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1. Introduction 
 

Beams and plates are structural components which are 

relatively small in a specific dimension (Ghayesh and 

Farokhi 2015, Ghayesh et al. 2016, Ghayesh et al. 2013, 

Farokhi et al. 2013). Beams are formulated as one-

dimensional elements or line structural elements (Ghayesh 

2018, Ghayesh et al. 2017, Farokhi and Ghayesh 2015, 

Ghayesh et al. 2013, Farokhi et al. 2017) while plates are 

represented as two-dimensional or surface structural 

elements (Farokhi and Ghayesh 2015, Ghayesh et al. 2013, 

Farokhi and Ghayesh 2018). Plates have been widely used 

as key components in various structures, such as vehicles, 

containers, and spacecraft (Mohammadzadeh, and Noh 

2014, Ebrahimi and Heidari 2018, Mohammadzadeh, and 

Noh 2016, Mohammadzadeh et al. 2018). Sandwich plates 

possess advantages of light-weight, significant rigidity, 

fatigue resistance, and excellent vibration properties; hence, 

they have attracted considerable attention for use in 

engineering applications (Ahmadi 2018, Bouderba et al. 

2016, Elmossouess et al. 2017, Choi et al. 2018). They are 

categorized as specific batches of laminates and are 

generally formed with two thin face sheets and a thick core 

(Belarbi et al. 2016, Daoudii and Adim 2017, Feli and  
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Jalilian 2017, Sharivat et al. 2015). The face sheets have the 

role of carrying planar and bending loads, while the core 

resists against compressive stresses and transfers shear 

loads (Mohammadzadeh 2016). In 1984, Japanese scientists 

mixed ceramic and metal powders into a graded profile to 

create a new generation of engineering materials, so-called 

functionally graded materials (FGMs) (Rajabi et al. 2016). 

High fracture toughness is a specific characteristic of the 

metallic part, while the ceramic part is characterized by 

high thermal resistance (Rajasekaran 2013). The volume 

fraction index, N, dictates the variation of material 

properties in a specific direction. Material properties like 

the modulus of elasticity E, Poisson’s ratio υ, material 

density ρ, and shear modulus of elasticity G, gradually 

change in the intended direction. FGMs were developed by 

combining the forms of fibers, particulates, whiskers, or 

platelets of advanced materials (Heydari et al. 2015). 

Considerable attention have been attracted to FGMs 

because of their superior characteristics in comparison to 

conventional materials. Because of the wide use of FGMs in 

industries and structures such as spacecraft heat shields, 

heat exchanger tubes, fusion reactors, and airplane 

fuselages, numerous studies have investigated FGM plates 

(Ninh and Bich 2016). Some studies employed first-order 

shear deformation theory to deal with static analysis, free 

vibration, or buckling of FGMs (El Meiche et al. 2011). 

Other methods including the third-order shear deformation 

and three-dimensional elasticity have also been considered 

to investigate FGM structures (Li et al. 2009). A nonlinear 

analysis of sandwich plates with FGM face sheets resting 
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on an elastic foundation in thermal environments was 

performed in (Wang and Shen 2011). 
Transverse shear deformation was included in the 

kinematics of composite laminates because the thickness 
significantly affects the behavior of composite laminates 
(Yang et al. 2013, Soni et al. 2017). To account for shear 
effects, two theories can be employed: first-order shear 
deformation theory (FSDT) and higher-order shear 
deformation theory (HSDT). FSDT cannot correctly 
represent through-thickness distribution and requires shear 
coefficients to correct the corresponding strain energy 
terms. Besides, the effect of warping, which is important for 
thick plates, is not included in FSDT. To overcome the 
disadvantages of FSDT, HSDT has been applied because it 
considers the through-thickness displacement as the higher-
order polynomial functions (Demasi 2013, Nguyen et al. 
2017). 

Dynamic and nonlinear analyses of structural elements 
have attracted the attentions as in practical applications the 
structure frequently subject to dynamic loads while 
suffering both the geometrical and material nonlinearities 
(Ghayesh 2018, Gholipour et al. 2015, Ghayesh et al. 2013, 
Farokhi and Ghayesh 2018). The vibration analysis of 
FGMs structural components has attracted attention during 
the last decade because of the increased interests in using 
FGMs for the design and construction of structures (Wang 
and Zu 2018, Wang 2018, Wang and Zu 2017). However, 
the literature on the frequency analysis of FGM sandwich 
plates is very limited. Some studies have employed FSDT 
(Zhu et al. 2018), second-order shear deformation theory 
(Shahrierdi et al. 2011), and HSDT-based new approaches 
(Vafakhah and Navayi Neva 2019) to perform mechanical 
vibration analysis of FGM sandwich plates while some 
studied the thermal vibration of FGM sandwich plates 
[Alibeigloo 2017, Wang et al. 2018] and presented a new 
theory for free vibration analysis of bi-directional FGMs 
(Zamani Nejad et al. 2017). The nonlinear vibration of a 
functionally graded graphene platelet-reinforced composite 
with a rectangular shape and different edge conditions 
considering geometric nonlinearity, rotary inertia, and 
transverse shear deformation was investigated by (Gholami 
and Ansari 2018). By use of Hamilton’s principle and the 
variational differential quadrature technique, the weak form 
of discretized nonlinear equations of motion was obtained 
and solved by a multistep numerical approach based on the 
Galerkin method, time-periodic discretization method, and 
pseudo-arc-length continuation. (Natarajan and Manickam 
2012) investigated the free flexural vibration behavior of 
FGM sandwich plates by employing the QUAD-8 shear 
flexible element developed based on the HSDT. They 
investigated the effects of the gradient index and the plate 
aspect ratio on the plate global and local responses. Despite 
several studies on the vibration analysis of FGM plates, 
sandwich plates and laminated composites (Ghayesh 2018, 
Ghayesh et al. 2017, Ghayesh et al. 2018, Wang et al. 2019, 
Wang and Yang 2017, Wang and Zu 2018, Wang et al. 
2013,), the effects of temperature changes, complex 
boundary conditions, and changes in material properties 
have been rarely taken into consideration (Wang and Zu 
2017, Wang et al. 2016).  

Wang et al. (2018), investigated the free thermal 
vibration of FGM cylindrical shells containing porosities. 
They considered the even and uneven distribution of 

porosities as well as three thermal load types uniform, linear 
and nonlinear temperature rise. A modified power-law 
formulation was employed for a description of the material 
properties of FGM plates in thickness-direction. Love’s 
shell theory was employed to formulate the strain 
displacement equations while the Rayleigh-Ritz method 
was used to calculate the natural frequencies of the system. 
In another study (Wang and Zu 2017), the vibration analysis 
of FGM rectangular plates was conducted considering the 
thermal environment, porosities and geometric nonlinearity 
based on the von Kármán nonlinear plate theory. For this 
purpose, the equation of motion of the system was obtained 
by using the D'Alembert's principle taking into account the 
thermal effect and longitudinal speed. The Galerkin method 
was utilized to reduce the partial differential equation of 
motion to a set of ordinary differential equations, and 
solved by the method of harmonic balance.  

Having all above it can be mentioned that dealing with 

analytical analysis of composite laminated structural 

elements considering complex conditions and advanced 

materials are still facing challenges; thus, this study was 

intended to provide a comprehensive approach considering 

complex conditions such that any desired material can be 

specified to the sandwich plate in any desired number of 

layers through the plate thickness to investigate the plate 

linear and nonlinear vibrations together with the frequency 

behavior.  Besides, having look at the literature, a few 

number studies can be found investigating the nonlinear 

vibration of plates (Wang 2014, Wang et al. 2019, Wang et 

al. 2018). Therefore, the need for the providing a 

comprehensive approach for nonlinear vibration analysis of 

plates comes up. 

In this study, linear and nonlinear vibration analyses of 

sandwich plates having FGM faces resting on the elastic 

foundation were performed. In this regard, a comprehensive 

nonlinear dynamic approach was presented employing 

higher-order shear deformation theory as well as Hamilton’s 

principal. The effects of temperature change, elastic 

foundation, and variations in material properties on the 

linear and nonlinear vibration of sandwich plates were 

included in the presented approach. This approach was 

designed so that any order of materials in any number of 

layers can be considered through the thickness of sandwich 

plates. This characteristic of the presented approach results 

in more precise results than other methods because any 

variation of material through the plate thickness can be 

modeled without the application of any approximation. 
 

 

2. Derivation of equation of motion 
 

The concepts and guidelines given in the literature were 

employed to derive the set of equations of motion of the 

FGM sandwich plate (Mantari et al. 2014, 

Mohammadzadeh and Noh 2017, Cadou et al. 2016), solve 

the equations (Mohammadzadeh and Noh 2015, Kamil Zur 

2018, Mohammadzadeh and Noh 2014, Trinh et al. 2018, 

Mohammadzadeh and Noh 2018), obtain the 

materialproperties of the face sheets and the core (Choi et 

al. 2018, Arunkumar et al. 2018, Choi et al. 2018) and 

interpret the results (Ruocco et al. 2018, Ngyuen et al. 

2016, Wang and Zhu 2017). 
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This study considered a rectangular sandwich plate 

made of three layers. An FGM is considered for the top and 

bottom layers, while fiber-reinforced concrete is specified 

for the core located in the middle. The parameters ‘a’, ‘c’ 

and ‘h’ denote the length, width, and thickness of the plate, 

respectively. An illustration of a typical sandwich plate is 

provided in Fig. 1. It is appropriate to note that the origin of 

the coordinate system is placed at mid-plane on the corner. 

Displacements along the X-direction, length of the plate; 

Y-direction, the width of the plate; and Z-direction, plate 

thickness, are U, V, and W, respectively. The mid-plane 

rotations around the Y-axis and X-axis are indicated by ψ𝑥 

and 𝜓𝑦 , respectively. The displacement components are 

assumed to have the following form as given in Eq. (1) 

(Wang and Shen 2011): 

𝑈 = 𝑈0 + 𝑍 [ψ𝑥 −
4

3
(
𝑍

ℎ
)

2

(ψ𝑥 +
𝜕𝑊0

𝜕𝑋
)], (1a) 

𝑉 = 𝑉0 + 𝑍 [𝜓𝑦 −
4

3
(
𝑍

ℎ
)

2

(𝜓𝑦 +
𝜕𝑊0

𝜕𝑌
)], (1b) 

𝑊 = 𝑊0 (1c) 

where the 𝑈0, 𝑉0,𝑊0, displacements at the mid-surface of 

the plate, and the rotations ψ𝑥, and 𝜓𝑦are uncertain. 

The stress is related to strain with respect to the matrix 

form given in Eq. (2) (Wang et al. 2017): 

{

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

} = [

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

] {

휀𝑥𝑥

휀𝑦𝑦

휀𝑥𝑦

}, (2a) 

{
𝜎𝑦𝑧

𝜎𝑥𝑧
} = [

𝑄44 𝑄45

𝑄45 𝑄55
] {

𝛾𝑦𝑧

𝛾𝑥𝑧
}. (2b) 

Hamilton’s principle is employed to derive the equations 

of motion of the sandwich plate as presented in Eq. (3) 

(Mohammadzadeh and Noh 2017): 

∫ (𝛿𝑈𝑠𝑒 + 𝛿𝑉𝑒𝑤 − 𝛿𝐾𝑒)𝑑𝑡 = 0
𝑡

0

 (3) 

 

 

The strain energy, external work, and kinetic energy are 

denoted by 𝑈𝑠𝑒 , 𝛿𝑉𝑒𝑤, and 𝛿𝐾𝑒 respectively. To provide 

a better understanding, the extended equation used for 

derivation of 𝛿𝑈 is expressed as  

𝛿𝑈𝑠𝑒 = ∫ ∫ {((𝜎𝑥𝑥 + 𝜎𝑥
𝑇)𝛿휀𝑥𝑥 + (𝜎𝑦𝑦 + 𝜎𝑦

𝑇)𝛿휀𝑦𝑦

ℎ
2

−
ℎ
2

Ω0

+ (𝜎𝑥𝑦 + 𝜎𝑥𝑦
𝑇 )𝛿휀𝑥𝑦

+ (𝜎𝑥𝑧 + 𝜎𝑥𝑧
𝑇 )𝛿𝛾𝑥𝑧

+ (𝜎𝑦𝑧 + 𝜎𝑦𝑧
𝑇 )𝛿𝛾𝑦𝑧) 𝑑𝑧} 𝑑𝑥𝑑𝑦 

(4) 

where the thermal stresses are indicated by 𝜎𝑇.                   

The external work is obtained by employing the 

following equation (Shahrjerdi et al. 2011, 

Mohammadzadeh and Noh 2017): 

𝛿𝑉𝑒𝑤 = −∫ [𝑞𝑥𝛿𝑢 + 𝑞𝑦𝛿𝑣 + (𝑞𝑏 + 𝑞𝑡)𝛿𝑤
Ω0

+ (𝐾1𝑊 − 𝐾2∇
2𝑊)𝛿𝑤]. 

(5) 

External loads applied on the upper and lower face 

sheets of the plate are denoted by 𝑞𝑡 and 𝑞𝑏, respectively. 

External forces acting on the plate length and width are 

denoted by 𝑞𝑥 and 𝑞𝑦, respectively. The stiffness of the 

elastic foundation takes the amount of 10, K1=10, while that 

of the shear layer is zero, K2 = 0. The surface area of the 

sandwich plate is denoted by Ω0. 

The kinetic energy, 𝛿𝐾𝑒 , can be obtained as  

𝛿𝐾𝑒 = ∫ {∫ 𝜌(𝑍)[(�̇�𝛿�̇�) + (�̇�𝛿�̇�) + (�̇�𝛿�̇�)]
𝑡0

𝑡1

𝑑𝑧
Ω0

+ ∫ 𝜌𝑐[(�̇�𝛿�̇�) + (�̇�𝛿�̇�) + (�̇�𝛿�̇�)]
𝑡1

𝑡2

𝑑𝑧

+ ∫ 𝜌(𝑍)[(�̇�𝛿�̇�) + (�̇�𝛿�̇�)
𝑡2

𝑡3

+ (�̇�𝛿�̇�)] 𝑑𝑧} 𝑑𝑥𝑑𝑦, 

(6a) 

 

Fig. 1 Illustration of sandwich plate 
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where superposed dotted variables are related to their time-

dependency. Here, 𝑡𝑖 is attributed to the layer height. It can 

be said that each layer is placed between 𝑡𝑖−1 and 𝑡𝑖. In 

this regard, as an example, the bottom face sheet is confined 

between 𝑡2 and 𝑡3 as seen in Fig. 1.  

Substituting the Von-Karman strain-displacement 

relations and mass moments of inertias into Eq. (6a), 𝛿𝐾 

can be rewritten as 

 

(6b) 

The mass moment of inertias of each layer, 𝐼𝑗𝑖 ,  is 

obtained by Eq.(6c) (Mohammadzadeh and Noh 2017): 

𝐼𝑗𝑖 = ∫ 𝑍𝑗
𝑡𝑖

𝑡𝑖−1

𝜌𝑖(𝑍)𝑑𝑧          

𝑗 = 0,1,2,3,4,5,6,             𝑖 = 1,2,3, … 

(6c) 

where  𝜌𝑖(𝑍)  is the height-dependent density, Z is the 

height of the layer, sub-index j is the order of momentum of 

inertia, and sub-index i denotes the layer limitation number 

as shown in Fig. 1 by 𝑡0 to 𝑡3. The membrane force 𝑁𝑚, 

shear force, Q, bending moment 𝑀𝑏, higher-order bending 

moment P, and higher-order shear force R, are defined as 

shown in Eq. (7) (Wang and Shen 2011): 

(𝑁𝑚, 𝑀𝑏 , 𝑃) = ∫ 𝜎(1, 𝑍, 𝑍3)𝑑𝑧

ℎ
2

−
ℎ
2

 (7a) 

(𝑄𝑥 , 𝑅𝑥) = ∫ 𝜎𝑥𝑧(1, 𝑍2)

ℎ
2

−
ℎ
2

𝑑𝑧 (7b) 

(𝑄𝑦 , 𝑅𝑦) = ∫ 𝜎𝑦𝑧(1, 𝑍2)

ℎ
2

−
ℎ
2

𝑑𝑧 (7c) 

Here, 𝑁𝑇 , �̅�𝑇 , 𝑆̅𝑇  and �̅�𝑇  are the thermal forces, 

moments, and higher-order moments caused by elevated 

temperature, respectively. They are defined as presented in 

Eq. (8) (Alibeigloo 2017): 

[

𝑁𝑥
𝑇 �̅�𝑥

𝑇 �̅�𝑥
𝑇

𝑁𝑦
𝑇 �̅�𝑦

𝑇 �̅�𝑦
𝑇

𝑁𝑥𝑦
𝑇 �̅�𝑥𝑦

𝑇 �̅�𝑥𝑦
𝑇

] = ∑ ∫ [

𝐴𝑥

𝐴𝑦

𝐴𝑥𝑦

]

𝑘

(1, 𝑍, 𝑍3)∆𝑇𝑑𝑍
𝑡𝑘

𝑡𝑘−1

𝑁

𝑘=1

 (8a) 

[

𝑆�̅�
𝑇

𝑆�̅�
𝑇

𝑆�̅�𝑦
𝑇

] = [

�̅�𝑥
𝑇

�̅�𝑦
𝑇

𝑀𝑥𝑦
𝑇

] −
4

3ℎ2
[

�̅�𝑥
𝑇

𝑃𝑦
𝑇

𝑃𝑥𝑦
𝑇

] (8b) 

where ∆𝑇 = 𝑇 − 𝑇0 is the temperature variation from the 

reference temperature 𝑇0  at which there is no thermal 

strain. Matrix A is defined as 

[

𝐴𝑥

𝐴𝑦

𝐴𝑥𝑦

] = − [

�̅�11 �̅�12 �̅�16

�̅�12 �̅�22 �̅�26

�̅�16 �̅�26 �̅�66

] [
1 
0 
0 

0
1
0
] [

𝛼11

𝛼22
] (8c) 

where 𝛼11 and 𝛼22 are the thermal expansion coefficients 

in the longitudinal and transverse directions, respectively. 

Substituting Eqs. (4)-(6) into Eq. (3) and considering Eqs. 

(7)-(8), a set of governing differential equations of motion 

is obtained as follows: 

 

 

 

(9a) 

 

(9b) 
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(9c) 

𝑄𝑥 −
4

ℎ2
𝑅𝑥 +

𝜕

𝜕𝑥
(𝑆𝑥𝑥 + 𝑆𝑥

𝑇) +
𝜕

𝜕𝑦
(𝑆𝑥𝑦 + 𝑆𝑥𝑦

𝑇 )

= 𝐼1𝑖

𝜕2𝑈0

𝜕𝑡2
+ 𝐼2𝑖

𝜕2ψ𝑥

𝜕𝑡2

−
4

3ℎ2
𝐼4𝑖 [2

𝜕2ψ𝑥

𝜕𝑡2
+

𝜕

𝜕𝑥
(
𝜕2W0

𝜕𝑡2
)]

+  
16

9ℎ4
𝐼6𝑖 [

𝜕2ψ𝑥

𝜕𝑡2
+

𝜕

𝜕𝑥
(
𝜕2W0

𝜕𝑡2
)] 

(9d) 

𝑄𝑦 −
4

ℎ2
𝑅𝑦 +

𝜕

𝜕𝑦
(𝑆𝑦𝑦 + 𝑆𝑦

𝑇) +
𝜕

𝜕𝑥
(𝑆𝑥𝑦 + 𝑆𝑥𝑦

𝑇 )

= 𝐼1𝑖

𝜕2𝑉0

𝜕𝑡2
+ 𝐼2𝑖

𝜕2ψ𝑦

𝜕𝑡2

−
4

3ℎ2
𝐼4𝑖 [2

𝜕2ψ𝑦

𝜕𝑡2
+

𝜕

𝜕𝑦
(
𝜕2W0

𝜕𝑡2
)]

+
16

9ℎ4
𝐼6𝑖 [

𝜕2ψ𝑦

𝜕𝑡2
+

𝜕

𝜕𝑦
(
𝜕2W0

𝜕𝑡2
)] 

(9e) 

3. Solution Method 
 

3.1 Nonlinear dynamic equations of plate frequency 
 

To find the vibration frequencies of the sandwich plate 

considered in this study, Navier’s solution is employed. 

Accounting for clamped boundary conditions, the 

displacement fields are defined as follows: 

𝑈0 = ∑ ∑ 𝑈𝜅𝜆 sin
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑏
) 𝑒−𝑖𝜔𝜅𝜆𝑡 ,

∞

𝜆=1

∞

𝜅=1

 (10a) 

𝑉0 = ∑ ∑ 𝑉𝜅𝜆 (1 − cos
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑏
 𝑒−𝑖𝜔𝜅𝜆𝑡,

∞

𝜆=1

∞

𝜅=1
 (10b) 

𝑊0 = ∑ ∑
𝑊𝜅𝜆 (1 − cos

2𝜋𝑥

𝑎
)

(1 − cos
2𝜋𝑦

𝑏
) 𝑒−𝑖𝜔𝜅𝜆𝑡,

∞

𝜆=1

∞

𝜅=1
 (10c) 

Ψ𝑥 = ∑ ∑ Ψ𝑥𝜅𝜆
sin

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑏
) 𝑒−𝑖𝜔𝜅𝜆𝑡 ,

∞

𝜆=1

∞

𝜅=1
 (10d) 

Ψ𝑦 = ∑ ∑ Ψ𝑦𝜅𝜆 (1 − cos
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑏
𝑒−𝑖𝜔𝜅𝜆𝑡,

∞

𝜆=1

∞

𝜅=1
 (10e) 

where 𝜔𝜅𝜆 is the natural frequency of the sandwich plate, 

and 𝜅 , 𝜆  are the half-sine mode shapes. The method 

presented in this study can divide the thickness of the plate 

into the desired number of plies. It is helpful, especially in 

the case of having FGMs, to accurately predict the material 

properties, plate responses, and frequencies. Accordingly, 

three layers are considered along with FGM face sheets as 

seen in Fig. 2. 

Substituting Eq. (10) into Eq. (9) results in Eq. (11) by 

which the frequencies of the sandwich plate can be 

calculated. 

𝑐_1 𝑈 + 𝑐_2 𝑉 + 𝑐_3 𝑊 + 𝑐_4 𝑊^2 + 𝑐_5 ψ_𝑥
+ 𝑐_6 ψ_𝑦 + 𝑐_7 𝑈 ̈ + 𝑐_8 ψ ̈_𝑥
+ 𝑐_9 𝑊 ̈ − 𝑐_10 ∆𝑇_𝑥𝑖 − 𝑐_11 ∆𝑇_𝑦𝑖
− 𝑞_𝑥 = 0 

(11a) 

 

𝑑_1 𝑈 + 𝑑_2 𝑉 + 𝑑_3 𝑊 + 𝑑_4 𝑊^2 + 𝑑_5 𝜓_𝑥
+ 𝑑_6 𝜓_𝑦 + 𝑑_7 𝑉 ̈ + 𝑑_8 𝛹 ̈_𝑦
+ 𝑑_9 𝑊 ̈ − 𝑑_10 ∆𝑇_𝑦𝑖
− 𝑑_11 ∆𝑇_𝑥𝑖 − 𝑞_𝑦 = 0 

(11b) 

 

𝑒_1 𝑈𝑊 + 𝑒_2 𝑉𝑊 + 𝑒_3 ψ_𝑥 𝑊 + 𝑒_4 ψ_𝑦 𝑊 + 𝑒_5 𝑊
+ 𝑒_6 𝑊^2 + 𝑒_7 𝑊^3 + 𝑒_8 ψ_𝑥
+ 𝑒_9 ψ_𝑦 − 𝑒_10 𝑊 ̈ − 𝑒_11 𝑈 ̈
− 𝑒_12 𝑉 ̈ − 𝑒_13 ψ ̈_𝑥

− 〖  𝑒〗_14 ψ ̈_𝑦 + 𝑒_15 𝑊∆𝑇_𝑥𝑖
+ 𝑒_16 𝑊∆𝑇_𝑦𝑖 − 𝑃(𝑥, 𝑦, 𝑡)
+ (𝐾_1 𝑊_0 − 𝐾_2 ∇^2 𝑊_0 ) = 0 

(11c) 
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Fig. 2 Sandwich plate layout and ply midline for defining 

material properties 

 

  𝑓1𝑈 + 𝑓2𝑉 + 𝑓3𝑊 + 𝑓4𝑊
2 + 𝑓5ψ𝑥 + 𝑓6ψ𝑦 + 𝑓7�̈�

+ 𝑓8ψ̈𝑥 + 𝑓9�̈� + 𝑓10∆𝑇𝑥𝑖 + 𝑓11∆𝑇𝑦𝑖

= 0 
(11d) 

 𝑔1𝑈 + 𝑔2𝑉 + 𝑔3𝑊 + 𝑔4𝑊
2 + 𝑔5ψ𝑥 + 𝑔6ψ𝑦 + 𝑔7�̈�

+ 𝑔8ψ̈𝑦 + 𝑔9�̈� + 𝑔10∆𝑇𝑦𝑖 + 𝑔11∆𝑇𝑥𝑖

= 0 
(11e) 

Coefficients of Eq. (11), 𝑐𝑖 , 𝑑𝑖 , 𝑒𝑖 , 𝑓𝑖  and 𝑔𝑖  are 

given in Appendix A. 
 

3.2 Natural frequency  

 

To find the natural frequencies of the sandwich plate, 

the external forces should be set to zero. The general 

equation by which the free vibration of a system is 

calculated can be stated as given in Eq. (12) (Natarajan and 

Manickam 2012) 

[𝐾] − 𝜔𝜅𝜆
2[𝑀] = 0, (12) 

where [K] is the stiffness matrix, [M ] is the mass matrix 

and 𝜔𝜅𝜆 is the natural frequency. The set of equations of 

natural frequencies of a sandwich plate can be stated in the 

form of a matrix, with respect to Eq. (12), as  

([χ]5×16 − 𝜔𝜅𝜆
2[𝑀]5×16)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑈
𝑉
𝑊
𝑊2

ψ𝑥

ψ𝑦

�̈�
�̈�
�̈�
ψ̈𝑥

ψ̈𝑦

𝑈𝑊
𝑉𝑊
ψ𝑥𝑊
ψ𝑦𝑊

𝑊3 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

16×1

= 0, (13) 

where [χ] is the coefficient matrix, [𝑀] the mass matrix, 

and 𝜔 the natural frequency of the sandwich plate. The 

elements of matrices [χ]  and [𝑀]  are provided in 

Appendices B and C, respectively. 

 

3.3 Evaluation of the validity of the suggested method 

 

To verify the validity of the method presented in this 

study, the non-dimensional fundamental frequencies of the 

sandwich plate with FGM face sheets are calculated and 

compared with the results reported by (Li et al. 2009, Wang 

and Shen 2011). The material properties of the FGM face 

sheets are E𝑐 = 380GPa, ρ𝑐 = 3800
𝑘𝑔

𝑚3⁄  for alumina 

(𝐴𝑙2𝑂3), one of the most cost effective and widely used 

materials in engineering ceramics, which is used for the top 

surface of FGM sheets or ceramic parts and E𝑚 = 70GPa, 

ρ𝑚 = 2707
𝑘𝑔

𝑚3⁄  for aluminum which is considered for 

the bottom face of an FGM sheet and a core as well. The 

Poisson’s ratio for the core (υ𝑐) and the face sheet (υ𝐹) are 

assumed to be constant, since the effect of Poisson’s ratio 

on the sandwich plate responses is much less than that of 

the elastic modulus, and equal to each other: υ𝐹 = υ𝑐 =
0.3. The non-dimensional natural frequency parameter is 

defined as Eq. (14) presents (Gholami and Ansari 2018): 

ω̃ = 𝜔 (
𝑐2

ℎ
)√

𝜌0
𝐸0

⁄  (14) 

where ρ0 = 1
𝑘𝑔

𝑚3⁄  and E0 = 1GPa.  

The effective material properties (𝑃𝐹), such as elastic 

modulus 𝐸𝑓, density 𝜌𝐹 , Poisson’s ratio 𝜐𝑓 , and thermal 

expansion coefficient, 𝛼𝑓 are defined as given in Eq. (15) 

(Mohammadzadeh and Noh 2017): 

𝑃𝐹 = 𝑃𝑐𝑉𝑐 + 𝑃𝑚𝑉𝑚, (15) 

where 𝑃𝑐  and 𝑃𝑚  denote the temperature-dependent 

properties of the ceramic and metal, respectively. Here, 𝑉𝑐 

is the volume fraction of ceramic, while 𝑉𝑚 is the volume 

fraction of the metal as described in Eq. (16) (Wang et al. 

2017): 

𝑉𝑚𝑡 = (
𝑍−𝑡0

𝑡1−𝑡0
)

𝑁

, 𝑉𝑚𝑏 = (
𝑡3−𝑍

𝑡3−𝑡2
)

𝑁

, 𝑉𝑚 + 𝑉𝑐 = 1, (16) 

where N is the volume fraction index, which dictates the 

material variation profile through the FGM layer thickness, 

and indices t and b represent the top and bottom faces of 

layers, respectively. 

The core to face sheet thickness ratio is 
h𝐶

h𝐹
=8. Various 

volume fraction index values (N) of 0.0, 0.5, 1.0, 5.0, and 

10.0 are considered, so the material properties shall be 

defined with respect to N. To consider gradual variation of 

material properties through the thickness of an FGM sheet, 

each face sheet is divided into three layers, top, middle, and 

bottom, as seen in Fig. 2. The material properties of the 

FGM face sheets are provided in Table 1.  

The material properties given in Table 1 together with 

Eq. (13) are employed to find the natural frequencies of a 

sandwich plate. For this aim, the Runge–Kutta method, as 

well as MAPLE 14, are used. Thereafter, Eq. (14) is used to 

calculate the non-dimensional natural frequencies of a 

sandwich plate. Table 2 shows a comparison of the results 
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Table 1 Material properties of FGM faces with respect to 

the variation of N 

Layer position N 𝐸𝐹(GPa)  𝜌𝐹
𝑘𝑔

𝑚3⁄  𝛼𝐹 ∗ 10−6

𝐶°⁄  𝜈𝐹  

Top 0.00 70.00 2707.00 23.10 0.30 

Top 0.50 253.44 3353.78 13.69 0.30 

Top 1.00 328.33 3617.83 9.85 0.30 

Top 5.00 379.96 3799.86 7.20 0.30 

Top 10.00 380.00 3800.00 7.20 0.30 

Middle 0.00 70.00 2707.00 23.10 0.30 

Middle 0.50 160.80 3027.13 18.44 0.30 

Middle 1.00 225.00 3253.50 15.15 0.30 

Middle 5.00 370.31 3765.84 7.70 0.30 

Middle 10.00 379.70 3798.93 7.22 0.30 

Bottom 0.00 70.00 2707.00 23.10 0.30 

Bottom 0.50 97.01 2802.23 21.71 0.30 

Bottom 1.00 121.67 2889.17 20.45 0.30 

Bottom 5.00 255.42 3360.75 13.59 0.30 

Bottom 10.00 329.93 3623.47 9.77 0.30 

 

Table 2 Non-dimensional natural frequencies ω̃ 

b/h Source 
N     

0.0 0.5 1.0 5.0 10.0 

100 
Li et al. 

(2009) 
0.96022 1.26557 1.38331 1.57035 1.60457 

100 
Wang & Shen 

2011 
0.96022 1.26557 1.38332 1.57036 1.60458 

100 
Present 

(Analytical) 
0.96015 1.26468 1.38314 1.57028 1.60445 

100 
Present 

(ABAQUS) 
0.96007 1.26270 1.38119 1.57016 1.60327 

Error 

(%) 
Li & present 0.00700 0.07000 0.01200 0.00400 0.00700 

Error 

(%) 

Wang & 

present 
0.00700 0.07000 0.01300 0.00500 0.00800 

10 
Li et al. 

(2009) 
0.92897 1.20553 1.30825 1.46647 1.49481 

10 
Wang & Shen 

2011 
0.92839 1.20559 1.30854 1.46696 1.49535 

10 
Present 

(Analytical) 
0.92813 1.20535 1.30803 1.46597 1.49458 

10 
Present 

(ABAQUS) 
0.92705 1.20349 1.30472 1.46382 1.49228 

Error 

(%) 
Li & present 0.09000 0.01500 0.01700 0.03400 0.01500 

Error 

(%) 

Wang & 

present 
0.02800 0.02000 0.03900 0.06700 0.05100 

 

 

of this study with those reported in the literature. The 

differences among the results obtained from the analytical 

method of this study and those of the literature are 

calculated and reported in Table 2 as Error (%). 

As seen in Table 2, the non-dimensional natural 

frequencies obtained from the present study, which were 

obtained by analytical and numerical methods, and those of 

(Li et al. 2009, Wang and Shen 2011) show good 

agreement. 

The system of nonlinear dynamic equations cannot be 

Table 3 Calculation of the error of Runge Kutta Method 

Step size Error 

0.002 0.08123 

0.001 0.03253 

0.0005 0.00654 

0.00025 0.00125 

0.000125 0.00009 

0.0000625 0.00002 

 
 

directly solved and lead to an exact solution, so the Runge–

Kutta scheme is employed. To provide an explanation of the 

error, it is only possible to estimate the error. For this aim, 

the one-step method can be used as follows. 

The one-step method is a 5th-order Runge–Kutta 

formula which is embedded in a 4th-order Runge–Kutta 

formula as follows as Eq. (17) presents (Mohammadzadeh 

and Noh 2017): 

𝑘0 = ℎ𝑓(𝑥𝑛, 𝑦𝑛), 

𝑘1 = ℎ𝑓(𝑥𝑛 + ℎ
2⁄ , 𝑦𝑛 +

𝑘0
2⁄ ), 

𝑘2 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 +
(𝑘0 + 𝑘1

4⁄ ), 

𝑘3 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 − 𝑘1 + 2𝑘2), 

𝑘4 = ℎ𝑓(𝑥𝑛 +
2ℎ

3
, 𝑦𝑛 +

(7𝑘0+10𝑘1+𝑘3)

27
), 

𝑘5 = ℎ𝑓(𝑥𝑛 +
2ℎ

10
, 𝑦𝑛 +

(28𝑘0−125𝑘1+546𝑘2+54𝑘3−378𝑘4)

625
) 

(17a) 

The fourth-order formula is expressed as 

𝑦𝑛+1 = 𝑦𝑛 + (𝑘0 + 4𝑘2 + 𝑘3)/6 (17b) 

and the fifth-order formula is expressed as 

𝑦𝑛+1 = 𝑦𝑛 + (14𝑘0 + 35𝑘3 + 162𝑘4 + 125𝑘5)/336 (17c) 

Therefore, the error can be obtained by subtracting 

solutions obtained from both 4th-and 5th-order Runge-Kutta 

methods as follows: 

𝐸𝑛+1 = (𝑦𝑛+1)4𝑡ℎ − (𝑦𝑛+1)5𝑡ℎ (17d) 

Considering the explanations above, the amounts of 

error are given in Table 3. 

As seen in Table 3, the error is proportional to ℎ5, which 

agrees with the theory of the Runge- Kutta method. 
 

3.3.1 Evaluation of convergence of the plate 

frequencies 

Although the method was validated in the previous 

section, to have more reliable results, a convergence study 

was performed considering frequencies corresponding to 

five first mode shapes of the plate. To investigate the 

convergence of the sandwich plate frequencies, the 

numerical method was employed. For this aim, the example 

problem defined in method validity was used.  The 

material properties given in Table 1 were specified to the 

sandwich plate corresponding to various values of volume 

fraction index, N = 0, 1.0, and 10. Fig. 3 presents the 

convergence of sandwich plate frequency with respect to 

mode shape. 
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b/h=10 

 
b/h=100 

Fig. 3 Convergence of sandwich plate frequency for 

various volume fraction index (N) values with respect to 

mode shape 
 

 

As seen in Fig. 3, convergence was obtained for the 

sandwich plate frequencies, and after mode 4, the increase 

in plate frequency is negligible. Therefore, the results are 

reliable, and the method can be used for further study and 

nonlinear dynamic analyses.  

 

3.4 Effects of temperature change and volume fraction 

index  

 

In this part, an attempt is made to investigate the effects 

of the temperature change and volume fraction index N on 

the frequencies of a sandwich plate having 3 layers, 

FGM/FRC/FGM, resting on elastic foundations. The core-

to-face sheet thickness ratio of 
h𝐶

ℎ𝐹
⁄ = 10  is considered, 

while the aspect ratio of a/c=1 is specified to the plate. A 

range of volume fraction index, N, from 0 to 10 as well as 

three different temperatures of T =300 K (27 ℃), 500 K 

(227  ℃ ) and 700 K (427  ℃ ) for which the material 

properties of FGM face sheets with respect to various 

amounts of volume fraction index, N, are provided in Tables 

4–6, respectively. Since high temperatures occur in burst 

events, fires, and nuclear explosions, the high temperatures 

of 500 K and 700 K are taken into account in this study.  

The provided material properties are specified to the 

face sheets of the sandwich plate to calculate the natural  

Table 4 Material properties of FGM faces for various N (T= 

300K, 27℃) 

Layer 

position 
N 𝐸𝐹(GPa)  𝜌𝐹

𝑘𝑔
𝑚3⁄  

 
𝛼𝐹 ∗ 10−6

𝐶°⁄  𝜈𝐹  

Top 0 105.70 2707.00 6.94 0.29 

Top 0.5 142.60 3353.78 13.83 0.29 

Top 1 157.67 3617.83 16.65 0.29 

Top 5 168.05 3799.86 18.59 0.29 

Top 10 168.06 3800.00 18.59 0.29 

Middle 0 105.70 2707.00 6.94 0.29 

Middle 0.5 123.96 3027.13 10.35 0.29 

Middle 1 136.88 3253.50 12.77 0.29 

Middle 5 166.11 3765.84 18.23 0.29 

Middle 10 168.00 3798.93 18.58 0.29 

Bottom 0 105.70 2707.00 6.94 0.29 

Bottom 0.5 111.13 2802.23 7.96 0.29 

Bottom 1 116.09 2889.17 8.88 0.29 

Bottom 5 143.00 3360.75 13.91 0.29 

Bottom 10 157.99 3623.47 16.71 0.29 

 

Table 5 Material properties of FGM faces for various N (T= 

500K, 227℃) 

Layer position N 𝐸𝐹(GPa)  𝜌𝐹
𝑘𝑔

𝑚3⁄  𝛼𝐹 ∗ 10−6

𝐶°⁄  𝜈𝐹 

Top 0 94.46 2707.00 4.13 0.29 

Top 0.5 121.24 3353.78 22.54 0.29 

Top 1 132.18 3617.83 30.06 0.29 

Top 5 139.71 3799.86 35.24 0.29 

Top 10 139.72 3800.00 35.25 0.29 

Middle 0 94.46 2707.00 4.13 0.29 

Middle 0.5 107.71 3027.13 13.25 0.29 

Middle 1 117.09 3253.50 19.69 0.29 

Middle 5 138.30 3765.84 34.27 0.29 

Middle 10 139.68 3798.93 35.22 0.29 

Bottom 0 94.46 2707.00 4.13 0.29 

Bottom 0.5 98.40 2802.23 6.84 0.29 

Bottom 1 102.00 2889.17 9.32 0.29 

Bottom 5 121.53 3360.75 22.74 0.29 

Bottom 10 132.41 3623.47 30.22 0.29 

 

 

frequencies of the sandwich plate for the corresponding 

volume fraction index and temperature. The obtained 

frequencies are normalized by employing Eq. (14) and 

reported as non-dimensional natural frequencies as given in 

Table 7.  

As seen in Table 7, with increasing temperature, the 

natural frequencies of the plate decrease. This can be seen 

for all values of T and N. The reason is that increasing 

temperature leads to a decrease in sandwich plate stiffness 

since only the elastic modulus is decreased as temperature 

increases, so natural frequencies are decreased. The 

investigation into the effects of N on non-dimensional 

0

1

2

3

4

5

6

0 2 4 6 8N
o

n
d

im
en

si
o

n
al

 f
re

q
u
en

cy
 

Number of mode shape

N=0 N=1 N=10

෦𝜔

0

2

4

6

8

0 2 4 6 8N
o

n
d

im
en

si
o

n
al

 f
re

q
u
en

cy
 

Number of mode shape

N=0 N=1 N=10

෦𝜔

608



 

Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces 

Table 6 Material properties of FGM faces for various N (T= 

700K, 427℃) 

Layer position N 𝐸𝐹(GPa 𝜌𝐹
𝑘𝑔

𝑚3⁄  𝛼𝐹 ∗ 10−6

𝐶°⁄  𝜈𝐹 

Top 0.0 83.22 2707.00 -0.59 0.29 

Top 0.5 107.53 3353.78 36.49 0.29 

Top 1.0 117.46 3617.83 51.63 0.29 

Top 5.0 124.30 3799.86 62.07 0.29 

Top 10.0 124.31 3800.00 62.07 0.29 

Middle 0.0 83.22 2707.00 -0.59 0.29 

Middle 0.5 95.25 3027.13 17.77 0.29 

Middle 1.0 103.76 3253.50 30.74 0.29 

Middle 5.0 123.03 3765.84 60.12 0.29 

Middle 10.0 124.27 3798.93 62.01 0.29 

Bottom 0.0 83.22 2707.00 -0.59 0.29 

Bottom 0.5 86.80 2802.23 4.87 0.29 

Bottom 1.0 90.06 2889.17 9.86 0.29 

Bottom 5.0 107.79 3360.75 36.89 0.29 

Bottom 10.0 117.67 3623.47 51.95 0.29 

 

Table 7 Non-dimensional natural frequencies obtained from 

analytical approach considering variation of N and T (a/c= 

1, c/h= 100) 

No Temperature(K) N ω̃ 

1  0.0 0.9865 

2  0.5 0.9894 

3 300 1.0 0.9906 

4  5.0 0.9921 

5  10.0 0.9924 

6  0.0 0.9783 

7  0.5 0.9777 

8 500 1.0 0.9770 

9  5.0 0.9753 

10  10.0 0.9749 

11  0.0 0.9698 

12  0.5 0.9686 

13 700 1.0 0.9678 

14  5.0 0.9655 

15  10.0 0.9648 

 

 

natural frequencies �̃� shows that for the temperature of 

300 K, increasing N results in increasing �̃� . It occurs 

because N directly affects the face sheet stiffness, so the 

natural frequency increases. For the higher temperatures of 

500 K and 700 K, a reverse trend was observed, as shown in 

Fig. 4. 

As seen in Fig. 4, non-dimensional frequencies �̃�, vary 

differently with respect to the volume fraction index N, for 

different temperatures. For the temperature of 300 K, as the 

volume fraction index increases, the plate frequency 

increases. It should be noted that for N<1, changes in 

frequencies are larger than those for N>1. A steep slope is 

observed in the graph for N<1. The graph corresponding 

 

Fig. 4 Variation of the non-dimensional frequency with 

respect to N 
 

 

to 300 K plateaus after N=3. The graphs corresponding to 

500 K and 700 K are descending; the plate frequencies 

decrease as the volume fraction index increases. For 500 K 

and for N<2 a steep slope can be seen which shows a 

sudden drop in natural frequencies, and the graph plateaus 

for N>4. For the graph corresponding to 700 K, a steep 

slope is seen for N<3, and the graph plateaus when N>5. 

From these results, it can be inferred that as the temperature 

increases, the plate frequencies decrease. This phenomenon 

can be described based on Eq. (18), which relates the elastic 

modulus of the materials to the temperature and volume 

fraction index (Mohammadzadeh and Noh 2017): 

𝐸𝐹(𝑍, 𝑇) = (𝐸𝑏(𝑇) − 𝐸𝑡(𝑇)) (
2𝑍 + ℎ

2ℎ
)

𝑁

+ 𝐸𝑡 , (18) 

where 𝐸𝐹(𝑍, 𝑇)  is the elastic modulus of the plate 

materials as a function of temperature, depth in thickness 

and N, 𝐸𝑏(𝑇) temperature-dependent elastic modulus at 

the bottom of face sheet and 𝐸𝑡(𝑇) temperature-dependent 

elastic modulus at the top of the face sheet. In the case of 

this study, for the temperatures of 500 K and 700 K the 

numerical value of (𝐸𝑏(𝑇) − 𝐸𝑡(𝑇)) is negative (refer to 

Tables 5 and 6), and increasing N results in a larger value of 

(
2𝑍+ℎ

2ℎ
)

𝑁

, so a larger amount is subtracted from 𝐸𝑡 . 

Therefore, a smaller amount is obtained for 𝐸𝐹  , which 

means that the stiffness of the face sheets is decreased, and 

it leads to smaller �̃�. Figs. 5–7 present the variation of the 

non-dimensional fundamental natural frequencies of a 

sandwich plate having FGM face sheets with respect to 

side-to-thickness ratio, c/h, considering various volume 

fraction index values and for various temperatures of 300 K, 

500 K, and 700 K, respectively.  

The results shown in Figs. 5–7 indicate that increasing 

temperature leads to lower natural frequencies. A reason for 

this phenomenon is that the FGM characteristics are 

temperature dependent; that is, the material properties of the 

face sheets vary as the temperature changes. Increasing 

temperature results in decreased sandwich plate face sheet 

stiffness, so considering Eq. (12), the natural frequencies of 

the sandwich plate decrease.   

Investigation into the variation of the natural frequency 

of the sandwich plate with respect to change in values of c/h 

shows that by increasing the side-to-thickness ratio in the  
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Fig. 5 Non-dimensional fundamental natural frequencies 

versus c/h considering various N for 300K 
 

 
Fig. 6 Non-dimensional fundamental natural frequencies 

versus c/h considering various N for 500K 

 

 

Fig. 7 Non-dimensional fundamental natural frequencies 

versus c/h considering various N for 700K 

 

 

range 1<c/h<60 which can be categorized as a batch of 

thick plates, a non-linear sudden increase in the non-

dimensional natural frequency of the sandwich plate �̃� can 

be observed as shown in Figs. 5–7. Moreover, the effects of 

an increase in c/h on �̃� for the range of c/h>60, which can 

be indicated as thin plates, is infinitesimal and can be 

neglected.  
 

3.5 Nonlinear vibration  

 

The nonlinear vibrations of a sandwich plate are 

calculated and presented in Table 8 in the form of 

nonlinear-to-linear frequency ratios for c/h=1, and 

considering the effects of foundation stiffness, various 

temperatures, and volume fraction index N. The 

nonlinearity is considered as effects of existent initial 

Table 8-1 Nonlinear frequencies of the sandwich plate in 

the form of ω𝑁𝐿
𝐿⁄
 for various N and 

𝑊𝑚𝑎𝑥

ℎ
< 1.0 

(K1, 

K2) 
Temperature(K) N ω̃ 𝑊𝑚𝑎𝑥

ℎ⁄     

    0.1 0.25 0.5 0.75 

(0, 0) 
 

300 

0.0 0.9865 1.0135 1.0513 1.1432 1.2562 

 1.0 0.9906 1.0088 1.0476 1.1341 1.2413 

 5.0 0.9921 1.0026 1.0368 1.1295 1.2314 

 
 

500 

0.0 0.9783 1.0102 1.0513 1.1432 1.2562 

 1.0 0.9770 1.0088 1.0463 1.1364 1.2413 

 5.0 0.9753 1.0056 1.0427 1.1296 1.2239 

 
 

700 

0.0 0.9698 1.0102 1.0513 1.1432 1.2562 

 1.0 0.9678 1.0089 1.0471 1.1409 1.2499 

 5.0 0.9655 1.0029 1.0357 1.1329 1.2339 

(10, 

0)  

300 

0.0 1.1147 1.0092 1.0351 1.1071 1.1963 

 1.0 1.2116 1.0051 1.0345 1.1064 1.1948 

 5.0 1.6222 1.0018 1.0328 1.1025 1.1917 

 
 

500 

0.0 1.0667 1.0085 1.0346 1.1032 1.1892 

 1.0 1.1844 1.0081 1.0328 1.0278 1.1786 

 5.0 1.4747 1.0073 1.0309 1.0246 1.1705 

 
 

700 

0.0 1.0217 1.0080 1.0325 1.0988 1.1826 

 1.0 1.1123 1.0075 1.0304 1.0955 1.1776 

 5.0 1.4045 1.0066 1.0273 1.0933 1.1746 

(10, 

1)  

300 

0.0 1.3376 1.0042 1.0178 1.0697 1.1558 

 1.0 1.4152 1.0040 1.0165 1.0676 1.1521 

 5.0 1.4548 1.0038 1.0157 1.0667 1.1514 

 
 

500 

0.0 1.2986 1.0036 1.0157 1.0622 1.1477 

 1.0 1.3572 1.0035 1.0151 1.0590 1.1455 

 5.0 1.3952 1.0034 1.0148 1.0586 1.1446 

 
 

700 

0.0 1.2583 1.0031 1.0136 1.0569 1.1386 

 1.0 1.3151 1.0030 1.0131 1.0563 1.1371 

 5.0 1.3545 1.0028 1.0129 1.0556 1.1362 

 

 

displacement in the form of the ratio of maximum central 

displacement to the plate thickness, 
𝑊𝑚𝑎𝑥

ℎ
. The results given 

in Table 8 show that the natural frequencies of the sandwich 

plate decrease with increasing temperature for the same 

volume fractions, while they increase with increases in the 

volume fraction index N and the foundation stiffness. In 

contrast, the nonlinear-to-linear frequency ratios are 

reduced with an increase in the foundation stiffness for the 

same volume fractions, and the temperature change has a 

very small effect on the nonlinear-to-linear frequency ratios 

of the same plate and the same volume fractions. 

 
3.5.1 Backbone curve 
The main idea of backbone curves is that, for most 

structures, resonances lead to the largest vibration 

amplitude, so the resonant responses must be understood. 

This is relatively straightforward for a linear system 

because resonances occur independently of each other and  
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Table 8-2 Nonlinear frequencies of the sandwich plate in 

the form of ω𝑁𝐿
𝐿⁄
 for various N and 1.0 ≤

𝑊𝑚𝑎𝑥

ℎ
≤ 2.0 

(K1, 
K2) 

Temperature(K) N ω̃ 𝑊𝑚𝑎𝑥
ℎ⁄      

    1.0 1.25 1.5 1.75 2.0 

(0, 0) 

 

300 

0.0 0.9865 1.3858 1.5330 1.7049 1.9033 2.1362 

 1.0 0.9906 1.3632 1.5025 1.6649 1.8488 2.0620 

 5.0 0.9921 1.3449 1.4730 1.6189 1.7847 1.9743 

 

 

500 

0.0 0.9783 1.3832 1.5275 1.6988 1.8965 2.1286 

 1.0 0.9770 1.3611 1.4965 1.6497 1.8239 2.0239 

 5.0 0.9753 1.3294 1.4481 1.5802 1.7291 1.8991 

 

 
700 

0.0 0.9698 1.3846 1.5307 1.7043 1.9047 2.1343 

 1.0 0.9678 1.3679 1.5010 1.6527 1.8234 2.0217 

 5.0 0.9655 1.3242 1.4385 1.5684 1.7148 1.8811 

(10, 0) 

 

300 

0.0 1.1147 1.2971 1.4128 1.5444 1.6980 1.8872 

 1.0 1.2116 1.2944 1.4087 1.5394 1.6923 1.8676 

 5.0 1.6222 1.2902 1.4048 1.5331 1.6812 1.8514 

 

 

500 

0.0 1.0667 1.2851 1.3985 1.5288 1.6751 1.8478 

 1.0 1.1844 1.3522 1.5527 1.7875 2.0613 2.3816 

 5.0 1.4747 1.3393 1.5338 1.7597 2.0212 2.3245 

 

 

700 

0.0 1.0217 1.2762 1.3829 1.5024 1.6370 1.7902 

 1.0 1.1123 1.2913 1.4197 1.5650 1.7303 1.9200 

 5.0 1.4045 1.2759 1.3898 1.5166 1.6594 1.8226 

(10, 1) 

 
300 

0.0 1.3376 1.2533 1.3641 1.4897 1.6367 1.8116 

 1.0 1.4152 1.2496 1.3618 1.4904 1.6379 1.8110 

 5.0 1.4548 1.2506 1.3646 1.4997 1.6533 1.8334 

 

 

500 

0.0 1.2986 1.2432 1.3534 1.4771 1.6168 1.7821 

 1.0 1.3572 1.2451 1.3590 1.4900 1.6385 1.8061 

 5.0 1.3952 1.2414 1.3508 1.4755 1.6186 1.7823 

 

 

700 

0.0 1.2583 1.2299 1.3341 1.4536 1.5892 1.7423 

 1.0 1.3151 1.2274 1.3308 1.4498 1.5853 1.7465 

 5.0 1.3545 1.2265 1.3282 1.4430 1.5735 1.7237 

 

 

respond only to external sources of excitation. However, for 

nonlinear systems, there is the possibility that resonances or 

modes can interact due to nonlinear coupling between 

different parts of the structure. Backbone curves can be 

used to help understand the complexities of resonant 

behavior. This is because the resonant response of a forced 

system is closely linked to the unforced response, and a 

backbone curve represents the unforced, undamped 

response. 

To provide a better understanding of the nonlinear 

behavior of the sandwich plate, the backbone curves are 

provided in Fig. 8. The abscissa is specified to the ratio of 

the nonlinear vibration to the linear vibration, ω𝑁𝐿
𝐿⁄
 , and 

the ordinate is specified to the maximum displacement to 

the plate thickness, 
𝑊𝑚𝑎𝑥

ℎ
. They are derived for the various 

values of the volume fraction index, N, temperature, and 

foundation conditions.  

As seen from the backbone curves in Fig. 8, by 

increasing the initial imperfection, the nonlinear vibration 

of the sandwich plate increases. This shows that resonance, 

in nonlinear vibration, is a function of imperfection. The 

volume fraction index, N, also has a significant effect on the 

nonlinear vibration of the sandwich plate for a large 

imperfection, 
𝑊𝑚𝑎𝑥

ℎ⁄ , and Winkler foundation, K1 = 10 

and K2 = 0. For the foundation conditions of K1 = 10 and 

K2=1, the volume fraction index has no significant effect on 

the nonlinear vibration of the system. From the graphs, it 

can be inferred that the nonlinear vibration of the sandwich 

plate is not a function of temperature. 

 
 

4. Concluding Remarks 
 

This study was motivated to provide a comprehensive 

nonlinear dynamic method for the investigation of one of 

the frequently used plated structures called sandwich plates. 

The most important dynamic parameter which should be 

highly paid attention is the vibration of a structure or 

structural component as it may lead to structural failure. In 

this regard, this study presented an analytical approach to 

investigate the frequencies of a sandwich plate with FGM 

face sheets. The interaction between the sandwich plate and 

the elastic foundation was taken into account as well as the 

effects of temperature variation which directly affects the 

material properties and consequently the stiffness of the 

plate. For the derivation of governing equations of motion 

of this study, the higher-order shear deformation theory was 

employed in conjunction with Hamilton’s principle. The 

sinusoidal displacement fields satisfying the clamped 

boundary conditions were employed to convert the set of 

equation of motions to the solvable form of the set of 

nonlinear dynamic equations. The Runge-Kutta method was 

taken into account for solving the equations and finding the 

natural frequency and nonlinear frequency of the several 

cases of sandwich plates corresponding to various 

conditions. In order to evaluate the validity of the method, 

the results obtained from the method of this study were 

compared with those reported in the literature for some 

special cases. The results showed that as the temperature 

increased, the sandwich plate frequency decreased, as 

increasing temperature led to a decrease in the stiffness of 

the sandwich plate stiffness. For the temperature of 300 K, 

an increase in the volume fraction index, N, caused  the 

non-dimensional natural frequencies, 𝜔,෦ to grow as N 

directly affects the face sheet stiffness. For the higher 

temperatures of 500 K and 700 K, a reverse trend was 

observed. A possible explanation is that an increase in N 

resulted in an increasing portion of mthe etal in the FGM 

face sheets for which the stiffness decreases with increase 

in temperature, so the natural frequencies decrease. 

Nonlinear vibration analyses of the sandwich plate were 

performed with consideration of the effects of foundation 

stiffness, temperature change, and N. For this aim, the 

geometrical nonlinearities were considered by imposing the 

initial displacement of different amounts to the plate in 

form of the ratio of displacement of the plate center to the 

plate thickness. The nonlinear frequencies were reported in 

the form of ra atio of the nonlinear frequency to the linear 

frequency or natural frequency of the desired case, ω𝑁𝐿
𝐿⁄
.  
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Results showed that the nonlinear-to-linear frequency 

ratios, ω𝑁𝐿
𝐿⁄
, decreased with an increase in the foundation 

stiffness. Temperature change had a very small effect on the 

nonlinear-to-linear frequency ratios of the same plate. For a 

better understanding of the nonlinear behavior of the 

sandwich plate the backbone curves were presented. It was 

observed that the nonlinear vibration of the plate did not 

depend on temperature change. Besides, N affected the 

nonlinear vibration of the plate only for the foundation 

conditions of K1 = 10 and K2 = 1. Further studies are 

required to investigate sandwich plate and composite plate 

frequencies in the case of severe loadings, such as blast 

loads which are accompanied by elevated temperature. 
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CC 
 

 

Nomenclature 
 

t  time 

𝜔𝜅𝜆 Natural frequency 

[K] stiffness matrix 

[M] mass matrix 

[χ] coefficient matrix 

M mass 

E modulus of elasticity 

ν Poisson’s ratio 

ρ material density  

G shear modulus of elasticity 

𝜅 curvature 

𝐼𝑗𝑖  mass moment of inertias 

𝑞𝑥 distributed load along x-direction  

𝑞𝑦 distributed load along y-direction 

𝑞𝑏 distributed forces at bottom layer 
𝑞𝑡 distributed forces at top layer 

Nm membrane force 

Mb bending moment 

P higher order bending moment 

Q shear force 

R higher order shear moment 

𝑁𝑇 thermal force 
�̅�𝑇 thermal moment 

�̅�𝑇 thermal higher order moment 

Ω0 plate area 

𝜎 stress 

𝜎𝑇 thermal stress 

ε strain 

𝛾 shear strain 

a length of plate (long side) 

c width of plate (short side) 

h thickness of plate 

ℎ𝑓 thickness of face sheet 

ℎ𝑓𝑟𝑐 thickness of core 

𝑡𝑖 layer height through the plate thickness 

𝑃𝐹  effective material properties  

𝑃𝑐 temperature-dependent properties of ceramic  

𝑃𝑚 temperature-dependent properties of metal 

𝑉𝑐 volume fraction of ceramic 

𝑉𝑚 volume fraction of metal 

Z depth through the plate thickness 

𝐴𝑀 cross-sectional area of matrix 

𝐴𝑟 cross-sectional area of reinforcement 

𝐴𝑐 cross-sectional area of composite 

Ν volume fraction index 

𝛼 thermal expansion coefficient 

�̅�𝑖𝑗 constitutive stiffness matrix element 

U displacement in x-direction 

V displacement in y-direction 

W displacement in z-direction 

Ψ𝑥 rotation in y-direction 

Ψ𝑦 rotation in x-direction 

�̇� time-derivative of U 

�̇� time-derivative of V 

�̇� time-derivative of W 

Ψ̇𝑥 time-derivative of Ψ𝑥 
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Ψ̇𝑦 time-derivative of Ψ𝑦 

�̈� second time-derivative of U 

�̈� second time-derivative of V 

�̈� second time-derivative of W 

Ψ̈𝑥 second time-derivative of Ψ𝑥 

Ψ̈𝑦 second time-derivative of Ψ𝑦 

𝐾1 Winkler foundation stiffness 

𝐾2 shear layer stiffness 

ρ0 1 
𝑘𝑔

𝑚3⁄   

E0 1 GPa 

𝑈𝑠𝑒 strain energy 

𝑉𝑒𝑤 external work 

𝐾𝑒 kinetic energy 
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Appendix A: Coefficients for equations of Frequency  
 

For simplicity and neat appearance, 𝜔𝜅𝜆 is replaced by 𝜔. 
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− 𝑐𝑜𝑠
2𝜋𝑦

𝑐
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐

+ (�̅�11)𝑖

8𝜋3ℎ𝑖

𝑎3
𝑐𝑜𝑠

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)

2

+ (�̅�12)𝑖

8𝜋3ℎ𝑖

𝑎𝑐2
sin2

2𝜋𝑦

𝑐
𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
)

− (�̅�16)𝑖

8𝜋3ℎ𝑖

𝑎2𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) (1

− 𝑐𝑜𝑠
2𝜋𝑦

𝑐
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
] 𝑒−2𝑖𝜔𝑡  

𝑐5 = ∑ [(�̅�16)𝑖
4𝜋2ℎ𝑖

2

3𝑎𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�66)𝑖
2𝜋2ℎ𝑖

2

3𝑐2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
− (�̅�11)𝑖

2𝜋2ℎ𝑖
2

3𝑎2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑦

𝑐
)] 𝑒−𝑖𝜔𝑡  

𝑐6 = ∑ [(�̅�26)𝑖
2𝜋2ℎ𝑖

2

3𝑐2 (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
+ (�̅�66 +ℵ

𝑖=1

�̅�12)𝑖
2𝜋2ℎ𝑖

2

3𝑎𝑐
𝑠𝑖𝑛

2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+

(�̅�16)𝑖
2𝜋2ℎ𝑖

2

3𝑎2 𝑐𝑜𝑠
2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡   

𝑐7 = ∑ [𝐼0𝑖𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)]ℵ

𝑖=1 𝜔2𝑒−𝑖𝜔𝑡   

𝑐8 = ∑ [(𝐼1𝑖 −
4

3ℎ2 𝐼3𝑖) 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)]𝜔2𝑒−𝑖𝜔𝑡ℵ

𝑖=1   

𝑐9 = ∑ [
8𝜋

3𝑎ℎ𝑖
2 𝐼3𝑖𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)]𝜔2𝑒−𝑖𝜔𝑡ℵ

𝑖=1    

𝑐10 = ∑ (�̅�11𝛼11 + �̅�12𝛼22)𝑖ℎ𝑖
ℵ
𝑖=1   

𝑐11 = ∑ (�̅�16𝛼11 + �̅�26𝛼22)𝑖ℎ𝑖
ℵ
𝑖=1   

𝑑1 = ∑ [(�̅�12)𝑖
4𝜋2ℎ𝑖

𝑎𝑐
cos

2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
−ℵ

𝑖=1

(�̅�16)𝑖
4𝜋2ℎ𝑖

𝑎2 sin
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) +

(�̅�26)𝑖
4𝜋2ℎ𝑖

𝑐2 sin
2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
+

(�̅�66)𝑖
4𝜋2ℎ𝑖

𝑎𝑐
cos

2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡   

𝑑2 = ∑ [(�̅�26)𝑖
4𝜋2ℎ𝑖

𝑎𝑐
sin

2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
− (�̅�22)𝑖

4𝜋2ℎ𝑖

𝑐2 (1 −ℵ
𝑖=1

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
+ (�̅�26)𝑖

4𝜋2ℎ𝑖

𝑎𝑐
sin

2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
+

(�̅�66)𝑖
4𝜋2ℎ𝑖

𝑎2 𝑐𝑜𝑠
2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡     

𝑑3 = ∑ [(�̅�12)𝑖
8𝜋3ℎ𝑖

2

3𝑎2𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
+ (�̅�22)𝑖

8𝜋3ℎ𝑖
2

3𝑐3 (1 −ℵ
𝑖=1

cos
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
− (�̅�26)𝑖

16𝜋3ℎ𝑖
2

3𝑎𝑐2 sin
2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
−

(�̅�16)𝑖
8𝜋3ℎ𝑖

2

3𝑎3 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) −

(�̅�66)𝑖
16𝜋3ℎ𝑖

2

3𝑎𝑐2 cos
2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡    

𝑑4 = ∑ [(�̅�12)𝑖
8𝜋3ℎ𝑖

𝑐𝑎2 sin2 2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�22)𝑖
8𝜋3ℎ𝑖

𝑐3 (1 − cos
2𝜋𝑥

𝑎
)

2

𝑐𝑜𝑠
2𝜋𝑦

𝑐
𝑠𝑖𝑛

2𝜋𝑦

𝑐
+

(�̅�26)𝑖
8𝜋3ℎ𝑖

𝑎𝑐2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) (1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
+

(�̅�16)𝑖
8𝜋3ℎ𝑖

𝑎3 𝑐𝑜𝑠
2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)

2

+

(�̅�26)𝑖
8𝜋3ℎ𝑖

𝑎𝑐2 sin2 2𝜋𝑦

𝑐
𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) −

(�̅�66)𝑖
8𝜋3ℎ𝑖

𝑎2𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) (1 −

𝑐𝑜𝑠
2𝜋𝑦

𝑐
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
] 𝑒−2𝑖𝜔𝑡    

𝑑5 = ∑ [(�̅�12)𝑖
2𝜋2ℎ𝑖

2

3𝑎𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�26)𝑖
2𝜋2ℎ𝑖

2

3𝑐2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
− (�̅�16)𝑖

2𝜋2ℎ𝑖
2

3𝑎2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑦

𝑐
) − (�̅�66)𝑖

4𝜋2ℎ𝑖
2

3𝑎𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡     
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𝑑6 = ∑ [(�̅�22)𝑖
2𝜋2ℎ𝑖

2

3𝑐2 (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�26)𝑖
4𝜋2ℎ𝑖

2

3𝑎𝑐
𝑠𝑖𝑛

2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+

(�̅�66)𝑖
2𝜋2ℎ𝑖

2

3𝑎2 𝑐𝑜𝑠
2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡    

𝑑7 = ∑ [𝐼0𝑖 (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
] 𝜔2𝑒−𝑖𝜔𝑡ℵ

𝑖=1    

𝑑8 = ∑ [(𝐼1𝑖 −
4

3ℎ2 𝐼3𝑖) (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
]𝜔2𝑒−𝑖𝜔𝑡ℵ

𝑖=1   

𝑑9 = ∑ [
8𝜋

3𝑏ℎ𝑖
2 𝐼3𝑖 (1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
]𝜔2𝑒−𝑖𝜔𝑡ℵ

𝑖=1    

𝑑10 = ∑ (�̅�12𝛼11 + �̅�22𝛼22)𝑖ℎ𝑖
ℵ
𝑖=1   

𝑑11 = ∑ (�̅�16𝛼11 + �̅�26𝛼22)𝑖ℎ𝑖
ℵ
𝑖=1   

𝑒1 = ∑ [(𝑄11)𝑖
4𝜋3ℎ𝑖

3𝑎3
(2ℎ𝑖 − 3)𝑠𝑖𝑛2 2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)

2

+ℵ
𝑖=1

(𝑄16)𝑖
4𝜋3ℎ𝑖

3𝑎2𝑐
(3 − 2ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(5𝑐𝑜𝑠

2𝜋𝑥

𝑎
− 2) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 −

𝑐𝑜𝑠
2𝜋𝑦

𝑐
) + (𝑄66 +

1

2
𝑄12)

𝑖

8𝜋3ℎ𝑖

3𝑎𝑐2
(3 − 2ℎ𝑖)𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 2𝜋𝑦

𝑐
+ (𝑄26)𝑖

4𝜋3ℎ𝑖

3𝑐3
(3 − 2ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+ (𝑄66)𝑖

8𝜋3ℎ𝑖

3𝑎𝑐2
(3 −

2ℎ𝑖)𝑠𝑖𝑛
2 2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)] 𝑒−2𝑖𝜔𝑡     

𝑒2 = ∑ [(𝑄66 +
1

2
𝑄12)

𝑖

8𝜋3ℎ𝑖

3𝑎2𝑐
(3 −ℵ

𝑖=1

2ℎ𝑖)𝑠𝑖𝑛
2 2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) + (𝑄16)𝑖

4𝜋3ℎ𝑖

3𝑎3
(3 −

2ℎ𝑖)𝑠𝑖𝑛
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +

(𝑄26)𝑖
4𝜋3ℎ𝑖

3𝑎𝑐2
(3 − 2ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
(5𝑐𝑜𝑠

2𝜋𝑦

𝑐
− 2) + (𝑄66)𝑖

8𝜋3ℎ𝑖

3𝑎2𝑐
(3 −

2ℎ𝑖)𝑐𝑜𝑠
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 2𝜋𝑦

𝑐
+ (𝑄22)𝑖

4𝜋3ℎ𝑖

3𝑐3
(3 −

2ℎ𝑖)𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)] 𝑒−2𝑖𝜔𝑡   

𝑒3 = ∑ [(𝑄11)𝑖
𝜋3ℎ𝑖

2

315𝑎3
(32ℎ𝑖 − 210)𝑠𝑖𝑛2 2𝜋𝑥

𝑎
(1 −ℵ

𝑖=1

𝑐𝑜𝑠
2𝜋𝑦

𝑐
)

2

+ (𝑄16)𝑖
3𝜋3ℎ𝑖

2

315𝑎2𝑐
(210 −

32ℎ𝑖)𝑠𝑖𝑛
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) + (𝑄12 +

2𝑄66)𝑖
𝜋3ℎ2

315𝑎𝑐2
(210 − 32ℎ𝑖)𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 2𝜋𝑦

𝑐
+ (𝑄26)𝑖

𝜋3ℎ2

315𝑐3
(210 − 32ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+ (𝑄66)𝑖

2𝜋3ℎ𝑖
2

3𝑎𝑐2
(210 −

32ℎ𝑖)𝑠𝑖𝑛
2 2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +

(𝑄16)𝑖
2𝜋3ℎ2

315𝑎2𝑐
(210 − 32ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋 𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)] 𝑒−2𝑖𝜔𝑡   

𝑒4 = ∑ [(𝑄12 + 2𝑄66)𝑖
𝜋3ℎ𝑖

2

315𝑎2𝑐
(210 −ℵ

𝑖=1

32ℎ𝑖)𝑠𝑖𝑛
2 2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) + (𝑄16)𝑖

𝜋3ℎ𝑖
2

315𝑎3
(210 −

32ℎ𝑖)𝑠𝑖𝑛
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +

(𝑄26)𝑖
3𝜋3ℎ𝑖

2

315𝑎𝑐2
(210 − 32ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+ (𝑄66)𝑖

2𝜋3ℎ𝑖
2

315𝑎2𝑐
(210 −

32ℎ𝑖)𝑐𝑜𝑠
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 2𝜋𝑦

𝑐
+ (𝑄22)𝑖

𝜋3ℎ𝑖
2

315𝑐3
(210 −

32ℎ𝑖) (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
)

2

𝑠𝑖𝑛
2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+

(𝑄26)𝑖
2𝜋3ℎ𝑖

2

315𝑎𝑐2
(210 − 32ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)] 𝑒−2𝑖𝜔𝑡   

𝑒5 = ∑ [(2𝑄45)𝑖
92𝜋2ℎ𝑖

15𝑎𝑐
𝑠𝑖𝑛

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
−ℵ

𝑖=1

(𝑄55)𝑖
92𝜋2ℎ𝑖

15𝑎2 𝑐𝑜𝑠
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) + (𝑄44)𝑖

92𝜋2ℎ𝑖

15𝑐2 (1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡   

𝑒6 = ∑ [(𝑄11)𝑖
8𝜋4ℎ𝑖

2

63𝑎4
(32ℎ𝑖 − 21)𝑠𝑖𝑛2 2𝜋𝑥

𝑎
(1 −ℵ

𝑖=1

𝑐𝑜𝑠
2𝜋𝑦

𝑐
)

2

+ (𝑄12)𝑖
8𝜋4ℎ𝑖

2

63𝑎2𝑐2
(32ℎ𝑖 −

21)𝑠𝑖𝑛2 2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) + (𝑄16)𝑖

16𝜋4ℎ𝑖
2

63𝑎3𝑐
(32ℎ𝑖 −

21)𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +

(𝑄66)𝑖
32𝜋4ℎ𝑖

2

63𝑎2𝑐2
(32ℎ𝑖 − 1)𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 2𝜋𝑦

𝑐
+

(𝑄22)𝑖
8𝜋4ℎ𝑖

2

63𝑐2
(21 − 32ℎ𝑖) (1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
)

2

𝑠𝑖𝑛2 2𝜋𝑦

𝑐
+

(𝑄66)𝑖
16𝜋4ℎ𝑖

2

63𝑎2𝑐2
(64ℎ𝑖 − 1)𝑠𝑖𝑛2 2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +

(𝑄12)𝑖
8𝜋4ℎ𝑖

2

63𝑎2𝑐2
(21 − 32ℎ𝑖)𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 2𝜋𝑦

𝑐
+

(𝑄26)𝑖
16𝜋4ℎ𝑖

2

3𝑎𝑐3
(21 − 32ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) + (𝑄26)𝑖

8𝜋4ℎ𝑖
2

3𝑎𝑐3
(64ℎ𝑖 −

3)𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
] 𝑒−2𝑖𝜔𝑡        

𝑒7 = ∑ [(𝑄11)𝑖
8𝜋4ℎ𝑖

3𝑎4
(3 − 2ℎ𝑖)𝑠𝑖𝑛

2 2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 −ℵ

𝑖=1

𝑐𝑜𝑠
2𝜋𝑦

𝑐
)

3

+ (2𝑄12)𝑖
8𝜋4ℎ𝑖

3𝑎2𝑐2
(3 − 2ℎ𝑖)𝑠𝑖𝑛

2 2𝜋𝑥

𝑎
𝑠𝑖𝑛2 2𝜋𝑦

𝑐
(1 −

618
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𝑐𝑜𝑠
2𝜋𝑥

𝑎
) (1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) + (𝑄16)𝑖

16𝜋4ℎ𝑖

3𝑎𝑐3
(3 −

2ℎ𝑖)𝑠𝑖𝑛
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) (1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)

2

𝑠𝑖𝑛
2𝜋𝑦

𝑐
+

(𝑄26)𝑖
16𝜋4ℎ𝑖

3𝑎𝑐3
(3 − 2ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
)

2

𝑠𝑖𝑛3 2𝜋𝑦

𝑐
+

(𝑄66)𝑖
16𝜋4ℎ𝑖

3𝑎2𝑐2
(3 − 2ℎ𝑖)𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
)

2

𝑠𝑖𝑛2 2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) + (𝑄22)𝑖

8𝜋4ℎ𝑖

3𝑐4
(3 −

2ℎ𝑖) (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
)

3

𝑠𝑖𝑛2 2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+ (𝑄26)𝑖

8𝜋4ℎ𝑖

3𝑎𝑐3
(3 −

2ℎ𝑖)𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
)

2

𝑠𝑖𝑛
2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +

(𝑄16)𝑖
16𝜋4ℎ𝑖

3𝑎3𝑐
(3 − 2ℎ𝑖)𝑠𝑖𝑛

3 2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)

2

+

(𝑄26)𝑖
16𝜋4ℎ𝑖

3𝑎𝑐3
(3 − 2ℎ𝑖)𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
)

2

𝑠𝑖𝑛
2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +

(𝑄66)𝑖
16𝜋4ℎ𝑖

3𝑎2𝑐2
(3 − 2ℎ𝑖)𝑠𝑖𝑛

2 2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
(1 −

𝑐𝑜𝑠
2𝜋𝑦

𝑐
)

2

] 𝑒−3𝑖𝜔𝑡       

𝑒8 = ∑ [(𝑄55)𝑖
46𝜋ℎ𝑖

15𝑎
𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +ℵ

𝑖=1

(𝑄45)𝑖
46𝜋ℎ𝑖

15𝑏
𝑠𝑖𝑛

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡  

𝑒9 = ∑ [(𝑄44)𝑖
46𝜋ℎ𝑖

15𝑐
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(𝑄45)𝑖
46𝜋ℎ𝑖

15𝑎
𝑠𝑖𝑛

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡  

𝑒10 = ∑ [𝐼0𝑖 (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
) (1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) −ℵ

𝑖=1

32𝜋𝐼6𝑖

9ℎ𝑖
4 (

1

𝑎
𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
) +

1

𝑏
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
)]𝜔2𝑒−𝑖𝜔𝑡    

𝑒11 = ∑ [𝐼3𝑖
8𝜋

3𝑎ℎ𝑖
2 𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)]ℵ

𝑖=1 𝜔2𝑒−𝑖𝜔𝑡      

𝑒12 = ∑ [𝐼3𝑖
8𝜋

3𝑏ℎ𝑖
2 (1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
]𝜔2𝑒−𝑖𝜔𝑡   ℵ

𝑖=1   

𝑒13 = ∑ [(
8𝜋𝐼4𝑖

3𝑎ℎ𝑖
2 +

32𝜋𝐼6𝑖

9𝑎ℎ𝑖
2 ) 𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 −ℵ

𝑖=1

𝑐𝑜𝑠
2𝜋𝑦

𝑐
)]𝜔2𝑒−𝑖𝜔𝑡     

𝑒14 = ∑ [(
8𝜋𝐼4𝑖

3𝑎ℎ𝑖
2 +

32𝜋𝐼6𝑖

9𝑎ℎ𝑖
2 ) (1 −ℵ

𝑖=1

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
]𝜔2𝑒−𝑖𝜔𝑡     

𝑒15 = ∑ [
𝜋ℎ𝑖

3𝑎
(2ℎ𝑖 − 3)(�̅�11𝛼11 + �̅�12𝛼22)𝑖𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 −ℵ

𝑖=1

𝑐𝑜𝑠
2𝜋𝑦

𝑐
) +

2𝜋ℎ𝑖

3𝑎
(2ℎ𝑖 − 3)(�̅�16𝛼11 + �̅�26𝛼22)𝑖 (1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
]  

𝑒16 = ∑ [
𝜋ℎ𝑖

3𝑏
(2ℎ𝑖 − 3)(�̅�12𝛼11 + �̅�22𝛼22)𝑖 (1 −ℵ

𝑖=1

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) 𝑠𝑖𝑛

2𝜋𝑦

𝑐
+

2𝜋ℎ𝑖

3𝑎
(2ℎ𝑖 − 3)(�̅�16𝛼11 +

�̅�26𝛼22)𝑖𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑦

𝑐
)]  

𝑓1 = ∑ [−(�̅�11)𝑖
2𝜋2ℎ𝑖

2

3𝑎2 sin
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) +ℵ

𝑖=1

(2�̅�16)𝑖
2𝜋2ℎ𝑖

2

3𝑎𝑐
cos

2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
+

(�̅�66)𝑖
2𝜋2ℎ𝑖

2

3𝑐2 sin
2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡       

𝑓2 = ∑ [(�̅�12 + �̅�66)𝑖
2𝜋2ℎ𝑖

2

3𝑎𝑐
sin

2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�16)𝑖
2𝜋2ℎ𝑖

2

3𝑎2 cos
2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
−

(�̅�26)𝑖
2𝜋2ℎ𝑖

2

3𝑐2 (1 − cos
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡  

𝑓3 = ∑ [−(�̅�11)𝑖
32𝜋3ℎ𝑖

3

315𝑎3 sin
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) −ℵ

𝑖=1

(�̅�12 + 2�̅�66)𝑖
32𝜋3ℎ𝑖

3

315𝑎𝑏2 sin
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
−

(�̅�16)𝑖
32𝜋3ℎ𝑖

3

315𝑎2𝑐
cos

2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
+

(�̅�26)𝑖
32𝜋3ℎ𝑖

3

315𝑐3 (1 − cos
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
+

(�̅�45)𝑖
46𝜋ℎ𝑖

15𝑐
(1 − cos

2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
−

(�̅�55)𝑖
46𝜋ℎ𝑖

15𝑎
sin

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)] 𝑒−𝑖𝜔𝑡      

𝑓4 = ∑ [−(�̅�11)𝑖
4𝜋3ℎ𝑖

2

3𝑎3 𝑐𝑜𝑠
2𝜋𝑥

𝑎
sin

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)

2

+ℵ
𝑖=1

(�̅�12)𝑖
4𝜋3ℎ𝑖

2

3𝑎𝑐2 𝑠𝑖𝑛2 2𝜋𝑦

𝑐
sin

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) −

(�̅�16)𝑖
4𝜋3ℎ𝑖

2

3𝑎2𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
(1 − cos

2𝜋𝑦

𝑐
) +

(�̅�16)𝑖
4𝜋3ℎ𝑖

2

3𝑎2𝑐
𝑠𝑖𝑛2 2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
(1 − cos

2𝜋𝑦

𝑐
) +

(�̅�26)𝑖
4𝜋3ℎ𝑖

2

3𝑐3 (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
)

2

𝑠𝑖𝑛
2𝜋𝑦

𝑐
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+

(�̅�66)𝑖
4𝜋3ℎ𝑖

2

3𝑎𝑐2 sin
2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) (1 − cos

2𝜋𝑦

𝑏
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
] 𝑒−2𝑖𝜔𝑡     

𝑓5 = ∑ [−(�̅�11)𝑖
68𝜋2ℎ𝑖

3

315𝑎2 sin
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) +ℵ

𝑖=1

(�̅�16)𝑖
136𝜋2ℎ𝑖

3

315𝑎𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
+

(�̅�66)𝑖
68𝜋2ℎ𝑖

3

315𝑐2 sin
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑦

𝑐
+

(�̅�55)𝑖
23ℎ𝑖

15
sin

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)] 𝑒−𝑖𝜔𝑡   
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𝑓6 = ∑ [(�̅�12 + �̅�66)𝑖
68𝜋2ℎ𝑖

3

315𝑎2 sin
2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�16)𝑖
68𝜋2ℎ𝑖

3

315𝑎𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
+

(�̅�26)𝑖
68𝜋2ℎ𝑖

3

315𝑐2 (1 − cos
2𝜋𝑥

𝑎
) 𝑐𝑜𝑠

2𝜋𝑦

𝑐
+

(�̅�45)𝑖
23ℎ𝑖

15
(1 − cos

2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡   

𝑓7 = ∑ [𝐼1𝑖 sin
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)]𝜔2𝑒−𝑖𝜔𝑡ℵ

𝑖=1   

𝑓8 = ∑ [(𝐼2𝑖 −
8

3ℎ𝑖
2 𝐼4𝑖 +ℵ

𝑖=1

16

9ℎ𝑖
4 𝐼6𝑖) sin

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)]𝜔2𝑒−𝑖𝜔𝑡  

𝑓9 = ∑ [(
32𝜋

9𝑎ℎ𝑖
4 𝐼6𝑖 −ℵ

𝑖=1

8𝜋

3𝑎ℎ𝑖
2 𝐼4𝑖) sin

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)]𝜔2𝑒−𝑖𝜔𝑡  

𝑓10 = ∑ [
ℎ𝑖

2

6
(�̅�11𝛼11 + �̅�12𝛼22)𝑖]

ℵ
𝑖=1   

𝑓11 = ∑ [
ℎ𝑖

2

6
(�̅�16𝛼11 + �̅�26𝛼22)𝑖]

ℵ
𝑖=1   

𝑔1 = ∑ [(�̅�12 + �̅�66)𝑖
2𝜋2ℎ𝑖

2

3𝑎𝑐
cos

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�26)𝑖
2𝜋2ℎ𝑖

2

3𝑐2 sin
2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
−

(�̅�16)𝑖
2𝜋2ℎ𝑖

2

3𝑎2 sin
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)] 𝑒−𝑖𝜔𝑡   

𝑔2 = ∑ [(2�̅�26)𝑖
2𝜋2ℎ𝑖

2

3𝑎𝑐
sin

2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�66)𝑖
2𝜋2ℎ𝑖

2

3𝑎2 cos
2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
−

(�̅�22)𝑖
2𝜋2ℎ𝑖

2

3𝑐2 (1 − cos
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡   

𝑔3 = ∑ [(�̅�12 − 2�̅�16)𝑖
32𝜋3ℎ3

315𝑎2𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑐
+ℵ

𝑖=1

(�̅�22)𝑖
32𝜋3ℎ3

315𝑐3 (1 − 𝑐𝑜𝑠
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
−

(3�̅�26)𝑖
32𝜋3ℎ3

315𝑎𝑐2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
−

(�̅�16)𝑖
32𝜋3ℎ3

315𝑎3 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) +

(�̅�44)𝑖
46𝜋ℎ𝑖

15𝑐
(1 − cos

2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
+

(�̅�45)𝑖
46𝜋ℎ𝑖

15𝑎
𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)] 𝑒−𝑖𝜔𝑡    

𝑔4 = ∑ [(�̅�12)𝑖
4𝜋3ℎ𝑖

2

3𝑎2𝑐
sin2 2𝜋𝑥

𝑎
𝑠𝑖𝑛

2𝜋𝑦

𝑏
(1 − cos

2𝜋𝑦

𝑐
) +ℵ

𝑖=1

(�̅�22)𝑖
4𝜋3ℎ𝑖

2

3𝑐3 (1 − cos
2𝜋𝑥

𝑎
)

2

cos
2𝜋𝑦

𝑐
sin

2𝜋𝑦

𝑐
+

(�̅�26)𝑖
4𝜋3ℎ𝑖

2

3𝑎𝑐2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) (1 − cos

2𝜋𝑦

𝑐
) cos

2𝜋𝑦

𝑐
+

(�̅�16)𝑖
4𝜋3ℎ𝑖

2

3𝑎3 𝑠𝑖𝑛
2𝜋𝑥

𝑎
𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)

2

+

(�̅�26)𝑖
4𝜋3ℎ𝑖

2

3𝑎𝑐2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − 𝑐𝑜𝑠

2𝜋𝑥

𝑎
) 𝑠𝑖𝑛2 2𝜋𝑦

𝑐
−

(�̅�66)𝑖
4𝜋3ℎ𝑖

2

3𝑎2𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
(1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
(1 − cos

2𝜋𝑦

𝑐
)] 𝑒−2𝑖𝜔𝑡    

𝑔5 = ∑ [(�̅�45)𝑖
23ℎ𝑖

15
𝑠𝑖𝑛

2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
) + (�̅�12 +ℵ

𝑖=1

�̅�66)𝑖
68𝜋2ℎ𝑖

3

315𝑎𝑐
𝑐𝑜𝑠

2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
+

(�̅�26)𝑖
68𝜋2ℎ𝑖

3

315𝑐2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
−

(�̅�16)𝑖
68𝜋2ℎ𝑖

3

315𝑎2 𝑠𝑖𝑛
2𝜋𝑥

𝑎
(1 − cos

2𝜋𝑦

𝑐
)] 𝑒−𝑖𝜔𝑡   

𝑔6 = ∑ [(�̅�44)𝑖
23ℎ𝑖

15
(1 −ℵ

𝑖=1

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
+(2�̅�26)𝑖

68𝜋2ℎ𝑖
3

315𝑎𝑐
𝑠𝑖𝑛

2𝜋𝑥

𝑎
cos

2𝜋𝑦

𝑐
 +

(�̅�66)𝑖
68𝜋2ℎ𝑖

3

315𝑎2 𝑐𝑜𝑠
2𝜋𝑥

𝑎
sin

2𝜋𝑦

𝑐
+ (�̅�22)𝑖

68𝜋2ℎ𝑖
3

315𝑎2 (1 −

𝑐𝑜𝑠
2𝜋𝑥

𝑎
) cos

2𝜋𝑦

𝑐
] 𝑒−𝑖𝜔𝑡   

𝑔7 = ∑ [𝐼1𝑖 (1 − cos
2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
] 𝜔2𝑒−𝑖𝜔𝑡ℵ

𝑖=1   

𝑔8 = ∑ [(𝐼2𝑖 −
8

3ℎ𝑖
2 𝐼4𝑖 +ℵ

𝑖=1

16

9ℎ𝑖
4 𝐼6𝑖) (1 − cos

2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
]𝜔2𝑒−𝑖𝜔𝑡  

𝑔9 = ∑ [(
32𝜋

9𝑏ℎ𝑖
4 𝐼6𝑖 −ℵ

𝑖=1

8𝜋

3𝑏ℎ𝑖
2 𝐼4𝑖) (1 − cos

2𝜋𝑥

𝑎
) sin

2𝜋𝑦

𝑐
]𝜔2𝑒−𝑖𝜔𝑡  

𝑔10 = ∑ [
ℎ𝑖

2

6
(�̅�12𝛼11 + �̅�22𝛼22)𝑖]

ℵ
𝑖=1   

𝑔11 = ∑ [
ℎ𝑖

2

6
(�̅�16𝛼11 + �̅�26𝛼22)𝑖]

ℵ
𝑖=1   

ℵ is the number of layers and plies considered through the 
sandwich plate thickness. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

620



 

Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces 

Appendix B: Elements of Coefficient Matrix [χ] 
 

[χ]5×16 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  𝑐1 
 𝑐2   
𝑐3 

 𝑒2𝑐4

𝑐5

𝑐6

0
0
0
0
0
0
0
0
0
0

 𝑑1 
 𝑑2   

𝑑3 

  𝑒2𝑑4 
𝑑5

𝑑6

0
0
0
0
0
0
0
0
0
0

 
0 
 0
𝑒5 

 𝑒2𝑒6

𝑒8

𝑒9

0
0
0
0
0

𝑒2𝑒1

𝑒2𝑒2

𝑒2𝑒3

𝑒2𝑒4

𝑒3𝑒7

 
𝑓1 
 𝑓2   

𝑓3 

  𝑒2𝑓4
𝑓5

𝑓6

0
0
0
0
0
0
0
0
0
0

 𝑔1 
 𝑔2   
𝑔3 

  𝑒2𝑔4

𝑔5

𝑔6

0
0
0
0
0
0
0
0
0
0

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑻

 

 

 

Appendix C: Elements of Math Matrix[𝑀] 
 

[M]5×16 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
0 
0
 0 
0
0
0

−𝑐7

0
−𝑐9

−𝑐8

0
0
0
0
0
0

   
   0 
  0
   0 
   0 
  0
  0
  0

   −𝑑7

   −𝑑9

  0
   −𝑑8

  0
 0
 0
 0
 0

 
  0 
 0
  0 
 0
 0
 0

    𝑒11

     𝑒12

  −𝑒10

     𝑒13

     𝑒14

  0
  0
  0
  0
  0

 
 0 
0
 0 
0
0
0

  −𝑓7   

0
−𝑓9   

−𝑓8   

0
0
0
0
0
0

 
  0 
 0
  0 
 0
 0
 0
 0

−𝑔7

−𝑔9

 0
−𝑔8

 0
 0
 0
 0
 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑻
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