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1. Introduction 
 

Composites are becoming an alternative material to be 

used extensively in construction or fabrication for high 

performance and reliability applications. Laminated 

composite plates have been extensively used in many 

engineering applications due to their properties of high 

strength to weight ratio and excellent corrosion resistance. 

When manufacturing a composite material, the material and 

structure are often made in single process. There are various 

methods of manufacture of laminated composites 

(Campbell 2003). Due to the wide application of the 

laminated composite material in various engineering fields, 

it becomes vital to perform a numerical analysis to use the 

obtained results in the structural design process. This 

situation has led to the development of efficient and 

accurate numerical analysis techniques, required to predict 

the behaviour of laminated plates.  

Chamis (2006) developed the results of the vibration 

analysis for the laminated composite structures, as the study 

aimed upon the resonant behaviour of the structures. 

Moreover, most structures, whether used in civil, marine or 

aerospace applications, are often subjected to dynamic loads 

during their operation, and therefore assessing the dynamic  
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response of laminated composites is required. Still, the 

dynamic analyses for laminated composite plates of finite 

dimensions have not received enough attention. Many 

researchers proposed different results on the transient 

response of laminated composite plates. 

Sun and Whitney (1974) performed a transient analysis 

of an infinitely long simply supported composite plate 

subjected to uniform or line concentrated dynamic load at 

the upper surface of the plate. Different types of pulse-like 

rectangular, triangular, sinusoidal and dynamic load factor 

were applied to determine the maximum value of 

deflection, bending stress. Reddy (1983) employed the 

shear flexible element that was stable and accurate to 

predict the dynamic response of laminate composites. The 

analysis used the Newmark direct integration technique to 

perform transient response of isotropic, orthotropic and 

layered anisotropic composite plates to generate the results 

for deflection and stress for rectangular plates under various 

boundary conditions and loadings. 
Mallikarjuna and Kant (1988) used simple C 0 

isoparametric formulation of an assumed higher-order 
displacement model that was stable and accurate in 
predicting the transient response of composite plates. Kant 
et al. (1992) applied refined shear deformation theory and 
mode superposition technique for evaluating the transient 
response which was found to be very effective for the linear 
dynamic response for symmetric and non-symmetric 
composite plates. Hoa and Xiao (1998) developed a 
rectangular plate bending element based on higher order 
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shear deformation theory having four nodes and twenty  

degrees of freedom at each node. (Wang et al. 2001) used 

classical laminate plate theory and developed the strip 

element method to analyze the transient behaviour of the 

symmetric rectangular laminated composite plates. The 

results obtained had a different type of boundary conditions. 

Ahmadian and Zangeneh (2003) analysed the dynamic 

behaviour of the rectangular composite plates using a four-

noded super element to obtain the transient responses. The 

transient flexural response analysis of anisotropic laminated 

composite plates of bi-modulus materials subjected to 

mechanical loading was carried out by Patel et al. (2005). 

Shooshtari and Khadem (2006) studied the free and forced 

vibration of rectangular plates using Galerkin method. Kiral 

and Kiral (2008) used the FE method and the Newmark 

integration method to calculate the dynamic responses. 

Tahani and Torghabeh (2011) used layerwise theory to 

analyse the dynamic response of a thick cross-ply laminated 

plate. The dynamic analyses for a fixed-fixed sandwich and 

laminated composite plate under the action of a moving 

load were carried out by Mantari et al. (2012) using a new 

higher order shear deformation theory. Yousefi et al. (2012) 

used Hertz contact theory to analyse the dynamic responses 

of the composite plates. Dambal and Sharma (2013) 

obtained results for composite plates under dynamic loading 

in form of half sine wave. Ahmed et al. (2013) and Maithry 

et al. (2012) used first-order shear deformation theory to 

analyse the transient response of composite plates for varied 

layer orientation and aspect ratio. Lee and Kim (2013) 

analysed the dynamic behaviour of the laminated composite 

plate using a new higher order shear deformation theory. A 

four-noded element was considered having seven degrees of 

freedom at each node. Adim et al. (2016) used a refined 

higher order shear deformation theory of plates. Forced 

vibration of the elastic system is studied by Akbarov and 

Mehdiyev (2017) using a mathematical formulation of the 

exact equations of linear elastodynamics. Golewski (2017, 

2018a, 2018b) has investigated behavior of concrete 

composites using experimental procedure. 

From the above-mentioned literature review, it is 

observed that there is no work on the dynamic analysis of 

laminated composite skew plate using improved shear 

deformation theory. Most of these studies were based upon 

FSDT and HSDT and that too for laminated composite plate 

without skew effects. Hence, in the present work, an 

attempt has been made to analyse the laminated composite 

skew plate under different types of spatial and transient 

loads. 

 

 
2. ISDT (Improved Shear Deformation Theory) 

 
In the present deformation theory, the transverse shear 

stresses at the top and bottom of the laminate were taken as 
zero. It was assumed that variation of transverse shear 
strains was realistic parabolic in shape and the use of shear 
correction factor was hence avoided. The present theory 
consists of a realistic cubic variation of in-plane 
displacement fields. 

For the present analysis, the following equation for 
displacement fields was adopted 

 

Fig. 1 Laminated composite plate 
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(1) 

In the equation above, u, v and w represent the 

displacements of a point along the three directions (x, y, and 

z as shown in Fig 1.) respectively, whereas it's associated 

midplane displacements are given by u0, v0, and w0 

respectively. θx and θy signify the rotations of transverse 

normal in the x–z and y–z planes, respectively. 

ζx, ζx, ζy and ζy functions in the equations above were 

determined using an assumption of zero transverse shear 

strains at the top and bottom surfaces of the plate i.e. 
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When replaced, the values obtained in Eq. (4) to Eq. (1), 

are: 
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or,  

(5) 
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The linear strains may be represented in the form of 

linear displacement: 
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Using the values of displacements from Eq. (5) - (6), the 

following equation is obtained, 
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The strains associated with Eq. (8) are related to the 

generalized strains by means of the following expression: 
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 {ε} is the function of x and y and [H] is the function of 

thickness coordinate z. 

Further, the strain vector {ε} can be interrelated with 

displacement vector {X} by means of the following 

relationship. 
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     
k kk

Q =
 

i.e. 

1 11 12 1

2 12 22 2

12 66 12

13 44 13

23 55 23

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
k k k

Q Q

Q Q

Q

Q

Q

 

 

 

 

 

     
     
     
   

 =   
    
    
           

(11) 

where, 

12 21

1 2E E

 
=

 

and 

11 12

12 22

66

44

55

1 12 21 12 2 12 21

12 2 12 21 2 12

12

1

3

21

3

2

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0 0

1 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

k

k

Q Q

Q Q

Q

Q

Q

E E

E E

G

G

G

    

    

 
 
 
 
 
 
 
 

− − 
 

− − 
 =
 
 
 
   

The stress-strain relationship with respect to global 

coordinate axis system (x, y, and z) for kth lamina can be 

expressed as shown below using transformation 

coefficients:  
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(12) 

Integration of the stresses through the laminate thickness 

will help in obtaining the resultant forces and moments 

acting on the laminate, which is as follows:  
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And the size of the [D̅] (rigidity matrix) is 17 x 17. 

Thus, by following the standard procedure of FEM, the 

element matrices were assembled which results in global 

stiffness matrices i.e. [K] and [M]. 

 

2.1 Finite element formulation 
 

The finite element formulation involved in the above-

mentioned theories is as follows: 

In the present study, the proposed finite element model 

uses C0 isoparametric elements having nine nodes. The 

proposed element has seven unknowns at each node i.e. u1, 

u2, u3, Ψ1, Ψ2, w1 and w2 (Fig. 2). The generalized 

displacements included in the present theory can be 

expressed as follows. 
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Where, Ni represents the related node's shape function. 

Knowing the nodal unknown vector within an element 

helps to express the mid-surface strains at any point in the 

plate in the matrix form, in terms of global displacements, 

as shown below: 

    
9

1

i i

i

B d
=

=
 

(15) 

Where [Bi]: is the matrix containing the differential 

operator of the shape function. 

For an element, the element stiffness matrix (say, eth), 

including the transverse shear effects, flexure and  

 

Fig 2. Nine-noded isoparametric element with typical 

node numbering and gauss points 

 

 

membrane can be given as: 
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(17) 

In the equations above, [N] represents the matrix of 

shape function, [ρ] inertia matrix and |J| represents the 

determinant of a Jacobian matrix. 

A 3 x 3 Gaussian Quadrature format was used for all 

numerical integrations. Then, using the characteristic 

procedures of the FE method by (Bathe 1996), the global 

stiffness matrices [K] was achieved by assembling the 

element matrices together. 

The C0 FE formulation, even though being a 2D 

solution, yielded the results closer to the closed form of 

solutions. Thus, the complexities of the solutions involved 

were reduced.  

The element stiffness and mass matrix were evaluated 

and assembled together to form the global stiffness matrix 

[Kg] and mass matrix [Mg] 
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(18) 

[Cg]: Global damping matrix 

α and β: Rayleigh’s proportionality constant was 

evaluated by solving for any two free vibration frequencies 

(ζm and ζn)  

2 2

2
1 1

n m
mm n

nn m
n m

 
  

  
 

 
    

= −    
−    

   

(19) 

Thus, the equation for forced vibration now may be 

evaluated as: 

       g g g tK C M F      +  +  =
       

(20) 

Where {Ft} is time-varying loading; {Δ} is 

displacement at time t; ω is the frequency of vibration and λ 

is the Eigenvector and its derivatives for velocity and 

acceleration. The dynamic response analysis was carried by 

using Newmark-β technique. 

Fig 1. shows the plan view of a laminated composite 

skew plate with the skew angle as α. The necessary skew  
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transformation was carried out by using the transformation 

matrix below. 

s 0 0 0 0 0

s c 0 0 0 0 0

0 0 1 0 0 0 0

[ ] , cos sin0 0 0 c s 0 0

0 0 0 s c 0 0

0 0 0 0 0 c s

0 0 0 0 0 s c

c

T wherec and s 

− 
 
 
 
 

= = =− 
 
 

− 
 
   

 

2.2 Boundary condition 
 

The boundary/support condition considered in the 

present study was simply supported at all four edges 

(SSSS).   

SSSS: 

u2 = u3 = Ψ2 = w2 = 0 at x = 0, a and 

u1 = u3 = Ψ1 = w1 = 0 at y = 0, b 

 

 

3. Numerical application and results 
 

In the present study, many novel problems on forced 

vibration of laminated composite plates were solved by 

using the present FE model and mathematical formulation 

(ISDT). 

 

3.1 Engineering and geometrical properties 
 

In all the further investigations, unless mentioned 

otherwise, the engineering properties for laminated 

composite plates were taken as given in Table 1.  

The geometrical properties taken into consideration 

were: 

The total thickness of the plate (h) = 3.81 cm 

The length of the plate: a= b=20 h. 

 

 

Table 1 Material properties of the laminated composite plate 

E1 (GPa) E2 (GPa) G12 (GPa) G13 (GPa) µ12 ρ(kN/m3) 

172.369 6.895 3.448 3.448 0.25 1603.03 

 

 

3.2 Applied loads 
 

The different types of loadings in the spatial and time 

domain are: 

( )

( )

( )

0

0

0

sin sin

cos sin

cos cos

x y
q q F t

a b

x y
q q F t

a b

x y
q q F t

a b

 

 

 

   
=    

   

   
=    

   

   
=    

     

where, 

F (t) = {1, 0 ≥ t}: Rectangular step pulse 

𝐹(𝑡) =  {
1,   0 ≤ 𝑡 ≤ 𝑡1

0,   𝑡 > 𝑡1
}: Rectangular pulse 

𝐹(𝑡) =  {
𝑡/𝑡1,   0 ≤ 𝑡 ≤ 𝑡1

0,   𝑡 > 𝑡1
}: 

Triangular pulse  

loading (I) 

𝐹(𝑡) =  {
1 − 𝑡/𝑡1,   0 ≤ 𝑡 ≤ 𝑡1

0,   𝑡 > 𝑡1
}: 

Triangular pulse  

loading (II) 

𝐹(𝑡) =  {
sin (𝜋𝑡/𝑡1),   0 ≤ 𝑡 ≤ 𝑡1

0,   𝑡 > 𝑡1
}: Sine pulse loading 

The non-dimensional stresses as follows: 

( )

( )

( )

0

0

0

sin sin

cos sin

cos cos

x y
q q F t

a b

x y
q q F t

a b

x y
q q F t

a b

 

 

 

   
=    

   

   
=    

   
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=    

     
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0
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q
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z q
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 

 

 
=  

 

 
=  

 

 
=  

   
 

3.2 Convergence and validation study 
 

The convergence study was carried out and the results 

were found to converge at 20 x 20 mesh size. Hence, all 

results were computed at 20 x 20 mesh size. 

For validation study, the problem solved earlier by 

(Wang et al. 2001) was taken into consideration. In this 

example, a three-layer cross-ply (0°/90°/0°) square 

laminated plate is considered. The engineering and 

geometrical properties were taken as discussed in the earlier 

section. The load was sinusoidally distributed over the 

whole surface of the plate which varies with time. The 

expression is given below: 

( )0 cos sin
x y

q q F t
a b

    
=    

     

where 

( ) 1

1

1, 0
:

0,

t t
F t

t t

  
=  

   

Rectangular pulse 

In Table 2 and 3, the results for deflection and stresses 

of laminated composite plates were compared with the 

published literature. The variation of the result is the reason 

why (Wang et al. 2001) used CLPT and the present results 

are based upon the suitable ISDT that includes the effect of 

transverse shear and rotary inertia. 

Further comparison study for skew laminated composite 

plates was carried out in Table 4. The problem of a 

rectangular laminate subjected to uniformly distributed  
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Table 2 Validation of maximum deflection of laminated 

composite plate with lamination (0°/90°/0°) 

 For a/h = 20 

Type of pulse Rectangular Triangular Sine 

Present 2.9672 2.5602 1.9102 

(Wang et al. 2001) 2.6666 2.3071 1.6818 

 

Table 3 Validation of maximum stress (σ̅𝑥𝑥) of laminated 

composite plate with lamination (0°/90°/0°) 

 For a/h=20 

Type of pulse Rectangular Pulse 

Present 443.532 

(Wang et al. 2001) 440.909 

 

Table 4 Non-dimensional central deflections of a laminated 

composite skew plate subjected to uniformly distributed 

loading (b/a=1) for laminate (0°/90°/0°) composite skew 

plate for skew angle (α) 

    

a/h References 0 15 30 45 

10 

Present (20×20) 10.9812 10.4300 8.6613 5.7181 

(Sheikh and 

Chakrabarti 

2003) 

10.9117 10.3669 8.6217 5.7105 

 

 

loading as solved by (Sheikh and Chakrabarti 2003) using 

HSDT was considered in this example. The deflection 

presented in Table 4 were found to be in good coherence 

with the results of (Sheikh and Chakrabarti 2003). 

 

 

4. Novel results 
 

After validation studies, many new examples were 

solved for dynamic analysis of laminated composite skew 

plate under different types of spatial and transient loads. For 

all calculations, 20×20 mesh size was used. In the 

following examples, each lamina of the laminated plate has 

the same thicknesses and material properties. The time step 

(dt) was taken as 0.03 μ second for all further calculations.  

Example (1) A two-layer cross-ply (0°/90°) laminated 

composite skew plate was considered. The engineering and 

geometrical properties were taken as discussed in the earlier 

section. 

The finishing time of pulse (t) =0.006 second was taken. 

The intensity of the transverse load was taken to be q0 = 

3.448 MPa. The boundary condition was all edges simply 

supported and skew angles were 0°, 15°, 30°, 45° and 60°.  

The load considered was time varying sinusoidally 

distributed on the whole surface of the plate and was given 

as: 

( )0 sin sin
x y

q q F t
a b

    
=    

     

where 
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Fig. 3. Deflection history of the laminated composite 

skew plate (0°/90°) under rectangular pulse 
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Fig. 4. Non-dimensional stress ( σ̅𝑥𝑥 ) history of the 

laminated composite skew plate (0°/90°) under 

rectangular pulse 

 

 

( ) 1

1

1, 0
:

0,

t t
F t

t t

  
=  

   

Rectangular pulse 

In order to check the behaviour of the laminated 

composite plate under various skew angles, the analysis was 

carried out with variation in the skew angles at a particular 

boundary condition. The results in form of deflection and 

stresses were shown in Figs. 3-4. In Fig. 3 the deflection 

history is plotted for the various skew angles of the 

laminated composite plate. In the Figure, it can be observed 

that the 0° and 15° skew plate show the maximum 

deflection of about 9 cm whereas the 60° skew plate shows 

the lowest deflection of about 0.7 cm. According to the 

Figure, the reduction of deflection is observed for an 

increase in skew angle from 0° to 60°.  

In Fig. 4, the variation of non-dimensional stress σ̅𝑥𝑥 

with respect to time is plotted for the various laminated 

composite skew plate. In the figure, the 15° skew composite 

plate shows maximum stress whereas, the 60° skew 

composite plate shows the minimum stress. 

Example (2) A three-layer cross-ply (0°/90°/0°) 

laminated composite skew plate was considered. The 

engineering and geometrical properties were taken as 

discussed in the earlier section. 
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Fig. 5. Deflection history of the laminated composite 

skew plate (0°/90°/0°) under rectangular pulse 
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Fig. 6. Non-dimensional stress (σ̅𝑥𝑥 ) history of the 

laminated composite skew plate (0°/90°/0°) under 

rectangular pulse 

 

 

The finishing time of pulse (t) =0.006 second was taken. 

The intensity of the transverse load was taken to be q0 

=3.448 MPa. The boundary condition was all edges simply 

supported and skew angles were 0°, 15°, 30°, 45° and 60°.  

The considered load was time varying sinusoidally 

distributed on the whole surface of the plate and was given 

as: 

( )0 sin sin
x y

q q F t
a b

    
=    

     

where 

( ) 1

1

1, 0
:

0,

t t
F t

t t

  
=  

   

Rectangular pulse 

In Figure 5, the deflection history is plotted. According 

to the figure, it was observed that 0° skew laminated 

composite plate had maximum amplitude of deflections as 

compared to other skew angles i.e. almost 3 cm and for 

other skew angles, i.e. 30°, 45° and 60° amplitude of 

deflections was less than 1 cm. 

In Fig. 6, the non-dimensional stress (σ̅𝑥𝑥) history is 

plotted. The figure, indicates that the 0° skew laminated 

composite plate shows the highest amplitude whereas, the 
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Fig. 7. Non-dimensional stress (σ̅𝑦𝑦 ) history of the 

laminated composite skew plate (0°/90°/0°) under 

rectangular pulse 
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Fig. 8. Non-dimensional stress (σ̅𝑥𝑦)  history of the 

laminated composite skew plate (0°/90°/0°) under 

rectangular pulse 
 

 

lowest amplitude is for the 30° and 60° skew angles of the 

laminated composite plate. 

In Fig. 7, the non-dimensional stress (σ̅𝑦𝑦) history is 

plotted. The figure shows that the highest amplitude with a 

maximum peak value of about 8 was observed for the 0° 

skew plate, whereas the 30° skew plate showed the lowest 

amplitude having a maximum peak value of about 0.5. 

 In Fig. 8, the non-dimensional stress (σ̅𝑥𝑦) history is 

plotted. From the figure, it is observed for the 0° skew plate 

have the highest amplitude with a maximum peak value of 

about 6.5 whereas the lowest amplitude with maximum 

peak value for the 60° skew plate i.e. 0.1. 

Example (3) A four-layer cross-ply (0°/90°/0°/90°) 

laminated composite skew plate is considered. The 

engineering and geometrical properties were taken as 

discussed in the earlier section. 

The finishing time of pulse (t) =0.006 second was taken. 

The intensity of the transverse load was taken to be q0 = 

3.448 MPa. The boundary condition was all edges simply 

supported and skew angles were 0°, 15°, 30°, 45° and 60°.  

The load considered was time varying sinusoidally 

distributed on the whole surface of the plate and was given 

as: 

( )0 sin sin
x y

q q F t
a b

    
=    

     
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Fig. 9. Deflection history of the laminated composite 

skew plate (0°/90°/0°/90°) under rectangular pulse 
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Fig. 10. Non-dimensional stress (σ̅𝑥𝑥 ) history of the 

laminated composite skew plate (0°/90°/0°/90°) under 

rectangular pulse 

 

 

where 

( ) 1

1

1, 0
:

0,

t t
F t

t t

  
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   

Rectangular pulse 

Figure 9-12, shows the variation of deflection and 

stresses for the laminated composite skew plate. Fig. 9 

shows the deflection history. The figure indicates that the 

15° skew plate shows a maximum deflection of about 4.4 

cm, whereas 0°and 30° skew plate shows a maximum 

deflection of about 3.2 cm. The 60° skew plate shows the 

lowest deflection of about 0.5 cm. 

Fig. 10 shows the non-dimensional stress (σ̅𝑥𝑥) history. 

From the figure, it is observed that the 15° skew plate 

shows the maximum stress of about 680, whereas the 0° 

skew plate shows the stress of about 600. 

Fig. 11 shows the non-dimensional stress (σ̅𝑦𝑦) history. 

The figure indicates that the 15° skew plate shows the 

maximum stress of about 360. It is also concluded that 

(σ̅𝑦𝑦) stresses are lower as compared to the (σ̅𝑥𝑥) stresses.  

Fig. 12 shows the non-dimensional stress (σ̅𝑥𝑦) history. 

From the figure, it is observed that the 0° skew plate shows 

the maximum stress of about 8. It is also concluded that the 

(σ̅𝑥𝑦) amplitude of stresses is lower than for the (σ̅𝑥𝑥) and 

(σ̅𝑦𝑦) stresses. According to the figures, the deflections and  
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Fig. 11. Non-dimensional stress (σ̅𝑦𝑦 ) history of the 

laminated composite skew plate (0°/90°/0°/90°) under 

rectangular pulse 
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Fig. 12. Non-dimensional stress (σ̅𝑥𝑦) history of the 

laminated composite skew plate (0°/90°/0°/90°) under 

rectangular pulse 

 

 

non-dimensional stresses peak value for four-layer cross-ply 

laminates are higher as compared to two and three-layered 

laminates. 

Example (4) A five-layer cross-ply (60°/-30°/0°/-

30°/60°) laminated composite skew plate was considered. 

The engineering and geometrical properties were taken as 

discussed in the earlier section. 

The finishing time of pulse (t) =0.006 second was taken. 

The intensity of the transverse load was taken to be q0 = 

3.448 MPa. The boundary condition was all edges simply 

supported and skew angles were 0°, 15°, 30°, 45° and 60°.  

The load considered was time varying sinusoidally 

distributed on the whole surface of the plate and was given 

as: 

( )0 sin sin
x y

q q F t
a b

    
=    

     

where 

( ) 1

1

1, 0
:

0,

t t
F t

t t

  
=  

   
Rectangular pulse 

Figs. 13-15 show the deflection and stresses history for 

the five-layer cross-ply laminated composite plate. Fig. 13 

shows the deflection history. From the figure, it is observed 

that the 15° skew composite plate shows a maximum  
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Fig. 13. Deflection history of the laminated composite 

skew plate (60°/-30°/0°/-30°/60°) under rectangular 

pulse. 
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Fig. 14. Non-dimensional stress (σ̅𝑥𝑥 ) history of the 

laminated composite skew plate (60°/-30°/0°/-30°/60°) 

under rectangular pulse 

 

 

deflection of about 4.5 cm, whereas the 30° plate shows 3.3 

cm. It was also observed that the 60° skew plate shows the 

lowest deflection of about 0.4 cm.  

Fig. 14 shows the non-dimensional stress (σ̅𝑥𝑥) history. 

From the figure, it is observed that the 15° skew plate 

shows the maximum stress of about 425, whereas the 60° 

skew plate shows the lowest stress of about 150.  

Fig. 15 shows the non-dimensional stress (σ̅𝑥𝑦) history. 

The figure indicates that the amplitude variation for (σ̅𝑥𝑦) 

stresses of 0° and 15° skew plates shows negative values 

whereas the other skew plate shows a linear variation of 

amplitude. 

Example (5) A three-layer cross-ply (0°/90°/0°) 

laminated composite skew plate was considered. The 

engineering properties were taken as in Table 1 and the 

geometrical properties were a = b = 0.762m, h/a ratio= 0.1 

and 0.2. The finishing time of pulse (t) =0.006 second was 

taken. The intensity of the transverse load was taken to be 

q0 = 3.448 MPa. The boundary condition was all edges 

simply supported and skew angles were 0°, 15°, 30°, 45° 

and 60°.  

The load considered was time varying sinusoidally, 

distributed on the whole surface of the plate and was given  
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Fig. 15. Non-dimensional stress (σ̅𝑥𝑦)  history of the 

laminated composite skew plate (60°/-30°/0°/-30°/60°) 

under rectangular pulse. 
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Fig. 16. Deflection history of the laminated composite 

skew plate (0°/90°/0°) under rectangular pulse, h/a=0.1 

 

 

as: 

( )0 sin sin
x y

q q F t
a b

    
=    

     

where 

( ) 1

1

1, 0
:

0,

t t
F t

t t

  
=  

   

(Rectangular pulse) 

In the example, two thickness ratios were taken to check 

the dynamic behaviour of a laminated composite plate 

having different skew angles. The variations of deflection 

and stresses were shown in Fig. 16-19 for different skew 

angles of the laminated plate. The thickness ratio was taken 

as 0.1. 

Fig. 16 shows the deflection history. From the figure, it 

was observed that the maximum peak value is about 0.7 of 

15° skew laminated plate. For the 0° skew plate, the 

amplitude is quite lower than 15° and the maximum peak 

value is about 0.6. The minimum amplitude of the 

maximum peak value is for the 60° skew plate that is about 

0.1. The reason for the reduced maximum peak values of 

deflection is accounted for in the low value of the thickness 

of the plate. 
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Fig. 17. Non-dimensional stress (σ̅𝑥𝑥 ) history of the 

laminated composite skew plate (0°/90°/0°) and h/a=0.1 
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Fig. 18. Non-dimensional stress (σ̅𝑦𝑦) history of the 

laminated composite skew plate (0°/90°/0°) and h/a=0.1 
 

 

Fig. 17 shows the non-dimensional stress (σ̅𝑥𝑥) history. 

From the figure, it is concluded that the 15° skew plate has 

the highest amplitude with maximum peak value as 175 

whereas, for the 45° and 60° plates the amplitude was lower 

than others, having maximum peak value of 90 and 35, 

respectively.  

Fig. 18 shows the non-dimensional stress (σ̅𝑦𝑦) history. 

From the figure, it is observed that the 0° skew plate has the 

highest amplitude with maximum peak value as 3. This 

non-dimensional stress value is very low, as compared to 

(σ̅𝑥𝑥). The 60° skew plates have the minimum amplitude 

than 0°, 30° and 45° plates. 

Fig. 19 shows the non-dimensional stress (σ̅𝑥𝑦) history. 

The figure indicates that the highest amplitude with a 

maximum peak value of 6 is for 0° skew plate, whereas the 

lowest amplitude with maximum peak value is about 0.1 for 

the 60° skew laminated plate.  

The variation of deflection and stresses were shown in 

Fig. 20-23 for different skew angles of the laminated plate. 

The thickness ratio was taken as 0.2. 

Fig. 20 shows the non-dimensional deflection history. 

From the figure, it is concluded that the highest amplitude 

with maximum peak value is about 0.16 of the 15° skew 

plate, whereas the 60°  skew plate shows the lowest  
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Fig. 19. Non-dimensional stress (σ̅𝑥𝑦)  history of the 

laminated composite skew plate (0°/90°/0°) and h/a=0.1 
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Fig. 20. Deflection history of the laminated composite 

skew plate (0°/90°/0°) and h/a=0.2 
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 Fig. 21. Non-dimensional stress (σ̅𝑥𝑥 ) history of the 

laminated composite skew plate (0°/90°/0°) and h/a=0.2 

 

 

amplitude with peak value as 0.03 cm for 0.2 thickness 

ratio. 
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Transient response of rhombic laminates 
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Fig. 22. Non-dimensional stress (σ̅𝑦𝑦)  history of the 

laminated composite skew plate (0°/90°/0°) and h/a=0.2 
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Fig. 23. Non-dimensional stress (σ̅𝑥𝑦)  history of the 

laminated composite skew plate (0°/90°/0°) and h/a=0.2 
 

 

Fig. 21 shows the non-dimensional stress (σ̅𝑥𝑥) history. 

From the figure, it is seen that the 15° skew plate has the 

highest amplitude with a maximum peak value of whereas 

the lowest value is for the 60° skew laminated plate of 10.  

Fig. 22 shows the non-dimensional stress (σ̅𝑦𝑦) history. 

The figure indicates that the 15° skew plate has the highest 

amplitude with maximum peak value as 1.2 whereas the 

lowest amplitude is for the 60° skew plate, i.e. 0.5 cm.  

Fig. 23 shows the non-dimensional stress (σ̅𝑥𝑦) history. 

From the figure, it is concluded that the highest amplitude 

and a maximum peak value of about 1.84 are observed for 

the 0° skew plate, whereas the lowest amplitude with a peak 

value of 0.05 is for the 45° and 60° skew laminated plates.  

 It was also concluded that in order to reduce the 

deflection or stresses of laminated composite plates, the 

increase in the thickness ratio of the plate is required.  

 

 
5. Conclusions 

 

•  A 2D FE model was developed using mathematical 

formulation based upon cubic variation of thickness 

coordinate in displacement fields including skew 

transformations for transient analysis of laminated 

composite skew plate. 

•  The present 2D FE model predicts results close to 

the analytical results. 

• (0°/90°) the laminated composite plate shows 

maximum deflection and low stress as compared to other 

considered lamination schemes. 

•  Deflection and in-plane stresses for the 0° and 15° 

skew laminated plates are higher than for other skew angles 

i.e. 30°,45° and 60°. 

•  With the increase in the thickness of the laminated 

plate, reduction of deflection and in-plane stresses occur. 

•  Numerical results of the transient response of 

rhombic laminates based on present formulation will serve 

as a point of reference for future scholars. It will also help 

construction industry and engineers in the selection of 

proper laminates. 

The forced vibration of laminated composite plates 

using ISDT was carried for the first time. The present 2D 

FE C0 model solutions are in good agreement with the 

analytical solutions and hence, useful enough to explore the 

effect of the dynamic behaviour of laminated composite 

twisted plates. 
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