained from following 

equation. 

𝜒 =
1

2
(∇ω + (∇ω)𝑇) (4) 

In which ω is the rotation vector and can be found from 

the displacement vector ,u, as following form 

ω =
1

2
curl(u) (5) 

Based on the Leaderman constitutive relation 

(Christensen and Freund 1971), for a viscoelastic 

nanostructure we have: 

𝜎 = 𝜆⨂𝑡𝑟(𝜀)𝐼 + 2𝜇⨂𝜀 

𝑚 = 2𝑙2𝜇⨂𝜒 
(6) 

where m is the couple-stress deviatoric component and σ is 

the stress tensor. Additionally, λ and μ are time-dependent 

Lame constants, l is the length-scale parameter of the 

material and  ⨂  is the convolution operator which 

formulated as 

𝑔(𝑡)⨂𝑘(𝑡) = 𝑔(0+)𝑘(𝑡) + ∫
𝜕𝑔(𝑡 − 𝜏)

𝜕(𝑡 − 𝜏)

𝑡

0+
𝑘(𝜏)𝑑𝜏 (7) 

Eq. (7) is applied to write the constitutive relations as 

Eq. (8). 

𝜎 = 𝜎𝑒 + 𝜎𝑣 =  (𝜆0𝑡𝑟(𝜀)𝐼 + 2𝜇0𝜀(𝑡))

+ ∫(𝜆̇(𝑡 − 𝜏)𝑡𝑟(𝜀)𝐼

𝑡

0

+ 2𝜇̇(𝑡 − 𝜏)𝜀(𝜏)) 𝑑𝜏 

(8) 

𝑚 = 𝑚𝑒 + 𝑚𝑣 =  2𝑙2𝜇0𝜒(𝑡) + ∫ 2𝑙2𝜇̇(𝑡 − 𝜏)𝜒(𝜏)𝑑𝜏

𝑡

0

 (9) 

where λ0 and μ0 are the Lame constants at the time equal to 

zero and μ(t) = G(t) = E(t)/2(1+υ). Moreover, 𝐸(𝑡) and 

𝐺(𝑡) are time-dependent Young’s and rigidity modulus and 

ν is the time-independent Poisson ratio. The over dot (·) 

denotes the first derivation respect to the time.  

In order to determine the displacement field of the 

nanoplate based on the Kirchhoff’s plate theory (JE. 1989), 

the Cartesian coordinate system (x, y, z) with xy-plane is in 

the mid-plane of the nanoplate, is considered. So we get 

(Ajri et al. 2018a). 

𝑢𝑥 = 𝑢(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥
   

𝑣𝑦 = 𝑣(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑦
     

𝑤𝑧 =  𝑤(𝑥, 𝑦, 𝑡) 

(10) 

Considering the von-Karman nonlinearity, the strain 
components are 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
− z

𝜕2𝑤

𝜕𝑥2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

 (11) 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
− z

𝜕2𝑤

𝜕𝑦2
+

1

2
(
𝜕𝑤

𝜕𝑦
)2 

𝜀𝑥𝑦 =
1

2
(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
− 2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
) 

Substituting Eq. (10) in Eq. (5), result in 

𝜔𝑥 =
𝜕𝑤

𝜕𝑦
         𝜔𝑦 = −

𝜕𝑤

𝜕𝑥
      𝜔𝑧 =

1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) (12) 

Also, from Eqs. (4) and (10) can be concluded that 

𝜒𝑥𝑥 =
𝜕2𝑤

𝜕𝑥𝜕𝑦
    𝜒𝑦𝑦 = −

𝜕2𝑤

𝜕𝑥𝜕𝑦
      

𝜒𝑥𝑦 =
1

2
(

𝜕2𝑤

𝜕𝑦2
−

𝜕2𝑤

𝜕𝑥2
) 

𝜒𝑥𝑧 =
1

4
(

𝜕2𝑣

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑥𝜕𝑦
)    𝜒𝑦𝑧 =

1

4
(

𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑢

𝜕𝑦2
) 

(13) 

Replacing Eq. (11) into Eq. (8), the following results can 
be obtained 

𝜎𝑥𝑥
𝑒 =

𝐸0

(1 − 𝜐2)
[(

𝜕𝑢

𝜕𝑥
− z

𝜕2𝑤

𝜕𝑥2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

)

+ 𝜐 (
𝜕𝑣

𝜕𝑦
− z

𝜕2𝑤

𝜕𝑦2
+

1

2
(

𝜕𝑤

𝜕𝑦
)

2

)] 

𝜎𝑥𝑥
𝑣 = ∫

𝐸̇(𝑡 − 𝜏)

(1 − 𝜐2)

𝑡

0

[(
𝜕𝑢

𝜕𝑥
− z

𝜕2𝑤

𝜕𝑥2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

)

+ 𝜐 (
𝜕𝑣

𝜕𝑦
− z

𝜕2𝑤

𝜕𝑦2
+

1

2
(

𝜕𝑤

𝜕𝑦
)

2

)] 𝑑𝜏 

𝜎𝑦𝑦
𝑒 =

𝐸0

(1 − 𝜐2)
((

𝜕𝑣

𝜕𝑦
− z

𝜕2𝑤

𝜕𝑦2
+

1

2
(

𝜕𝑤

𝜕𝑦
)

2

)

+ 𝜐 (
𝜕𝑢

𝜕𝑥
− z

𝜕2𝑤

𝜕𝑥2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

)) 

𝜎𝑦𝑦
𝑣 = ∫

𝐸̇(𝑡 − 𝜏)

(1 − 𝜐2)

𝑡

0

[(
𝜕𝑣

𝜕𝑦
− z

𝜕2𝑤

𝜕𝑦2
+

1

2
(

𝜕𝑤

𝜕𝑦
)

2

)

+ 𝜐 (
𝜕𝑢

𝜕𝑥
− z

𝜕2𝑤

𝜕𝑥2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

)] 𝑑𝜏 

𝜎𝑥𝑦
𝑒 = 𝐺0 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
− 2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
) 

𝜎𝑥𝑦
𝑣 = ∫ 𝐺̇(𝑡 − 𝜏)

𝑡

0

(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
− 2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
) 𝑑𝜏 

(14) 

Similarly, substituting Eq. (13) into Eq. (9), result in 
following 

𝑚𝑥𝑥
𝑒 = 2𝑙2𝐺0 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)             

𝑚𝑥𝑥
𝑣 = 2𝑙2 ∫ 𝐺̇(𝑡 − 𝜏) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) 𝑑𝜏

𝑡

0

 

𝑚𝑦𝑦
𝑒 = −2𝑙2𝐺0 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) 

(15) 

625



 

Masoud Ajri, Abbas Rastgoo and Mir Masoud Seyyed Fakhrabadi 

𝑚𝑦𝑦
𝑣 = −2𝑙2 ∫ 𝐺̇(𝑡 − 𝜏) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) 𝑑𝜏

𝑡

0

 

𝑚𝑥𝑦
𝑒 = 𝑙2𝐺0 (

𝜕2𝑤

𝜕𝑦2
−

𝜕2𝑤

𝜕𝑥2
)       

𝑚𝑥𝑦
𝑣 = 𝑙2 ∫ 𝐺̇(𝑡 − 𝜏)

𝑡

0

(
𝜕2𝑤

𝜕𝑦2
−

𝜕2𝑤

𝜕𝑥2
)  𝑑𝜏 

𝑚𝑥𝑧
𝑒 =

1

2
𝑙2𝐺0 (

𝜕2𝑣

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑥𝜕𝑦
)    

𝑚𝑥𝑧
𝑣 =

1

2
𝑙2 ∫ 𝐺̇(𝑡 − 𝜏) (

𝜕2𝑣

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑥𝜕𝑦
)

𝑡

0

 𝑑𝜏 

𝑚𝑦𝑧
𝑒 =

1

2
𝑙2𝐺0 (

𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑢

𝜕𝑦2
)   

𝑚𝑦𝑧
𝑣 =

1

2
𝑙2 ∫ 𝐺̇(𝑡 − 𝜏) (

𝜕2𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑢

𝜕𝑦2
)

𝑡

0

 𝑑𝜏 

Based to the MCST of Yang et al. (2002), the first 
variation of the elastic potential energy is defined as 

𝑈 =
1

2
∭(𝜎𝑒𝜀

 

 

+ 𝑚𝑒𝜒)𝑑𝑣 (16) 

In homogenous rectangular nanoplate the integration 
respect to volume can be expressed as 

∫ 𝐹𝑑𝑣 = ∫ ∫ 𝐹𝑑𝑧𝑑𝐴
ℎ/2

−ℎ/2

 

𝐴

 

𝑉

 (17) 

Inserting Eq. (17) into Eq. (16) and integrating by parts 
and after some algebraic processes, the following result is 
obtained 

𝛿𝑈 = ∫ [− (
𝜕𝑁𝑥𝑥

𝑒

𝜕𝑥
+

𝜕𝑁𝑥𝑦
𝑒

𝜕𝑦
+

1

2

𝜕2𝑅𝑥𝑧
𝑒

𝜕𝑥𝜕𝑦
+

1

2

𝜕2𝑅𝑦𝑧
𝑒

𝜕𝑦2
) 𝜕𝑢

 

𝐴

− (
𝜕𝑁𝑦𝑦

𝑒

𝜕𝑦
+

𝜕𝑁𝑥𝑦
𝑒

𝜕𝑥
−

1

2

𝜕2𝑅𝑥𝑧
𝑒

𝜕𝑥2

−
1

2

𝜕2𝑅𝑦𝑧
𝑒

𝜕𝑥𝜕𝑦
) 𝜕𝑣

− (
𝜕2𝑀𝑥𝑥

𝑒

𝜕𝑥2
+

𝜕2𝑀𝑦𝑦
𝑒

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦
𝑒

𝜕𝑥𝜕𝑦

−
𝜕2𝑅𝑥𝑥

𝑒

𝜕𝑥𝜕𝑦
−

𝜕2𝑅𝑥𝑦
𝑒

𝜕𝑦2
+

𝜕2𝑅𝑥𝑦
𝑒

𝜕𝑥2
+

𝜕2𝑅𝑦𝑦
𝑒

𝜕𝑥𝜕𝑦

+ 𝑃𝑒(𝑤)) 𝜕𝑤] 𝑑𝐴 

(18) 

where 

𝑁𝑖𝑗
𝑒 = ∫ 𝜎𝑖𝑗

𝑒 𝑑𝑧    
ℎ/2

−ℎ/2

𝑀𝑖𝑗
𝑒 = ∫ 𝑧𝜎𝑖𝑗

𝑒 𝑑𝑧     
ℎ/2

−ℎ/2

𝑅𝑖𝑗
𝑒

= ∫ 𝑚𝑖𝑗
𝑒 𝑑𝑧      

ℎ/2

−ℎ/2

 

(19) 

and 

𝑃𝑒(𝑤) =
𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝑒
𝜕𝑤

𝜕𝑥
+ 𝑁𝑥𝑦

𝑒
𝜕𝑤

𝜕𝑦
)

+
𝜕

𝜕𝑦
(𝑁𝑥𝑦

𝑒
𝜕𝑤

𝜕𝑥
+ 𝑁𝑦𝑦

𝑒
𝜕𝑤

𝜕𝑦
) 

(20) 

Similarly, the viscous forces virtual work first variation 
on the nanoplate is givens as 

𝑊𝑣𝑖𝑠 = 𝑈𝑣𝑖𝑠 =
1

2
∭(𝜎𝑣𝜀

 

 

+ m𝑣𝜒)𝑑𝑣 (21) 

By integration, we get:  

𝑈𝑣𝑖𝑠 = ∫ [− (
𝜕𝑁𝑥𝑥

𝑣

𝜕𝑥
+

𝜕𝑁𝑥𝑦
𝑣

𝜕𝑦
+

1

2

𝜕2𝑅𝑥𝑧
𝑣

𝜕𝑥𝜕𝑦

 

𝐴

+
1

2

𝜕2𝑅𝑦𝑧
𝑣

𝜕𝑦2
) 𝜕𝑢

− (
𝜕𝑁𝑦𝑦

𝑣

𝜕𝑦
+

𝜕𝑁𝑥𝑦
𝑣

𝜕𝑥
−

1

2

𝜕2𝑅𝑥𝑧
𝑣

𝜕𝑥2

−
1

2

𝜕2𝑅𝑦𝑧
𝑣

𝜕𝑥𝜕𝑦
) 𝜕𝑣

− (
𝜕2𝑀𝑥𝑥

𝑣

𝜕𝑥2
+

𝜕2𝑀𝑦𝑦
𝑣

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦
𝑣

𝜕𝑥𝜕𝑦

−
𝜕2𝑅𝑥𝑥

𝑣

𝜕𝑥𝜕𝑦
−

𝜕2𝑅𝑥𝑦
𝑣

𝜕𝑦2
+

𝜕2𝑅𝑥𝑦
𝑣

𝜕𝑥2
+

𝜕2𝑅𝑦𝑦
𝑣

𝜕𝑥𝜕𝑦

+ 𝑃𝑣(𝑤)) 𝜕𝑤] 𝑑𝐴 

(22) 

where 

𝑁𝑖𝑗
𝑣 = ∫ 𝜎𝑖𝑗

𝑣 𝑑𝑧    
ℎ/2

−ℎ/2

𝑀𝑖𝑗
𝑣 = ∫ 𝑧𝜎𝑖𝑗

𝑣 𝑑𝑧     
ℎ/2

−ℎ/2

𝑅𝑖𝑗
𝑣

= ∫ 𝑚𝑖𝑗
𝑣 𝑑𝑧      

ℎ/2

−ℎ/2

 

(23) 

and 

𝑃𝑣(𝑤) =
𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝑣
𝜕𝑤

𝜕𝑥
+ 𝑁𝑥𝑦

𝑣
𝜕𝑤

𝜕𝑦
)

+
𝜕

𝜕𝑦
(𝑁𝑥𝑦

𝑣
𝜕𝑤

𝜕𝑥
+ 𝑁𝑦𝑦

𝑣
𝜕𝑤

𝜕𝑦
) 

(24) 

From the general expression of the external forces work 
in the MCST, the virtual work first variation performed by 
the applied forces on the viscoelastic nanoplate in the time 
interval [0, T] can be calculated as (Mockensturm and Guo 
2005) 

𝛿𝑊𝑒𝑥𝑡 = − ∫(𝑡𝑥𝛿𝑢 + 𝑡𝑦𝛿𝑣 + 𝑡𝑧𝛿𝑤 + 𝑠𝑥𝛿𝜔1 + 𝑠𝑦𝛿𝜔2

 

Γ

+ 𝑠𝑧𝛿𝜔3) 𝑑Γ 

− ∫((𝑓𝑥 + 𝑞𝑥)𝛿𝑢 + (𝑓𝑦 + 𝑞𝑦)𝛿𝑣 + (𝑓𝑧 + 𝑞𝑧)𝛿𝑤

 

Ω

+ 𝑐𝑥𝛿𝜔1 + 𝑐𝑦𝛿𝜔2 + 𝑐𝑧𝛿𝜔3) 𝑑𝐴 

(25) 
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where Ω and Γ are, respectively, the nanoplate middle 

surface and the middle surface boundary (Ma et al. 2011, 

Reddy and Kim 2012), (fx ,fy ,fz ) and the(cx ,cy ,cz) are, 

respectively, the body forces and the body couples, and (qx 

,qy ,qz ), (tx ,ty ,tz) and (sx ,sy ,sz) are, respectively, the 

tractions applied on Γ, the surface couple and Cauchy 

traction applied on S (Ajri et al. 2018a).  
The kinetic energy first variation is given as 

𝛿K = ∫ 𝜌[𝑢̇𝑥𝛿𝑢̇𝑥 + 𝑣̇𝑦𝛿𝑢̇𝑦 + 𝑤̇𝑧𝛿𝑤̇𝑧]𝑑𝑉 (26) 

where ρ is the nanoplate mass density.  
By applying the time first derivative for Eq. (10) and 

substituting in Eq. (26) we get: 

𝛿K = ∫ {𝐼0(𝑢̇𝛿𝑢̇ + 𝑣̇𝛿𝑣̇ + 𝑤̇𝛿𝑤̇)

 

𝐴

+ 𝐼2 (
𝜕𝑤̇

𝜕𝑥
.
𝜕𝛿𝑤̇

𝜕𝑥
+

𝜕𝑤̇

𝜕𝑦
.
𝜕𝛿𝑤̇

𝜕𝑦
)

− 𝐼1 (𝑢̇
𝜕𝛿𝑤̇

𝜕𝑥
+ 𝛿𝑢̇

𝜕𝑤̇

𝜕𝑥
+ 𝑣̇

𝜕𝛿𝑤̇

𝜕𝑦

+ 𝛿𝑣̇
𝜕𝑤̇

𝜕𝑦
)} 𝑑𝐴  

(27) 

where 

∫ (1, 𝑧, 𝑧2)𝜌𝑑𝑧 = (

ℎ/2

−ℎ/2

𝐼0, 𝐼1, 𝐼2) (28) 

By replacing the exprressions for 𝛿𝑈 , 𝛿𝑊𝑣𝑖𝑠 , 𝛿𝑊𝑒𝑥𝑡  
and 𝛿𝐾 from the Eq.(18), (22), (25) and (27) into Eq. (3) 
and applying the partial integration method, the governing 
motion equations for viscoelastic nanoplate on the basis of 
the MCS theory can be obtained as Eq. (29) 

𝛿𝑢 ∶   
𝜕𝑁𝑥𝑥

𝜕𝑥
+

𝜕𝑁𝑥𝑦

𝜕𝑦
+

1

2
(

𝜕2𝑅𝑥𝑧

𝜕𝑥𝜕𝑦
+

𝜕2𝑅𝑦𝑧

𝜕𝑦2
) + 𝑓𝑥 + 𝑞𝑥

+
1

2

𝜕𝑐𝑧

𝜕𝑦
= 𝐼0𝑢 −̈ 𝐼1

𝜕𝑤̈

𝜕𝑥
 

𝛿𝑣 ∶   
𝜕𝑁𝑦𝑦

𝜕𝑦
+

𝜕𝑁𝑥𝑦

𝜕𝑥
−

1

2
(

𝜕2𝑅𝑥𝑧

𝜕𝑥2
+

𝜕2𝑅𝑦𝑧

𝜕𝑥𝜕𝑦
) + 𝑓𝑦 + 𝑞𝑦

−
1

2

𝜕𝑐𝑧

𝜕𝑦
= 𝐼0𝑣 −̈ 𝐼1

𝜕𝑤̈

𝜕𝑦
 

𝛿𝑤 ∶   
𝜕2𝑀𝑥𝑥

𝜕𝑥2
+

𝜕2𝑀𝑦𝑦

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
 

+
𝜕2(𝑅𝑦𝑦 − 𝑅𝑥𝑥)

𝜕𝑥𝜕𝑦
+ 𝑅𝑥𝑦 (

𝜕2

𝜕𝑥2
−

𝜕2

𝜕𝑦2
) + 𝑃(𝑤) 

+𝑓𝑧 + 𝑞𝑧 −
𝜕𝑐𝑥

𝜕𝑦
+

𝜕𝑐𝑦

𝜕𝑥
 

= 𝐼0𝑤 −̈ 𝐼2(
𝜕2𝑤̈

𝜕𝑥2
+

𝜕2𝑤̈

𝜕𝑦2
) + 𝐼1(

𝜕𝑢̈

𝜕𝑥
+

𝜕𝑣̈

𝜕𝑦
) 

(29) 

where  𝑁𝑖𝑗
 = 𝑁𝑖𝑗

𝑒 + 𝑁𝑖𝑗
𝑣 ,  𝑀𝑖𝑗

 = 𝑀𝑖𝑗
𝑒 + 𝑀𝑖𝑗

𝑣  and 𝑃 = 𝑃 
𝑒 +

𝑃 
𝑣 .Equation (29) contains the set of nonlinear integral-

differential equations for a viscoelastic nano-resonator in 

the framework of the MCST. In the current model, the 

length-scale parameter presents in current and past history 

terms and affects both of them. Additionally, with removing 

the past-history terms in Eq.(29), one can reach the 

governing equations of the elastic nano-resonator. This 

gives us the correctness of our calculations in obtaining 

governing equations. 
The displacement form of Eq.(29) can be written as. 

 

(30-a) 

𝛿𝑣:
𝐸0ℎ

(1 − 𝜐2)
(

𝜕2𝑣

𝜕𝑦2
+

𝜕𝑤

𝜕𝑦

𝜕2𝑤

𝜕𝑦2

+ 𝜐 (
𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥𝜕𝑦
)) 

(30-b) 
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+ ∫
ℎ𝐸̇(𝑡 − 𝜏)

(1 − 𝜐2)

𝑡

0

(
𝜕2𝑣

𝜕𝑦2
+

𝜕𝑤

𝜕𝑦

𝜕2𝑤

𝜕𝑦2

+ 𝜐 (
𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥𝜕𝑦
)) 𝑑𝜏

+ 𝐺0ℎ (
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕𝑤

𝜕𝑦

𝜕2𝑤

𝜕𝑥2

+
𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕𝑤

𝜕𝑥
) 

+ ∫ ℎ𝐺̇(𝑡 − 𝜏) (
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕𝑤

𝜕𝑦

𝜕2𝑤

𝜕𝑥2

𝑡

0

+
𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕𝑤

𝜕𝑥
) 𝑑𝜏

+
𝑙2ℎ

4
𝐺0 (

𝜕4𝑢

𝜕𝑦3𝜕𝑥
−

𝜕4𝑣

𝜕𝑥2𝜕𝑦2
)

+
𝑙2ℎ

4
∫ 𝐺̇(𝑡 − 𝜏) (

𝜕4𝑢

𝜕𝑦3𝜕𝑥

𝑡

0

−
𝜕4𝑣

𝜕𝑥2𝜕𝑦2
) 𝑑𝜏

+
𝑙2ℎ

4
𝐺0 (

𝜕4𝑢

𝜕𝑦𝜕𝑥3
−

𝜕4𝑣

𝜕𝑥4
)

+
𝑙2ℎ

4
∫ 𝐺̇(𝑡 − 𝜏) (

𝜕4𝑢

𝜕𝑦𝜕𝑥3

𝑡

0

−
𝜕4𝑣

𝜕𝑥4
) 𝑑𝜏 + 𝑓𝑦 + 𝑞𝑦 −

1

2

𝜕𝑐𝑧

𝜕𝑥

− 𝐼0𝑣̈ + 𝐼1

𝜕𝑤̈

𝜕𝑦
= 0 

 

(30-c) 

where 

𝑃(𝑤) =
ℎ

1 − 𝜐2
[
𝜕2𝑤

𝜕𝑥2
(

𝜕𝑢

𝜕𝑥
+

1

2

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑥
+ 𝜐

𝜕𝑣

𝜕𝑦

+
𝜐

2

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑦
)

+
𝜕2𝑤

𝜕𝑦2
(

𝜕𝑣

𝜕𝑦
+

1

2

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑦
+ 𝜐

𝜕𝑢

𝜕𝑥

+
𝜐

2

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑥
) + (1

− 𝜐)
𝜕2𝑤

𝜕𝑥𝜕𝑦
(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
)] 

(31) 

For homogenous rectangular plate, I1 become zero. 

The following nondimensional variables are introduced: 

𝑤̅ =
𝑤

ℎ
  𝑥̅ =

𝑥

𝑎
 𝑦̅ =

𝑦

𝑏
   𝜉 =

𝑎

𝑏
  𝑙0 =

𝑙

ℎ
  𝑓̅ =

f𝑧𝑎4

𝐸0ℎ4
    

𝑡̅ =
𝑡

𝑇
 T = √

𝐼0𝑎4

𝐸0ℎ3
   

(32) 

where a, b and h are the nanoplate length, width and 

thickness, respectively. 

Based on the experimental results on the viscoelastic 

material (Lee et al. 2005, Yan et al. 2009), the standard 

anelastic solid model is applied to express the relaxation 

function. Then we get (Ajri et al. 2018a) 

𝐸(𝑡) = 𝐶 + 𝐷𝑒−𝛾𝑡 (33) 

In which γ is the relaxation coefficient. Besides, the 

E(t=0) represents the initial elastic modulus 𝐸0 

𝑛(𝑡) =
𝐸(𝑡)

𝐸0

= 𝐶̅ + 𝐷̅𝑒−𝛾̅𝑡 (34) 

where 𝐶̅ =
𝐶

𝐶+𝐷
  𝐷̅ =

𝐷

𝐶+𝐷
 and 𝛾̅ = 𝛾𝑇 

The present study considers the rectangular nanoplate 

with all edges simply supported. The solutions are assumed 

as (Niyogi 1973). 

𝑢(𝑥̅, 𝑦̅, 𝑡̅) =
1

16
∑ ∑ 𝛼

ℎ

𝑎
𝛷2

𝑚𝑛

∞

𝑛=1

∞

𝑚=1

(𝑡̅)𝑠𝑖𝑛2𝛼𝑥̅ (𝑐𝑜𝑠2𝛽𝑦̅

− 1 + 𝜐𝜉2 (
𝛽

𝛼
)

2

) 

𝑣(𝑥̅, 𝑦̅, 𝑡̅) =
1

16
∑ ∑ 𝛽

ℎ

𝑏
𝛷2

𝑚𝑛

∞

𝑛=1

∞

𝑚=1

(𝑡̅)𝑠𝑖𝑛2𝛽𝑦̅ (𝑐𝑜𝑠2𝛼𝑥̅

− 1 + 𝜐
1

𝜉2
(

𝛼

𝛽
)

2

) 

𝑤(𝑥̅, 𝑦̅, 𝑡̅) = ∑ ∑ 𝛷𝑚𝑛

∞

𝑛=1

∞

𝑚=1

(𝑡̅)𝑠𝑖𝑛𝛼𝑥̅𝑠𝑖𝑛𝛽𝑦̅ 

(35) 

where α=mπ and β=nπ.  

In this research, only the harmonic transverse force, f 

cosΩt, is assumed to be applied on the nano-resonator. 

Similarly, the out of plane load amplitude 𝑓̅  can be 

expanded in the double-Fourier sine series  
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𝑓(̅𝑥̅, 𝑦̅) = ∑ ∑ 𝑓

∞

𝑛=1

∞

𝑚=1

𝑠𝑖𝑛𝛼𝑥̅𝑠𝑖𝑛𝛽𝑦̅ (36) 

where 

𝑓 = 4 ∫ ∫ 𝑓(̅𝑥̅, 𝑦̅)𝑠𝑖𝑛𝛼𝑥̅𝑠𝑖𝑛𝛽𝑦̅𝑑𝑥̅𝑑𝑦̅

1

0

1

0

 (37) 

To solve the Eq. 30(c) for Φmn(t), the Bubnov–Galerkin 

approach is applied, (Ajri et al. 2018a) and the following 

integral is computed (with dropping the asterisk notation for 

brevity). 

∫ ∫ Λ𝑠𝑖𝑛𝛼𝑥𝑠𝑖𝑛𝛽𝑦 𝑑𝑥𝑑𝑦 = 0
1

0

1

0

 (38) 

where Λ is the left-hand side of the Eq. 30(c). Replacing 

Eq. (35) into Eq.30(c), the following expression of Λ can be 

obtained: 

 

(39) 

Using Bubnov–Galerkin approach and setting the 

integral to zero, the solution of Φmn(t) is obtained as Eq. 

(40) 

1

16(1 − 𝜐2)
(4𝜐𝜉2𝛼2𝛽2 + (3 − 𝜐2)(𝛼4 + 𝜉4𝛽4)) 

(Φ3(𝑡) − 𝐷𝛾 ∫ 𝑒−𝛾(𝑡−𝜏)

𝑡

0

Φ3(𝜏)𝑑𝜏) 

(40) 

+ (
1

12(1 − 𝜐2)
+

1

2(1 + 𝜐)
𝑙0

2) (𝛼2 + 𝜉2𝛽2)2 (Φ(𝑡)

− 𝐷𝛾 ∫ 𝑒−𝛾(𝑡−𝜏)

𝑡

0

Φ(𝜏)𝑑𝜏) + Φ̈(𝑡)

= 𝑓𝑐𝑜𝑠Ω𝑡 

The Eq. (40) is a nonlinear integro-differential equation 

for plate-shape nano-resonator using Leaderman 

viscoelastic model and the MCST. After some algebraic 

processes, the fourth order Runge-Kutta method is used to 

solve this equation (Fu and Zhang 2009).  

 

 

3. Results for viscoelastically coupled size-
dependent dynamics  
 

In this section, the numerical results are presented. The 

nano-resonator is supposed to be made of epoxy with the 

following geometric and mechanical properties: 𝜉 = 2 , 

𝐸 = 1.44  GPa,  𝜌 = 1120 kg/m3, 𝜐 = 0.38  and 𝐶̅ =
0.7 𝐷̅ = 0.3 

 

3.1 Free vibration 
 

In nonlinear nanosystem the vibration amplitude alter 

the natural frequencies. The existence of the integral terms 

in Eq.(40) achieved from the Leadermen viscoelastic model 

cause to decrease the motion amplitude over the 

time.Consequently, the nonlinearity effects decrease and the 

nanosystem frequencies varies with the time. In order to 

evaluate the viscoelastic nanosystem natural frequencies, 

the Hilbert–Huang transform (HHT) are performed. (Huang 

et al. 1998, Huang et al. 1999) 

The dimensionless natural frequency over time for 

elastic (𝛾 = 0) and viscoelastic nanosystems with 𝛾 = 1 

and 𝛾 = 3 obtained by the HHT and displayed in Fig. 1 for 

three different initial condition values Φ̇0=100, 50 and 10. 

The thickness ratio is selected as h/l=1. Obviously, it is seen 

that in the elastic nanosystem, 𝛾 = 0 , the frequencies 

remain constant over the time at each excitation value. 

Therefore, the elastic model vibration is stationary. 

Additionally, the higher natural frequencies predicted at 

bigger initial condition (33.3, 39.5 and 50.2 for Φ̇0=10, 50 

and 100, respectively). However, the viscoelastic model 

behavior is different over the time for the selected initial 

condition. The Fig. 1(c) demonstrates that at Φ̇0=10 the 

natural frequency of the viscoelastic model similar to the 

elastic remain constant over the time. This happens since 

the nanosystem has weaker nonlinearity at the smaller 

motion amplitudes. However, at Φ̇0=50 and 100 the non-

dimensional frequencies of the viscoelastic model decrease 

form 39.5 and 50.2 at initial time (t=0) to 33.9 and 34.5 at 

t=9. This is due to decreasing the vibration amplitude and 

nonlinearity effects over the time for the viscoelastic model. 

Furthermore, it is observed that the viscoelastic model 

frequencies are smaller than the elastic ones. 

Fig. 2 displays the variation of natural frequencies for 

the transverse motion vs. the thickness ratios (h/l) in the 
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Fig. 2 Transverse motion dimensionless fundamental 

frequency thickness ratio 

 
 

framework of the viscoelastic MCST and classical theory 

(for 𝛾 = 1 and Φ̇0 =10). This figure shows that the 

predicted fundamental natural frequencies by the proposed 

model are larger than the size-independent classical theory 

at each thickness ratio. Therefore, the size-dependent 

MCST-based model increases the nano-resonator stiffness. 

Furthermore, the curves trend show that the differences in 

fundamental frequencies predicted by these two models are 

larger at thickness ratios smaller than 3, while they decrease 

with increasing the thickness ratios. Consequently, at 

smaller thickness ratios, the size effect becomes prominent. 

 

3.2 Dynamic analysis 
 

The nanosystem nonlinear dynamic is discussed in this 

section by plotting the frequency and force response, 

Poincare map, phase portrait and fast Fourier transforms. 

For this purpose, the effects of thickness ratios and applied 

force amplitudes on the dynamic responses of the 

nanosystem are examined. Moreover, the differences in the 

dynamic response of the nanosystem with and without the 

small-scale effects are inspected in order to illustrate the 

importance of using the MCS theory respect to the size-

independent CT. It is worth noting that in this section the 

stable solution obtained from the forward numerical 

method, the forth order Rung-Kutta technique, is provided. 

Before presentation of the dynamic results, in order to 

validate the model and applied solution approached of the  

 

 

Fig. 3 The frequency response of the out-of-plane motion 

for l=0: dashed line and unfilled circle predicted by 

current study and Amabili (2004), respectively 

 

 

governing equations, a comparative diagram is shown in 

Fig. 3. In this figure, the out-of-plane motion frequency 

response predicted by the current model for l=0 is plotted 

and compared with the same results obtained by Amabili 

(2004). It can be seen that the results are close to each other. 

Fig. 4 shows the frequency response curves, maximum 

amplitude versus excitation frequency, of the nanosystem 

for h/l= 1, 5, 10 and 20, respectively. The dimensionless 

relaxation coefficient, initial excitation value and the 

distributed transverse force amplitude values are assumed 

as γ=3, Φ̇0=10 and f =10. The excitation force frequency is 

normalized by the nonlinear fundamental natural 

frequencies. This figure displays that the nanosystem under 

consideration has hardening type dynamic behavior. 

According to the results, with increasing the thickness ratio 

of the nanosystem the hardening behavior becomes 

stronger. Moreover, the figure reveals that there are two 

saddle-node bifurcations that happen in Ω= 1.134 ω1,1 and 

Ω=1.157ω1,1 for h/l=10 and Ω=1.13 ω1,1 and Ω= 1.15 ω1,1 

for h/l=20. 

The effects of the applied force amplitude on the 

frequency response of the nanosystem emphasized in Fig. 

5(a–d). The dimensionless relaxation coefficient and 

thickness ratios are selected γ=3 and h/l=1,5. The figures 

show that there is no extra peak in the frequency response  

   
(a) (b) (c) 

Fig. 1 Natural frequency variation over time based on HHT method: (a–c) for initial excitation value Φ̇0=100, 50 and 10, 

respectively) 
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(a) (b) 

  

(c) (d) 

Fig. 4 The h/l effects on the frequency response of the nonlinear viscoelastic nanosystem: (a–d) the maximum amplitudes 

for h/l=1, 5, 10 and 20, respectively 

 

 

(a) (b) 

  

(c) (d) 

Fig. 5 The applied force amplitude effects on the frequency response of the nonlinear viscoelastic nanosystem: (a–d) the 

maximum amplitudes for f=10, 70,140 and 250 respectively 
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of the nanosystem with thickness ratio equaling to 1. 

However, the Fig. 5(b)reveals that there are two extra peaks 

before the resonance peak of the nanosystem with h/l=5 in 

the neighborhood of Ω = 0.22ω1,1 and Ω = 0.39ω1,1. In 

addition, Fig. 5(c-d) depicts that at the higher forcing 

amplitudes, the number of the secondary resonances 

increases and their amplitudes become bigger. The weaker 

hardening type behaviors are also seen in the secondary 

resonances. Moreover, the saddle-node bifurcations are 

shifted to higher frequency ratios at the bigger forcing 

amplitudes. 

In order to scrutinize the dynamic response more, the 

Phase plane, time history response, Poincare map and the 

frequency spectrum, using the Fast Fourier Transform, of 

the nanosystem at different frequency ratios, f=250 and 

h/l=5, are depicted in Figs. 6-8. The figures are plotted for  

 

 

Ω= 0.167ω1,1, Ω=0.5ω1,1 and Ω=1.62ω1,1. The frequency 

spectrum shows that the nanosystem has super-harmonic 

motion at Ω= 0.167ω1,1 and the Fast Fourier Transform, 

FFT, shows that there are several peaks in the frequnecies 

equaling to 0.42,1.25, 2.1 and 2.94. Similarly, Fig. 7 shows 

the existance of the super-harmonic motion at Ω= 0.5ω1,1 

and the two peaks are seen in the frequencies equaling to 

1.25 and 3.77 in FFT analysis. This is the reason why the 

extra peaks are seen at these frequency ratios in Fig. 5(d). 

Also, Fig. 8 demonstrates that at Ω=1.62ω1,1 the phase 

planes create a continuous and closed curve and the 

Poincare maps create one point. Therefore, the nanosystem 

has a periodic motion at this frequency ratio. 

The effects of the external force amplitude on the 

vibration amplitude of the nanosystem of Fig. 4 at different 

normalized frequencies, Ω/ ω1,1=0.99,1, 1.02 and 1.03, are 

 
Fig. 6 Phase plane,time history, Poincare map and Frequency spectrum of the nanosystem at Ω= 0.167ω1,1 with h/l=5 and 

f=250 

 

 

Fig. 7 Phase plane, time history, Poincare map and Frequency spectrum of the nanosystem, respectively at  Ω= 0.5ω1,1 

with h/l=5 and f=250 
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depicted in Fig. 9. This figure shows that with increasing 

the amplitude of the external force the vibration amplitude 

increases uniformly for the Ω/ ω1,1≤ 1, while no bifurcation 

or jump is seen in the response path.In addition, with 

decreasing the external force from f=25 the response path is 

similar. However, at  Ω/ ω1,1=1.02 and 1.03 the response  

 

 

 

paths have two bifurcation points. One jump occurs when 

the external force increases and the second one happens 

when the force amplitude decreases. Therefore, the 

response paths are different in these steps. This occurs 

because the nanosystem has nonlinear behavior. In addition, 

it can be seen that as the thickness ratio (h/l) decreases the  

 

Fig. 8 Phase plane, time history, Poincare map and frequency spectrum of the nanosystem, respectively at Ω= 1.62 ω1,1 

with h/l=5 and f=250 

  

(a) (b) 

  

(c) (d) 

Fig. 9 The nanosystem force response at four frequency ratios ( Ω/ ω1,1 = 0.99, 1, 1.02, 1.03) at different thickness ratio and 

𝛾=3 
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saddle-nodes bifurcations shift to higher forcing amplitudes. 

The viscoelastic nanosystem force and frequency 

responses predicted via the classical continuum theory and 

the MCST are shown in Fig. 10 while the frequency ratio, 

Ω/ω1,1, and forcing amplitude are 1.03 and 70. As the figure 

shows, the predicted responses of the two theories are very 

different. Particularly, for the MCST theory, the first saddle 

node bifurcation is at f=3.9 while for the classical theory, 

this occurs at f=3. Additionally, the MCST-based response 

amplitudes are much smaller than the values predicted by 

the CT at 𝑓 > 5. In addition, it is seen that the classical 

theory predicts a stronger nonlinear hardening type 

behavior. Furthermore, there is a secondary resonance in the 

frequency response of the classical theory. However, there 

is no extra peak in the frequency response of the MCST. 

This figure highlights the importance of considering the 

small-scale effects proved by many experiments using the 

size-dependent theories such as the MCST instead of the 

size-independent continuum theory for prediction of the 

viscoelastic nanosystem resonance response with higher 

accuracy. 
 

 

4. Conclusions 
 

Current paper examined the time-dependent natural 

frequency and extra resonance in super-harmonic motions 

of a viscoelastic nano-resonator. The resonator was assumed 

as a nanoplate with simply supported boundary condition. 

Then, a new coupled size-dependent theory was developed 

for the nonlinear viscoelastic material with using the 

modified coupled stress theory. The viscoelastic material 

was considered to follow the Leaderman nonlinear integral. 

In order to predict the nanosystem oscillative behavior at 

relatively large deformations, the von-Karman nonlinearity 

was used. The virtual work was induced by the viscous 

forces obtained by applying the Leaderman integral. With 

incorporating the size-dependent potential energy, kinetic 

energy, and an external excitation force work based on the 

Hamilton’s principle, the viscous work equation was 

balanced. The obtained coupled equations were a set of 

nonlinear second-order integro-differential partial  

 

 
equations. Theses equations were solved using the 

expansion theory, Galerkin method and the fourth-order 

Runge–Kutta technique. Then, the free vibration of the 

nanosystem was analyzed by performing the Hilbert–Huang 

Transform. Furthermore, the nonlinear forced vibration 

characteristics including the primary and secondary 

resonances due to the super-harmonic motions, of the 

nanosystem exposed to a distributed harmonic load were 

examined in the form of the frequency response, force 

response, Poincare map, phase portrait and fast Fourier 

transforms. Finally, the following results were obtained: 

•  Frequency analysis reveals that, (i) the natural 

frequency of the viscoelastic model unlike the elastic one 

decreased over the time. Therefore, this model predicts 

time-dependent natural frequencies unlike the elastic one. 

Moreover, the natural frequencies predicted by this model 

were smaller than those predicted by the elastic model; (ii) 

the fundamental natural frequencies predicted by the 

proposed model were larger than those predicted by the 

size-independent classical theory at each thickness ratio.  

•  The nonlinear frequency responses of the 

nanosystem revealed that: (i) the nanosystem dynamic 

behavior was a hardening type; (ii) stronger hardening 

behavior was predicted at bigger thickness ratios; (iii) 

super-harmonic frequencies existing in the response of the 

nanosystem cause to extra resonance specially at smaller 

frequency ratios;(iv) higher secondary resonances were seen 

at bigger forcing amplitudes; (v) with ignoring the small 

size-effects, the secondary resonance shifted significantly; 

(vi) the MCST predicted a minor hardening behavior and 

lower response amplitudes than the size-independent 

classical theory.  

•  The force-response analysis on the nanosystem 

showed that: (i) the nanosystem displayed continuous 

response path when the frequency ratios are smaller than 

one. However, there were jumps in the response path for the 

frequency ratios bigger than one; (ii) decreasing the 

thickness ratio (h/l) postponed the happening of saddle-

nodes bifurcation; (iii). Taking into account the small-size 

effects causes shifting the saddle-node bifurcations to 

higher forcing amplitudes. 

 
 

(a) (b) 

Fig. 10 Force and frequency response predicted via the MCST and size-independent classical theory; γ=3, h/l=1 
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