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1. Introduction 
 

FGMs are heterogeneous materials in which the 

properties vary from one surface to the other, continuously 

and gradually. The remarkable benefits offered by these 

materials compared to conventional materials and the 

demands for overcoming technical challenges have 

prompted an increased application of FGM structures 

(Ebrahimi and Reza Barati (2017)). 

FGM plates are widely used in various engineering 

applications such as mechanical and civil engineering. 

These structures undergo different types of dynamic loads, 

bending and buckling. The analysis of these structures 

against these loads must be carried out to ensure safety and 

uninterrupted operation. 

Sandwich structures are one of FGM plate type which 

have been the subject of more attention and are nowadays 

widely used in various types of engineering. This is due to 

its excellent advantages over the monolithic solid structure. 

FG Sandwich structures present improved characteristics 

such as higher stiffness and strength to weight ratio, long 

fatigue life and thermal resistances, etc. (Al-shujairi and 

Çağrı (2018)). 

So far, many bending, buckling and vibration studies on 

FG structures such as plates, sandwich, beams and 

functionally graded-carbon nanotubes (FG-CNT) have been 

                                           

Corresponding author, Professor 

E-mail: samir.benyoucef@gmail.com 

 

 

reported in several literatures (Ahmed 2014, Ait Amar et al. 

2014, Akavci 2016, Kolahchi et al. 2016, Madani et al. 

2016, Kolahchi et al. 2017a, Hajmohammad et al. 2017, 

Hosseini and Kolahchi 2018, Bourada et al. 2018 and 

2019).    

In order to study FG plate the classic plate theory (CPT) 

which neglected transverse shear stress and transverse 

normal stress was used. This theory gives good results for 

thin plates. Several researchers have used this theory in 

their research investigations such as (Kolahchi and Arani  

2016, Bilouei et al. 2016, Zamanian et al. 2017). 

Zenkour (2005a) and Zenkour and Alghamdi (2010) 

used the CPT for the study of the bending behavior of 

functionally graded sandwich plates. 

Based on the CPT and nonlocal elasticity theory 

Shahsavari et al. (2017) studied the dynamic deflections of 

viscoelastic orthotropic nanoplates under moving load 

embedded within visco-Pasternak substrate and 

hygrothermal environment. 

In the case of thick and moderately thick plates, the CPT 

gives inaccurate results. First order shear deformation 

(FSDT) proposed by Reissner (1945) and Mindlin (1951) 

includes the effect of transverse shear deformation. This 

theory has been widely used in several research publications 

such as (Kolahchi 2017, Zarei et al. 2017, Hajmohammad et 

al. 2018a, Amnieh et al. 2018) 
Meksi et al. (2015) have analyzed the bending and free 

vibration of FG plate on elastic foundation by developing a 
new first-order shear deformation theory (NFSDT). Thai 
H.T. and Choi D.H. (2013) have developed a simple FSDT 
for the bending and free vibration analysis of functionally 
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graded plates. Also, Thai H.-T et al. (2014) developed a 
new FSDT for FG sandwich plates composed of FG face 
sheets and an isotropic homogeneous core. This theory has 
been developed in a way to eliminate the use of the shear 
correction factor. Karami et al. (2018a) studied the wave 
propagation in mounted nanoplates made of porous 
functionally graded materials by using the first-order shear 
deformation theory and nonlocal elasticity theory. Also, 
Karami and Janghorban (2019) used the Timoshenko beam 
model and the nonlocal strain gradient theory to study the 
vibration of porous nanotubes having thickness and material 
terms varying along the length. She Gui-Lin et al. (2018, 
2019) presented an analytic model based on the 
nonlocal strain gradient theory for porous FG nanotubes to 
analyze the wave propagation and nonlinear bending 
behavior . 

However, the FSDT depends on a shear correction factor 

which is difficult to estimate for composite materials. For 

this reason and to overcome this shortcoming, various 

higher order shear deformation theories (HSDT) have been 

developed. 

Neves et al. (2012) have developed a hyperbolic theory 

counting for HSDT for static analysis of functionally graded 

sandwich plates. Nguyen et al. (2014) presented a 

trigonometric shear deformation theory to study the static, 

buckling and free vibration of two types of FG sandwich 

plates. 

Karami et al. (2018b) presented a solution based on a 

second-order shear deformation theory in conjunction with 

nonlocal strain gradient theory for the wave propagation 

analysis of nanoplate made of temperature-dependent FG 

porous materials rested on Winkler–Pasternak foundation 

under in-plane magnetic field. Based on the same theory, 

Karami et al. (2018c) studied the thermal buckling of 

embedded sandwich piezoelectric nanoplates with 

functionally graded core. 

Based on an n-order shear deformation theory, Xiang et 

al. (2011) presented a solution for free vibration of FG and 

composite sandwich plates. Also, using this theory and the 

meshless method, Xiang et al. (2013) analyzed the free 

vibration of FG sandwich plates.  Alipour and Shariyat 

(2014) studied the stress and deformation analysis of 

functionally graded annular sandwich plates subjected to 

non-uniform normal and/or shear tractions. The high order 

shear deformation theory has also attracted the attention of 

other researchers (Kolahchi and Cheraghbak, 2017, 

Kolahchi 2017, Kolahchi et al. 2017b, Golabchi et al. 2018, 

Hajmohammad et al. 2018b, Petrov et al. 2018, Fakhar and  

Kolahchi 2018 and Hosseini and Kolahchi 2018). 

These theories are cumbersome and costly in calculus 

due to involving many unknowns (Gupta and Talha (2017)). 

Recently, new refined HSDT theories have been 

developed by researchers with low variables. Therefore, 

several works on FG sandwich plates have been developed 

on the basis of this theory (see references (Abdelaziz et al. 

2011, Houari et al. 2011, Hadji et al. 2011, Merdaci et al. 

2011, Bourada et al. 2012, Tounsi et al. 2013, Taibi et al. 

2015, Li et al. 2016). Abdelaziz et al. (2017) presented a 

hyperbolic shear deformation theory for bending, buckling 

and vibration of PFG sandwich plate with various boundary 

conditions. 

Shahsavari et al. (2018a) used the higher-order nonlocal 

strain-gradient model to analyze the vibration of single-

layer graphene sheets (SLGSs) in hygrothermal 

environment. Thermal buckling behavior of FG porous 

nanobeam resting on Kerr foundation and integrated with 

piezoelectric has been investigated by Karami et al. 

(2018d). The nonlocal higher-order shear deformation beam 

theory was used. Karami et al. (2018 e) proposed a new 

size-dependent higher-order shear deformation theory for 

the wave dispersion in anisotropic doubly-curved nano 

shells. She et al. (2017) investigated the thermal buckling 

and post-buckling behavior of FG porous nanotubes using a 

refined beam theory. Karami et al. (2018f) used the refined 

HSDT to model the buckling behavior of FG nanoplate.  

The two theories FSDT and HSDT are based on a key 

assumption which states that the transverse displacement 

through the thickness of the plate is constant. This led to 

neglecting the thickness stretching. However, this 

hypothesis is inadequate for thick plates (BachirBouiadjra 

et al. 2018) 

Thus, needs exist for the development of quasi-3D 

HSDTs. In quasi 3D solutions, the stretching effect is 

naturally taken into account since the displacement is 

expanded as a higher-order variation through the thickness 

of the plate. 

Mantari and Soares (2014) presented a solution 

including the thickness stretching effect with 5 unknown for 

the bending analysis of functionally graded single-layer and 

sandwich plates. Hamidi et al. (2015) investigate the 

thermomechanical bending response of functionally graded 

sandwich plates by using a theory with 5-unknowns and 

stretching effect. Bessaim et al. (2013) studied free 

vibration of functionally sandwich plates with FG face 

sheets based on higher-order shear and normal deformation 

theory with five unknown displacement functions. Hebali et 

al. (2014) proposed a new quasi-three-dimensional (3D) 

hyperbolic shear deformation theory for the bending and 

free vibration analysis of FGM plate. Mahmoudi et al. 

(2017) presented a refined 3D shear deformation theory for 

thermo-mechanical analysis of functionally graded 

sandwich plates resting on a Pasternak foundation.  

Shahsavari et al. (2018b) presented a quasi-3D 

hyperbolic theory for the free vibration analysis of FG 

porous plates resting on different elastic foundations. 

Shahsavari et al. (2018c) used a new polynomial quasi-3D 

shear deformation theory in conjunction with the Eringen 

nonlocal differential model (ENDM) to study the size-

dependent shear buckling force of FG materials. 
Karami et al. (2018 g and h) develop a new size-

dependent quasi-3D plate theory for the wave dispersion 
analysis of functionally graded nanoplates while resting on 
an elastic foundation and under the hygrothermal 
environment and for mechanical analysis of anisotropic 
nano-particles Also, Karami et al. (2019) present an 
accurate analysis of nanoshell structures by combining the 
HSDT with stretching effects and the Bi-Helmholtz non-
local strain gradient elasticity theory (B-H-NSGT). 

Recently, Tounsi and his co-workers (Meksi et al. 
(2019) Sekkal et al. (2017), Menasria et al. (2017), 
Bouhadra et al. (2018), Ait Sidhoum et al. (2017,2018), 
Bourada et al. (2016), Mahmoudi et al. (2018)) proposed a 
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new displacement field which using undetermined integral 
terms. This new kinematic reduces the number of unknowns 
and equations of motion compared with other theories of 
the same nature. 

This paper aims to improve this theory by including the 
stretching effect to study the bending, buckling, and free 
vibration of FG sandwich thick plate. The highlight of the 
proposed theory is that involves only four unknowns which 
is a reduced number of variables and governing equations 
than the conventional quasi-3D theories, but its solutions 
compare well with 3D and quasi-3D solutions. 

In addition, it does not require a shear correction factor 
as in the case of FSDT and its scope is wider than the CPT 
since the CPT applies only to the case of thin plates. 
Equations of motion are obtained from Hamilton’s 
principle. Analytical solutions of simply supported FG 
sandwich plates are presented. To check the validity of the 
present quasi 3D solution, the obtained results are compared 
with available data in literature. Parametric study is 
performed to show the influences many factors on the 
bending, buckling and free vibration of FGM sandwich 
plates. 
 

 

2. Problem formulation 
 

Consider a rectangular plate with length a, width b and 
uniform thickness h. The plate is assumed to be subjected to 
a transverse mechanical load at the top surface and a 
compressive in-plane load on the mid-plane of the plate. 
Three different types of FG plates are considered: 
 

2.1 Type A: Isotropic FG plates 
 

The plate of Type A is graded from metal at its bottom 
surface to ceramic at the top one (Fig. 1). The volume 
fraction of ceramic material Vc is given as follows is given 
as follows (Bourada et al. (2018), Attia et al. (2018), 
Bousahla et al. (2016)): 
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where p is the power-law index, which is positive and

 2/,2/ hhz − . 
 

2.2 Type B: Sandwich plates with FG core 
 

The core of this type is graded from metal to ceramic. 

The bottom face is made of isotropic metal, whereas the top 

face is isotropic ceramic. The vertical positions of the 

bottom and top surfaces and of two interfaces between the 

layers are denoted by h0 = –h/2, h1, h2, h3 = h/2.respectively.

21,hh vary according the thickness ratio of layers. The 

volume fraction functions of ceramic phase 𝑉𝑐
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Fig. 1 Geometry of functionally graded plates 

 

 

The variation of ceramic material through the plate 

thickness for (1-2-1) sandwich plate of Type B is displayed 

in fig. 1a. 

 

2.3 Type C: Sandwich plates with FG faces 
 

The faces of this type are graded from metal to ceramic. 

The core is made of isotropic ceramic. The volume fraction 

functions of ceramic phase )( j

cV  given by (Nguyen et al. 

2014): 
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(3c) 

The variation of ceramic material through the plate 

thickness for (1-2-1) sandwich plate of Type C is displayed 

in Fig.1b. 

 
2.4 Kinematics and strains 
 
Based on a new inverse trigonometric shear deformation 

theory, the following displacement field is assumed 

(AitSidhoum et al. 2018): 
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Where ;;; 000 wvu ; are four unknown displacements of 

the mid-plane of the plate. 

The coefficient
21 kandk depends on the geometry. It 

can be seen that the kinematic in Eq. (4) introduces only 

four unknowns ),,( 00 andwvu with considering the 

thickness stretching effect. 

In this work, the present quasi – 3D HSDT is obtained 

by setting (Nguyen et al. 2014): 
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The strain- displacement expressions, based on the 

formulation, are written under following compact form: 
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The integrals presented in the above equations shall be 

resolved by a Navier type method and can be expressed as 

follows: 
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Where the coefficients 'A and 'B are considered 

according to the type of solution employed, in this case via 

Navier method .Therefore, 'A , 'B , 1k and
2k are expressed 

as follows:  
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Where  and  are defined in expression 27. 

The linear constitution relations are given below: 
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where 
ijC are the three- dimensional elastic constants 

defined by: 
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2.5 Equation of motion 
 

Hamilton’s principle is herein employed to determine 

the equation of motion: 
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Where U   is the variation of strain energy, V   is the 

variation of the external work done by external load applied 

to the place, and K  is the variation of kinetic energy. 

The variation of strain energy of the plate is expressed by: 
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Where A is the top surface and the stress resultants 

QandSMN ,,  are defined by 
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The variation of work done by in – plane loads is given 

by: 
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Where ),,( 000

xyyx NNN  are in – plane applied loads. 

The variation of kinetic energy of the plate can be 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; )(z  is 

the mass density and ),,( iii KJI are mass inertias of metal 

and ceramic materials respectively expressed by: 
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By substituting equations (13), (15) and (17) into 

equation (12), the following equation of motion can be 

obtained: 

( )


































stst

yxyx

s

yz
s

xz
z

yzxz

s

xy

s

y
s

x

ts

yxy

x

b

y

b

xy
b

x

yxy

xyx

KwJ
y

Bk
x

AkK

y

w
Bk

x

w
AkJ

y

v
Bk

x

u
AkJ

y

w
N

yx

w
N

x

w
Ng

y

S

x

S
N

y

Q
Bk

x

Q
Ak

yx

M
BkAk

y

M
Bk

x

M
Ak

JwI
y

Bk
x

AkJ

y

v

x

u
IwI

y

w
N

yx

w
N

x

w
N

y

M

yx

M

x

M
w

y
BkJ

y

w
IvI

y

N

x

N
v

x
AkJ

x

w
IuI

y

N

x

N
u

2012

2
2

22

2
2

12

2

0

2

22

0

2

12
0

2
0

11

2

2
0

2
0

2

2
0

21

2

212

2

22

2

1

10

2

22

2

22

2

12

00

1002

2
0

2
0

2

2
0

2

22

2

2

0

21

0

1000

11

0

1000

)'()'(

''''

2)0(

''

'' ''  : 

''

2

2  : 

'   : 

'   : 

++













+




−


















+




+












+




−

=











+




+




+




+




+−




+




+




+−




−




−

+−













+




+













+




+=




+




+




+




+




+








+




−=




+








+




−=




+





 

 

 

(19) 

 

The effective material properties at the j-th layer of FG 

plates according to the power-law form are expressed by: 

( ) )( )( (j)

c

)( zVPPPzP mcm

j −+=  (20) 

Where
mP and 

cP are the Young’s modulus )(E , Poisson’s 

ratio )( , of metal and ceramic materials, respectively. For 

elastic and isotropic FG plates, 

Substituting equation (7) into equation (10) and the 

subsequent results into equation (14), the stress resultants 

are obtained in terms of strains as following compact from: 
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and stiffness components are given as: 
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By substituting equation (21) into equation (19), the 

equation of motion can be expressed in terms of 

displacements ),,,( 000 wvu and the appropriate equations 

take the form: 
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where
ijd , ijld  and 

ijlmd  are the following differential 

operators:  
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2.6 Close form solutions 
 

The Navier solution method is utilized to deduce the 

analytical solutions for which the displacement variables 

are written as product of arbitrary parameters and known 

trigonometric functions to respect the equation of motion 

and boundary condition. 
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Where   is the frequency of free vibration of the plate,

1−=i the imaginary unit with 

am / = and bn / =  (27) 
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The transverse load q  is also expanded in the double-

Fourier sine series as: 
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Where
0qqmn = forsinusoidally distributed load. Assuming 

that the plate is subjected to in-plane compressive loads of 

form: ,0

0 NNx −= ,0

0 NN y −= ,00 =xyN 00 / xy NN=

(whereγ are non – dimensional load parameter).  

Substituting equations (26) and (28) into equation (24), 

the following equation is obtained: 
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(29) 

where 
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and 

011 Im = , 
113 Im −= , '1114 AkJm = , 

022 Im = , 
123 Im −= , 

1224 ' JBkm = , 

)( 22

2033  ++= IIm ,

( ) sJBkAkJm 1

2

2

2

1234 '' ++−=  , 

( ) ( )( ) stKBkAkKm 2

22

2

22

1244 '' ++=   

(30) 

Table 1 Material properties of metal and ceramic 

Material 

Young’s 

modulus 

)(GPa  

Mass density 

)/( 3mkg  
Poisson’s 

ratio 

Aluminium *)(Al  70 2702 

0.3 
Aluminium )(Al  70 2707 

Zirconia )( 2ZrO  151 3000 

Alumina )( 32OAl  380 3800 

 

 

Eq. (29) is a general form for bending, buckling and free 

vibration analysis of isotropic and FG sandwich plates 

under in-plane and transverse loads. In order to solve 

bending problem, the in plane compressive load N0 and 

mass matrix M are set to zeros. The critical buckling loads 

(
crN ) can be obtained from the stability problem |Kij = 0| 

while the free vibration problem is achieved by omitting 

both in-plane and transverse loads. 

 

 

3. Numerical results and discussion 
 

In this section, various numerical examples using the 

present quasi 3D solution are presented for bending, 

buckling and free vibration of simply supported FG 

sandwich plate. The results of the proposed computational 

solution will be first compared with existing data available 

in literature to check their accuracy. For this, the FGM 

sandwich plates are combined from ceramic and metal 

Al/ZrO2 and Al/Al2O3 (see table 1 for their material 

properties). For convenience, the following dimensionless 

forms are used: 
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3.1 Bending analysis 
 

In order to prove the validity of the present improved 

higher shear deformation theory, comparisons are made 

577



 

Fatima Achouri, Samir Benyoucef, Fouad Bourada, Rabbab Bachir Bouiadjra and Abdelouahed Tounsi 

 

 

between the results obtained from this theory and those of 

obtained by Nguyen et al. (2014), Carrera et al. (2008), Wu 

and Chui (2011), Zenkour (2006), Mantari et al. (2012) and 

Thai and Kim (2013), Zenkour (2006), Neves et al. (2013) 

and Bessaim et al. (2013). 

As a first example, a square plate type A (Al/Al2O3) 

subjected to a sinusoidal load is studied. In table 2, 

displacement results, axials and transvers stress are 

compared with the HSDT of Nguyen et al. (2014), the 

quasi-three-dimensional (3D) solutions of Carrera et al. 

(2008) and Wu and Chui (2011), the sinusoidal shear 

deformation theory (SSDT) of Zenkour (2006), the HSDT 

of Mantari et al. (2012) and the third shear deformation 

theory (TSDT) of Thai and Kim (2013). It is clear that the 

results of the present quasi 3D solution are in very close 

agreement with the different shear deformation theories. 

The second example is performed for the bending 

responses of a Al/Al2O3 square sandwich plate Type B. The 

results of the displacement and stresses are given for fifth 

values of the power index “p” as shown in Table 3.  

According to the results presented in this table it can be  

 

 

seen that the results of the present improved model are in 

very great agreement with those of the different solutions. 

In the third example, a sandwich plate type C is 

examined. Table 4 shows the effects of power law index “p” 

on the dimensionless displacements and stresses for 

different configuration of the sandwich plate. The present 

results are compared with the results of the HSDT of 

Nguyen et al. (2014), the TSDT and the SSDT of Zenkour 

et al. (2005a), and the quasi 3D solutions of Zenkour et al. 

(2013), Neves et al. (2013) and Bessaim et al. (2013) 

respectively. It is clear from this table that whatever the 

case of the sandwich (2008) and Wu and Chui (2011), the 

sinusoidal shear deformation theory (SSDT) of Zenkour 

(2006), the HSDT of Mantari et al. (2012) and the third 

shear deformation theory (TSDT) of Thai and Kim (2013). 

It is clear that the results of the present quasi 3D solution 

are in very close agreement with the different shear 

deformation theories. 

The second example is performed for the bending 

responses of a Al/Al2O3 square sandwich plate Type B. The 

results of the displacement and stresses are given for fifth  

Table 2 Comparison of the nondimensional stress and displacements of
32/ OAlAl
 

square plates ( 10/ =ha , Type A)
 

p
 

Theory )4/( hu −  w  )3/(hxx  )3/( hxy −  )6/(hxz  

1 

  

present 0.6269 0.6110 1.5859 0.6013 0.3536 

HSDT (Nguyen et al. 2014) 0.6413 0.5890 1.4897 0.6111 0.2611 

Quasi-3D (Carrera et al. 2008) 0.6436 0.5875 1.5062 0.6081 0.2510 

Quasi-3D (Wu and Chui 2011) 0.6436 0.5876 1.5061 0.6112 0.2511 

SSDT (Zenkour 2006) 0.6626 0.5889 1.4894 0.6110 0.2622 

HSDT (Mantari et al. 2012) 0.6398 0.5880 1.4888 0.6109 0.2566 

TSDT (Thai and Kim 2013) 0.6414 0.5890 1.4898 0.6111 0.2608 

2 

  

present 0.8792 0.7874 1.4760 0.5362 0.3353 

HSDT (Nguyen et al. 2014) 0.8982 0.7573 1.3959 0.5442 0.2742 

Quasi-3D (Carrera et al. 2008) 0.9012 0.7570 1.4147 0.5421 0.2496 

Quasi-3D (Wu and Chui 2011) 0.9013 0.7571 1.4133 0.5436 0.2495 

SSDT (Zenkour 2006) 0.9281 0.7573 1.3954 0.5441 0.2763 

HSDT (Mantari et al. 2012) 0.8957 0.7564 1.3940 0.5438 0.2741 

TSDT (Thai and Kim 2013) 0.8984 0.7573 1.3960 0.5442 0.2737 

4 

  

present 1.0409 0.8402 1.2285 0.5657 0.2677 

HSDT (Nguyen et al. 2014) 1.0500 0.8816 1.1792 0.5669 0.2546 

Quasi-3D (Carrera et al. 2008) 1.0541 0.8823 1.1985 0.5666 0.2362 

Quasi-3D (Wu and Chui 2011) 1.0541 0.8823 1.1841 0.5671 0.2362 

SSDT (Zenkour 2006) 1.0941 0.8819 1.1783 0.5667 0.2580 

HSDT (Mantari et al. 2012) 1.0457 0.8814 1.1755 0.5662 0.2623 

TSDT (Thai and Kim 2013) 1.0502 0.8815 1.1794 0.5669 0.2537 

8 

  

present 1.0853 0.9411 0.9842 0.5945 0.2066 

HSDT (Nguyen et al. 2014) 1.0759 0.9746 0.9473 0.5857 0.2094 

Quasi-3D (Carrera et al. 2008) 1.0830 0.9738 0.9687 0.5879 0.2262 

Quasi-3D (Wu and Chui 2011) 1.0830 0.9739 0.9622 0.5883 0.2261 

SSDT (Zenkour 2006) 1.1340 0.9750 0.9466 0.5856 0.2121 

HSDT (Mantari et al. 2012) 1.0709 0.9737 0.9431 0.5850 0.2140 

TSDT (Thai and Kim 2013) 1.0763 0.9746 0.9477 0.5858 0.2088 
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values of the power index “p” as shown in Table 3.  

According to the results presented in this table it can be 

seen that the results of the present improved model are in 

very great agreement with those of the different solutions. 

plate studied and whatever the value of the material index 

“p” the results of this model are in very good agreement 

with those of the literature. 

Another comparison of the results of this method is 

presented in the following. Tables 5 presents the axial stress 

xx̂ of Al/ ZrO2 sandwich plates type C for p = 0, 1, 2, 5 

and10 and different sandwich configuration.  As it can see 

from these tables, there is a good agreement between all 

solutions. 

After these comparisons, it can be concluded that the 

present quasi 3D solution with only four unknowns is not 

only accurate but also efficient in predicting the bending 

responses of FG sandwich plates. 
In figure 2, we present respectively the variations of 

transverse displacement and in-plane and out of plane 
stresses through the plate thickness of the FG plate type A 
with a/h=10 and different values of p.  

From these figures, we can see that: 

- The transverse displacement increases as the power 

law index p increases. 

- For the axial non dimensional stress, we can see that 

this stress is tensile at the top surface and compressive at 

the bottom surface.  

 

 

- The in-plane tangential stress is tensile at the bottom 

surface and compressive at the top surface of the FG plates. 

The distribution of the transverse shear stress through the 

thickness of the plate is not parabolic except the case of p=0 

(isotropic plate). 

Figures 3 and 4 plot respectively the variation of stresses 

through the thickness direction for different values of p of

2 3Al / Al O  and 
2Al / ZrO square sandwich plates subjected to 

sinusoidal load with 10a / h =  and for type B and Type C. 

As it can be seen from the case of sandwich plate type C 

(figure 4), the maximum stresses are situated at layer’s 

interfaces except the case of sandwich plate 1-2-1 where the 

maximum is located at the mid plane. 
 

3.2 Free vibration analysis 
 

Other examples to check the accuracy of the present 

quasi 3D computational solution in predicting the natural 

frequency of FG plate and FG sandwich plate are reported 

in Tables 6, 7 and 8. 

Table 6 gives a comparison of the non dimensional 

frequencies ϖ of a square FG plate type A between the 

present solution and those of Nguyen et al. (2014) and the 

3D solution of Uymaz and Aydogdu (2007). It is observed 

an excellent agreement. 

Table 7 compares the nondimensional fundamental 

frequency )ˆ( by the present theory for a square sandwich 

Table 3 Comparison of the nondimensional stress and displacements of
32/ OAlAl square sandwich plates (a/h = 10, Type B) 

p  Theory )4/( hu −  w  )3/(hxx  )3/( hxy −  )6/(hxz  

0  

Present 0.3033 0.3653 1.4906 0.9518 0.3050 

HSDT (Nguyen et al. 2014) 0.3247 0.3247 1.4761 1.0130 0.2161 

Quasi-3D (Neves et al. 2013) 0.2227 ־ ־ 0.3711 ־ 

0.5 

Present 0.5002 0.5031 1.5677 0.6343 0.3402 

HSDT (Nguyen et al. 2014) 0.5542 0.5245 1.5750 0.6965 0.2509 

Quasi-3D (Neves et al. 2013) 0.2581 ־ ־ 0.5238 ־ 

1  

Present 0.6532 0.6022 1.5451 0.4896 0.3429 

HSDT (Nguyen et al. 2014) 0.7337 0.6345 1.5691 0.5447 0.2733 

FSDT (Brischetto 2009) 0.2458 ־ ־ 0.6337 ־ 

Quasi-3D (Carrera et al. 2011) 0.2594 ־ ־ 0.6324 ־ 

Quasi-3D (Neves et al. 2012) 0.2788 ־ ־ 0.6305 ־ 

Quasi-3D (Neves et al. 2013) 0.2789 ־ ־ 0.6305 ־ 

4  

Present 0.9317 0.7811 1.1858 0.5013 0.2405 

HSDT (Nguyen et al. 2014) 1.0550 0.8331 1.2539 0.5614 0.2697 

FSDT (Brischetto 2009) 0.1877 ־ ־ 0.8191 ־ 

Quasi-3D (Carrera et al. 2011) 0.2398 ־ ־ 0.8307 ־ 

Quasi-3D (Neves et al. 2012) 0.2778 ־ ־ 0.8202 ־ 

Quasi-3D (Neves et al. 2013) 0.2747 ־ ־ 0.8199 ־ 

10  

Present 0.9618 0.8287 0.8679 0.5193 0.1524 

HSDT (Nguyen et al. 2014) 1.0798 0.8807 0.9258 0.5758 0.1982 

FSDT (Brischetto 2009) 0.1234 ־ ־ 0.8556 ־ 

Quasi-3D (Carrera et al. 201
 0.1944 ־ ־ 0.8740 ־ (

Quasi-3D (Neves et al. 2012) 0.2059 ־ ־ 0.8650 ־ 

Quasi-3D (Neves et al. 2013) 0.2034 ־ ־ 0.8645 ־ 
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plates (Al/Al2O3, type B) with those given by Nguyen et al. 

(2014) and the two HSDT given by Natarajan and 

Manickam (2012). The results are given for three value of 

the ratio a / h and three configuration of the sandwich plate. 

From the results shown in the table, there is a slight  

 

 

difference. This can be explained by the fact that HSDTs 

neglect the effect of stretching thing that is taken into 

consideration by the present 3D solution. 

The nondimensional fundamental frequency ̂  for a 

rectangular FG sandwich plates Al/Al2O3 type C predicted  

  

  
Fig. 2 Nondimensional displacements and stresses through the thickness direction for different values of  p of Al/

Al2O3 square plates subjected to sinusoidal load (a/h = 10, Type A) 
 

  

Fig. 3 Nondimensional stresses through the thickness direction for different values of p of Al/Al2O3 square sandw

ich plates subjected to sinusoidal load with (a/h = 10, Type B) 
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Table 4 Nondimensional center deflections ( ŵ ) of Al/Zr2O2 square sandwich plates (a/h = 10, Type C) 

p  Theory 1-0-1 2-1-2 1-12- 1-1-1 2-2-1 1-2-1 

0 

Present 0.19344 0.19344 0.19344 0.19344 0.
9344 0.19344 

HSDT (Nguyen et al. 2014) 0.19597 0.19597 0.19597 0.19597 0.19597 0.19597 

TSDT (Zenkour 2005a) 0.19606 0.19606 – 0.19606 0.19606 0.19606 

SSDT (Zenkour 2005a) 0.19605 0.19605 – 0.19605 0.19605 0.19605 

Quasi-3D (Zenkour 2013) 0.19487 0.19487 – 0.19487 0.19487 0.19487 

Quasi-3D (Neves et al. 2013) – 0.19490 0.19490 0.19490 0.19490 0.19490 

Quasi-3D (Bessaim et al. 2013) – 0.19486 0.19486 0.19486 0.19486 0.19486 

1 

Present 0.31463 0.29750 0.28854 0.28377 0.27331 0.26394 

HSDT (Nguyen et al. 2014) 0.32348 0.30622 0.29666 0.29191 0.28077 0.27086 

TSDT (Zenkour 2005a) 0.32358 0.30632 – 0.29199 0.28085 0.27094 

SSDT (Zenkour 2005a) 0.32349 0.30624 – 0.29194 0.28082 0.27093 

Quasi-3D (Zenkour 2013) 0.32001 0.30275 – 0.28867 0.27760 0.26815 

Quasi-3D (Neves et al. 2013) – 0.30700 0.29750 0.29290 0.28200 0.27220 

Quasi-3D (Bessaim et al. 2013) – 0.30430 0.29448 0.29007 0.27874 0.26915 

2  

Present 0.36232 0.34055 0.32699 0.32174 0.30610 0.29330 

HSDT (Nguyen et al. 2014) 0.37322 0.35221 0.33769 0.33279 0.31608 0.30255 

TSDT (Zenkour 2005a) 0.37335 0.35231 – 0.33289 0.31617 0.30263 

SSDT (Zenkour 2005a) 0.37319 0.35218 – 0.33280 0.31611 0.30260 

Quasi-3D (Zenkour 2013) 0.36891 0.34737 – 0.32816 0.31152 0.29874 

Quasi-3D (Neves et al. 2013) – 0.35190 0.33760 0.33290 0.31640 0.30320 

Quasi-3D (Bessaim et al. 2013) – 0.35001 0.33495 0.33068 0.31356 0.30060 

5  

Present 0.39895 0.37827 0.36072 0.35769 0.33724 0.32296 

HSDT (Nguyen et al. 2014) 0.40911 0.39170 0.37295 0.37134 0.34950 0.33472 

TSDT (Zenkour 2005a) 0.40927 0.39183 – 0.37145 0.34960 0.33480 

SSDT (Zenkour 2005a) 0.40905 0.39160 – 0.37128 0.34950 0.33474 

Quasi-3D (Zenkour 2013) 0.40532 0.38612 – 0.36546 0.34361 0.32966 

Quasi-3D (Neves et al. 2013) – 0.39050 0.37220 0.37050 0.34900 0.33470 

Quasi-3D (Bessaim et al. 2013) – 0.38934 0.36981 0.36902 0.34649 0.33255 

10  

Present 0.40915 0.39069 0.37218 0.37110 0.34911 0.33538 

HSDT (Nguyen et al. 2014) 0.41754 0.40393 0.3843 0.38540 0.36202 0.34815 

TSDT (Zenkour 2005a) 0.41772 0.40407 – 0.38551 0.36215 0.34824 

SSDT (Zenkour 2005a) 0.41750 0.40376 – 0.38490 0.34916 0.34119 

Quasi-3D (Zenkour 2013) 0.41448 0.39856 – 0.37924 0.35577 0.34259 

Quasi-3D (Neves et al. 2013) – 0.40260 0.38350 0.38430 0.36120 0.34800 

Quasi-3D (Bessaim et al. 2013) – 0.40153 0.38111 0.38303 0.35885 0.34591 

  

Fig. 4 Nondimensional stresses through the thickness direction for different values of p of Al/ZrO2 square sandwich 

plates subjected to sinusoidal load with ( 10/ =ha ,Type C) 
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Fig. 5 Effect of the power-law index p  on the 

nondimensional fundamental frequency (ω̂) of Al/Al2O3 

square sandwich plates (a/h = 10, Type C) 
 

 

by Nguyen et al. (2014) using the HSDT, Zenkour (2005b) 

using the TSDT and SSDT, Bessaim et al. (2013) using a 

quasi 3D solution, Li et al. (2008) using a 3D modeland the 

present theory are compared in Table 8. An excellent 

agreement is observed. 

Figure 5 plots the variation of the non-dimensional 

fundamental natural frequency of simply supported FG 

sandwich plate type C as a function the power-law index. 

 As can be seen, the increase in the power index p 

reduces the frequency. On the other hand, the lowest 

frequencies and the largest correspond respectively to 

sandwich plates type 1-0-1 and 1-2-1. On the other hand,  

the lowest frequencies and the largest correspond 

respectively to sandwich plates type 1-0-1 and 1-2-1 this is 

due to the fact that these plates contain the lowest and the 

largest volume fraction of the ceramic. The latter plays a 

very important role in making the plate flexible or rigid. 

 

Table 5 Nondimensional axial stress )2/(ˆ hxx of Al/Zr2O2 square sandwich plates(a/h = 10, Type C) 

p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0 

present 2.05448 2.05448 2.05448 2.05448 2.05448 2.05448 

HSDT (Nguyen et al. 2014) 1.99482 1.99482 1.99482 1.99482 1.99482 1.99482 

TSDT (Zenkour 2005a) 2.04985 2.04985 – 2.04985 2.04985 2.04985 

SSDT (Zenkour 2005a) 2.05452 2.05452 – 2.05452 2.05452 2.05452 

Quasi-3D (Zenkour 2013) 2.00773 2.00773 – 2.00773 2.00773 2.00773 

Quasi-3D (Neves et al. 2013) – 2.00660 2.00640 2.00660 2.00650 2.00640 

Quasi-3D (Bessaim et al. 2013) – 1.99524 1.99524 1.99524 1.99524 1.99524 

1 

present 1.60902 1.52551 1.41084 1.45341 1.33931 1.34511 

HSDT (Nguyen et al. 2014) 1.54441 1.46297 1.35703 1.39406 1.28852 1.29174 

TSDT (Zenkour 2005a) 1.57923 1.49587 – 1.42617 1.32062 1.32309 

SSDT (Zenkour 2005a) 1.58204 1.49859 – 1.42892 1.32342 1.32590 

Quasi-3D (Zenkour 2013) 1.57004 1.48833 – 1.41781 1.30907 1.31204 

Quasi-3D (Neves et al. 2013) – 1.48130 1.37680 1.41370 1.30920 1.31330 

Quasi-3D (Bessaim et al. 2013) – 1.46131 1.35053 1.39243 1.28274 1.29030 

2 

present 1.85971 1.76303 1.59352 1.66669 1.49720 1.51163 

HSDT (Nguyen et al. 2014) 1.78383 1.68682 1.52988 1.59393 1.43693 1.44707 

TSDT (Zenkour 2005a) 1.82167 1.72144 – 1.62748 1.47095 1.47988 

SSDT (Zenkour 2005a) 1.82450 1.72412 – 1.63025 1.47387 1.48283 

Quasi-3D (Zenkour 2013) 1.81509 1.72030 – 1.62591 1.46372 1.47421 

Quasi-3D (Neves et al. 2013) – 1.69940 1.54560 1.60880 1.45430 1.46590 

Quasi-3D (Bessaim et al. 2013) – 1.68472 1.52101 1.59170 1.42887 1.44497 

5 

present 2.02673 1.96180 1.74878 1.86542 1.64438 1.68005 

HSDT (Nguyen et al. 2014) 1.95031 1.87709 1.67895 1.78159 1.57620 1.60459 

TSDT (Zenkour 2005a) 1.99272 1.91302 – 1.81580 1.61181 1.63814 

SSDT (Zenkour 2005a) 1.99567 1.91547 – 1.81838 1.61477 1.64106 

Quasi-3D (Zenkour 2013) 1.97912 1.91504 – 1.82018 1.60953 1.63906 

Quasi-3D (Neves et al. 2013) – 1.88380 1.69090 1.79060 1.58930 1.61950 

Quasi-3D (Bessaim et al. 2013) – 1.87516 1.66856 1.77919 1.56627 1.60203 

10 

present 2.05479 2.01933 1.79924 1.93603 1.69875 1.74982 

HSDT (Nguyen et al. 2014) 1.98382 1.93431 1.72890 1.84933 1.62840 1.67019 

TSDT (Zenkour 2005a) 2.03036 1.97126 – 1.88376 1.66660 1.70417 

SSDT (Zenkour 2005a) 2.03360 1.97313 – 1.88147 1.61979 1.64851 

Quasi-3D (Zenkour 2013) 2.00692 1.97075 – 1.89162 2.18558 1.67350 

Quasi-3D (Neves et al. 2013) – 1.93970 1.74050 1.85590 1.63950 1.68320 

Quasi-3D (Bessaim et al. 2013) – 1.93266 1.71835 1.84705 1.61792 1.66754 
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3.3 Buckling analysis 
 

First, for the verification purpose, the results computed 

by the present quasi 3D theory are compared with those 

obtained by different higher shear deformation theory as 

reported in tables 9 and 10. 

In table 9, we present a comparison of the critical 

buckling load of FG plate “type A” obtained from the 

present solution and those of Nguyen et al. (2014) and Thai 

and Choi (2012).  The results are presented for different 

power law index “p” and different ratio of a/h and a/b. Also, 

two cases are studied plate subjected to uniaxial 

 
 

compression γ = 0 and biaxial compression γ = 1. It can be 
seen from this table that there is an excellent agreement 
between the results. 

Another comparison is presented in Table 10. Critical 
buckling loads are obtained for sandwich plate “type B” and 
for biaxial compressive loads. The comparison with the 
different theories and for the different scheme of sandwich 
plates reveals that the results of the present theory are in 
very great concordance. 

Table 11 gives the critical buckling loads of Al/Al2O3 

square sandwich plate type B under biaxial compressions. 
Three scheme of sandwich plate are presented 1-1-1, 1-2-1 
and 2-2-1. 

Table 6 Comparison of the nondimensional fundamental frequency ϖ of Al*/ZrO2 square plates (Type A) 

a/h Theory 
power - law index 

0 0.1 0.2 0.5 1 2 5 10 

2 

present 1.2671 1.2383 1.2134 1.1570 1.0998 1.0425 0.9840 0.9580 

HSDT (Nguyen et al. 2014) 1.2454 1.2162 1.1913 1.1356 1.0784 1.0234 0.9685 0.9435 

3D (Uymaz and Aydogdu 2007) 1.2589 1.2296 1.2049 1.1484 1.0913 1.0344 0.9777 0.9507 

5 

present 1.7830 1.7369 1.6982 1.6149 1.5392 1.4762 1.4175 1.3786 

HSDT (Nguyen et al. 2014) 1.7683 1.7208 1.6818 1.5974 1.5212 1.4601 1.4058 1.3690 

3D (Uymaz and Aydogdu 2007) 1.7748 1.7262 1.6881 1.6031 1.4764 1.4628 1.4106 1.3711 

10 

present 1.9388 1.8861 1.8424 1.7503 1.6708 1.6108 1.5575 1.5139 

HSDT (Nguyen et al. 2014) 1.9317 1.8773 1.8332 1.7393 1.6583 1.5986 1.5492 1.5083 

3D (Uymaz and Aydogdu 2007) 1.9339 1.8788 1.8357 1.7406 1.6583 1.5968 1.5491 1.5066 

20 

present 1.9853 1.9303 1.8849 1.7902 1.7100 1.6520 1.6012 1.5561 

HSDT (Nguyen et al. 2014) 1.9821 1.9254 1.8797 1.7827 1.7003 1.6415 1.5943 1.5521 

3D (Uymaz and Aydogdu 2007) 1.9570 1.9261 1.8788 1.7827 1.6999 1.6401 1.5937 1.5491 

50 

present 1.9989 1.9431 1.8972 1.8017 1.7215 1.6642 1.6143 1.5687 

HSDT (Nguyen et al. 2014) 1.9971 1.9397 1.8935 1.7956 1.7129 1.6543 1.6078 1.5652 

3D (Uymaz and Aydogdu 2007) 1.9974 1.9390 1.8920 1.7944 1.7117 1.6522 1.6062 1.5620 

100 

present 2.0009 1.9450 1.8990 1.8033 1.7231 1.6659 1.6162 1.5705 

HSDT (Nguyen et al. 2014) 1.9993 1.9418 1.8955 1.7975 1.7147 1.6562 1.6098 1.5671 

3D (Uymaz and Aydogdu 2007) 1.9974 1.9418 1.8920 1.7972 1.7117 1.6552 1.6062 1.5652 

 

Table 7 Comparison of the nondimensional fundamental frequency )ˆ( of Al/Al2O3 square sandwich plates (Type B) 

a/h Theory  
1-1-1 1-2-1 2-2-1 

0 0.5 1 5 0.5 1 5 0.5 1 5 

5  

present 1.2985 1.2412 1.2121 1.1635 1.2818 1.2326 1.1545 1.2022 1.1791 1.1383 

HSDT (Nguyen et al. 2014) 1.1147 1.1414 1.1561 1.1996 1.1574 1.1827 1.2569 1.1916 1.2268 1.3160 

HSDT (Natarajan and Manickam 2012) 1.1021 1.1449 1.1639 1.2113 1.1597 1.1884 1.2644 1.1965 1.2350 1.3249 

HSDT(Natarajan and Manickam 2012) 1.0893 1.1511 1.1701 1.2162 1.1663 1.1952 1.2712 1.2031 1.2421 1.3312 

10  

present 1.3744 1.3217 1.2964 1.2625 1.3665 1.3209 1.2650 1.2895 1.2757 1.2638 

HSDT (Nguyen et al. 2014) 1.2172 1.2359 1.2478 1.2883 1.2567 1.2763 1.3466 1.2827 1.3187 1.4130 

HSDT (Natarajan and Manickam 2012) 1.2138 1.2373 1.2506 1.2921 1.2578 1.2785 1.3492 1.2846 1.3216 1.4161 

HSDT (Natarajan and Manickam 2012) 1.2087 1.2392 1.2524 1.2935 1.2598 1.2806 1.3513 1.2865 1.3238 1.4180 

100  

present 1.3934 1.3482 1.3269 1.3030 1.3937 1.3529 1.3114 1.3221 1.3144 1.3174 

HSDT (Nguyen et al. 2014) 1.2617 1.2752 1.2853 1.3238 1.2984 1.3147 1.3824 1.3198 1.3558 1.4518 

HSDT (Natarajan and Manickam 2012) 1.2617 1.2751 1.2854 1.3239 1.2981 1.3148 1.3825 1.3198 1.3559 1.4519 

HSDT (Natarajan and Manickam 2012) 1.2616 1.2751 1.2854 1.3239 1.2981 1.3148 1.3825 1.3198 1.3559 1.4519 
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Table 8 Nondimensional fundamental frequency )ˆ( of Al/Al2O3 square sandwich plates(a/h = 10,Type C) 

p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

0  

present 1.83452 1.83452 1.83452 1.83452 1.83452 1.83452 

HSDT (Nguyen et al. 2014) 1.82489 1.82489 1.82489 1.82489 1.82489 1.82489 

TSDT (Zenkour 2005b) 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445 

SSDT (Zenkour 2005b) 1.82452 1.82452 1.82452 1.82452 1.82452 1.82452 

Quasi-3D (Bessaim et al. 2013) 1.82682 1.82682 – 1.82682 1.82682 1.82682 

3D (Li et al. 2008) 1.82682 1.82682 – 1.82682 1.82682 1.82682 

0.5  

present 1.46638 1.50645 1.52819 1.54086 1.56800 1.59425 

HSDT (Nguyen et al. 2014) 1.44348 1.48355 1.50597 1.51885 1.54680 1.57437 

TSDT (Zenkour 2005b) 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451 

SSDT (Zenkour 2005b) 1.44436 1.48418 1.51258 1.51927 1.55202 1.57450 

Quasi-3D (Bessaim et al. 2013) 1.44621 1.48611 – 1.52130 1.55016 1.57670 

3D (Li et al. 2008) 1.44614 1.48608 – 1.52131 1.54926 1.57668 

1  

present 1.27115 1.32941 1.36216 1.38183 1.42324 1.46496 

HSDT (Nguyen et al. 2014) 1.24332 1.30024 1.33352 1.35345 1.39579 1.43948 

TSDT (Zenkour 2005b) 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934 

SSDT (Zenkour 2005b) 1.24335 1.30023 1.34894 1.35339 1.40792 1.43931 

Quasi-3D (Bessaim et al. 2013) 1.24495 1.30195 – 1.35527 1.39987 1.44143 

3D (Li et al. 2008) 1.24470 1.30181 – 1.35523 1.39763 1.44137 

5  

present 0.97167 1.01844 1.06756 1.08337 1.14760 1.21055 

HSDT (Nguyen et al. 2014) 0.94611 0.98193 1.03067 1.04473 1.10905 1.17403 

TSDT (Zenkour 2005b) 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397 

SSDT (Zenkour 2005b) 0.94630 0.98207 1.07445 1.04481 1.14741 1.17399 

Quasi-3D (Bessaim et al. 2013) 0.94716 0.98311 – 1.04613 1.11723 1.17579 

3D (Li et al. 2008) 0.94476 0.98103 – 1.04532 1.10983 1.17567 

10  

present 0.94693 0.97831 1.02814 1.03476 1.10038 1.16140 

HSDT (Nguyen et al. 2014) 0.92854 0.94305 0.99219 0.99558 1.06114 1.12320 

TSDT (Zenkour 2005b) 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314 

SSDT (Zenkour 2005b) 0.92875 0.94332 1.04558 0.99519 1.04154 1.13460 

Quasi-3D (Bessaim et al. 2013) 0.92952 0.94410 – 0.99684 1.07015 1.12486 

3D (Li et al. 2008) 0.92727 0.94078 – 0.99684 1.06104 1.12466 
 

Table 9 Comparison of the critical buckling load (N̅cr) of Al/Al2O3 plates (Type A) 

γ a/b  a/h  Théorie  

power - law index p  

0 0.5 1 2 5 10 

0  

0.5 

5  

present 6.7482 4.5091 3.5203 2.7412 2.2031 1.9419 

HSDT (Nguyen et al. 2014) 6.7204 4.4221 3.4164 2.6450 2.1479 1.9210 

TSDT (Thai and Choi 2012) 6.7203 4.4235 3.4164 2.6451 2.1484 1.9213 

10  

present 7.4335 4.9084 3.8315 3.0165 2.5043 2.2342 

HSDT (Nguyen et al. 2014) 7.4053 4.8190 3.7111 2.8896 2.4163 2.1897 

TSDT (Thai and Choi 2012) 7.4053 4.8206 3.7111 2.8897 2.4165 2.1896 

20  

present 7.6104 5.0050 3.9106 3.0930 2.5928 2.3214 

HSDT (Nguyen et al. 2014) 7.5993 4.9298 3.7930 2.9581 2.4944 2.2692 

TSDT (Thai and Choi 2012) 7.5993 4.9315 3.7930 2.9582 2.4944 2.2690 

1  

5  

present 16.0518 10.8051 8.4448 6.5376 5.1456 4.5007 

HSDT (Nguyen et al. 2014) 16.0216 10.6215 8.2247 6.3430 5.0513 4.4800 

TSDT (Thai and Choi 2012) 16.0211 10.6254 8.2245 6.3432 5.0531 4.4807 

10  

present 18.6639 12.3579 9.6441 7.5712 6.2404 5.5526 

HSDT (Nguyen et al. 2014) 18.5786 12.1181 9.3391 7.2630 6.0346 5.4530 

TSDT (Thai and Choi 2012) 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 

20  

present 19.3936 12.7656 9.9715 7.8783 6.5912 5.8969 

HSDT (Nguyen et al. 2014) 19.3528 12.5616 9.6675 7.5371 6.3446 5.7674 

TSDT (Thai and Choi 2012) 19.3528 12.5668 9.6675 7.5371 6.3448 5.7668 
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Fig. 6 Effect of the power-law index p on the critical 

buckling load )ˆ( crN of Al/Al2O3 square sandwich plates 

( 10/ =ha ,Type C). 

 

 

From this table, it is found that, for the same sandwich 

plate scheme, the increase in the power index and aspect 

ratio a / h increased the critical value of the buckling load. 

Figure 6 plots the variation of the critical buckling load 

versus the power law index and for different scheme of 

sandwich plate. It has seen a rapid decrease of the critical 

buckling loads until a value of p = 5, Once exceeding this 

value, the critical buckling loads tends to keep a more or 

less constant shape and this whatever the sandwich plate 

used. 
 

4. Conclusions 
 

Bending, buckling and vibration analysis of functionally 

graded sandwich plate is carried out in the present study by  

 
Table 11Nondimensional critical buckling loads (N̅cr) of 

Al/Al2O3 square sandwich plates subjected to biaxial 

compressive loads (γ = 1, Type B) 

a/h  scheme  
p 

0 0.5 1 5 10 

5  

 2.1832 2.2326 2.5170 2.6861 3.0420 1־1־1

 2.077 2.1504 2.5985 2.8840 3.4979 1־2־1

 1.9788 2.0337 2.3000 2.4480 2.7574 2־2־1

10  

 2.5324 2.5630 2.8044 2.9675 3.3232 1־1־1

 2.4835 2.5229 2.9100 3.1993 3.8448 1־2־1

 2.4294 2.4579 2.6255 2.7437 3.0163 2־2־1

100  

 2.6740 2.6945 2.9026 3.0522 3.3801 1־1־1

 2.6530 2.6763 3.0175 3.2918 3.9095 1־2־1

 2.6208 2.6367 2.7525 2.8494 3.0814 2־2־1

 

 

an improved quasi 3D theory.  Three different sandwich 

plates were studied. The results generated in the present 

work for three cases analyzed namely buckling, bending 

and free vibration were compared with the results of various 

theories from the literature. This comparison revealed that 

the present theory is very precise. A detailed parametric 

study was presented to highlight the various factors 

influencing the behavior of sandwich plates. 

Based on the Numerical results section of this research, 

the following considerations are valuable: 

The transverse displacement increases as the power law 

index p increases. 

The axial non dimensional stress is tensile at the top 

surface and compressive at the bottom surface.  

The in-plane tangential stress is tensile at the bottom 

surface and compressive at the top surface of the FG plates. 

The distribution of the transverse shear stress through  

Table 9 (Continued) 

1 

0.5  

5  

present 5.3986 3.6072 2.8162 2.1930 1.7624 1.5535 

HSDT (Nguyen et al. 2014) 5.3763 3.5377 2.7331 2.1160 1.7183 1.5368 

TSDT (Thai and Choi 2012) 5.3762 3.5388 2.7331 2.1161 1.7187 1.5370 

10  

present 5.9468 3.9267 3.0652 2.4132 2.0034 1.7874 

HSDT (Nguyen et al. 2014) 5.9243 3.8552 2.9689 2.3117 1.9330 1.7517 

TSDT (Thai and Choi 2012) 5.9243 3.8565 2.9689 2.3117 1.9332 1.7517 

20  

present 6.0883 4.0040 3.1285 2.4744 2.0743 1.8571 

HSDT (Nguyen et al. 2014) 6.0794 3.9438 3.0344 2.3665 1.9955 1.8153 

TSDT (Thai and Choi 2012) 6.0794 3.9452 3.0344 2.3665 1.9955 1.8152 

1  

5  

present 8.0259 5.4025 4.2224 3.2688 2.5728 2.2503 

HSDT (Nguyen et al. 2014) 8.0108 5.3108 4.1124 3.1715 2.5256 2.2400 

TSDT (Thai and Choi 2012) 8.0105 5.3127 4.1122 3.1716 2.5265 2.2403 

10  

present 9.3319 6.1789 4.8220 3.7856 3.1202 2.7763 

HSDT (Nguyen et al. 2014) 9.2893 6.0590 4.6696 3.6315 3.0173 2.7265 

TSDT (Thai and Choi 2012) 9.2893 6.0615 4.6696 3.6315 3.0177 2.7264 

20  

present 9.6968 6.3828 4.9857 3.9391 3.2956 2.9484 

HSDT (Nguyen et al. 2014) 9.6764 6.2808 4.8337 3.7686 3.1723 2.8837 

TSDT (Thai and Choi 2012) 9.6764 6.2834 4.8337 3.7686 3.1724 2.8834 
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the thickness of the plate is not parabolic except the case of 

isotropic plate.  

The increase in the power index p reduces the 

frequency. 

The increase in the power index and aspect ratio a / h 

increased the critical value of the buckling load. 

The kinematics used in this research can be extended to 

study other cases of structures such as nano-plates, beams 

and nano-beams with or without elastic foundation (Bouadi 

et al. (2018), Bellifa et al. (2017)). 
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1 
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5 
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10 
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