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1. Introduction 
 

Thin plates with variable thickness are widely used in 

civil, aerospace and marine structures. They possess a 

number of attractive features, such as material saving, 

weight reduction, stiffness enhancing and high strength to 

weight ratio. Consideration of buckling behavior for such 

plates is essential to have an efficient and reliable design. 

Research on buckling of thin plate with variable thickness 

under compression has gained more and more attention in 

recent years. 

Wittrick and Ellen (1962) pioneered analytical research 

on buckling of rectangular plates with linear and 

exponential variation in thickness in one direction using the 

Galerkin method. Applying a perturbation technique, the 

critical buckling stress of a simply supported rectangular 

plate with general thickness was derived by Chenil and Dua 

(1973). The results obtained for a plate with linear variation 

in thickness are in good agreement with those of Wittrick 

and Ellen (1962). Navaneethakrishnan (1988) solved the 

differential equation characterizing the transverse deflection 

of a thin rectangular plate of variable thickness semi-

numerically using the quintic spline collocation technique. 

The buckling coefficients and the mode shapes were 

obtained for different boundary conditions. Nerantzaki and 

Katsikadelis (1996) presented the analog equation method 

to analyze buckling of plates with variable thickness. The 

eigenvalue problem for a differential equation of buckling 
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was converted into a linear problem and the buckling loads 

were established numerically then. The extended 

Kantorovich method in conjunction with the exact element 

method were used by Eisenberger and Alexandrov (2003) to 

obtain buckling loads and buckling modes of rectangular 

thin plates with thickness that varies in the directions 

parallel to the two sides. Saeidifar et al. (2010) introduced a 

numerical calculation of buckling loads for an elastic 

rectangular plate with variable thickness and elasticity 

modulus in one direction by transforming the governing 

partial differential equation of plate motion to an ordinary 

differential equation. Buckling analysis of thin rectangular 

plates under uniaxial and bi-axial locally distributed 

compressive stresses was performed analytically by Wang 

et al. (2016) using the differential quadrature method. Li et 

al. (2018) and Wang et al. (2016) used distinctive 

symplectic superposition method to solve buckling problem 

of plates with fully free edges and combined clamped and 

simply supported edges under bi-axial compression. The 

analytic solutions and mode shapes were presented and 

validated by the finite element method. Minh et al. (2018) 

used phase field method to investigate stability of cracked 

rectangular FGM plate with linear variable thickness. It 

showed that the thickness variation had greater influence on 

buckling behavior of the plate than the cracks. As a typical 

thickness variation form, buckling behavior of stepped 

rectangular plate has attracted much attention. Kobayashi 

and Sonoda (1990) developed a power series method to 

solve the buckling problem of uniaxially compressed 

rectangular plates with stepped thickness. The effects of 

thickness variation, plate aspect ratios and boundary 

conditions on the buckling load were analyzed. Based on 
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the Kirchhoff plate theory, Xiang and Wang (2002) and 

Xiang and Wei (2004) presented the buckling loads of 

multi-stepped rectangular plates by the Levy method and 

state-space technique. Effects of step-number, step-

thickness, step-length and the boundary conditions on 

buckling behavior of the plate were analyzed. Local 

buckling and post-buckling behavior of stepped plates with 

different geometries were studied by Azhari et al. (2005). 

The buckling loads and lateral displacements for the plates 

subjected to uniaxial and bi-axial compressions were 

obtained. Wilson and Rajasekaran (2013, 2014) and 

Rajasekaran and Wilson (2013) applied the finite difference 

method to research buckling load of stepped rectangular 

thin plate with different boundary conditions under different 

force combinations. New and exact buckling results 

corresponding to different geometries of the plates were 

presented and analyzed. In addition, investigations on tanks 

with stepped thickness by Chen et al. (2012) and Gong et al. 

(2013) are also worth reference. 

In this paper, an analytical method based on perturbation 

technique and Fourier series expansion is established to 

obtain buckling load of simply supported rectangular thin 

plate with arbitrary thickness variation along both x and y 

directions under bi-axial compression. Different thickness 

variations of the plate such as linear, parabolic, stepped and 

trigonometric forms are researched under different 

combinations of compression. The buckling loads and 

buckling modes for different cases are calculated and the 

effects of thickness variation, aspect ratio and compression 

combination on the buckling coefficients are discussed 

based on numerical analyses. Comparative studies are also 

performed to verify the presented method in this paper. 

 

 
2. Analytical solution of the buckling load 
 

Consider the thin rectangular plate under bi-axial 

compression as shown in Fig. 1. The length and width are a 

and b respectively and the thickness h varies in x and y 

directions arbitrarily. According to the classical plate theory, 

the governing equation of the plate under forces can be 

expressed as Eq. (1). 

2 22 2 2 2

2 2 2 2
2 2 0

xy yx
x xy y
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x x y y x x y y
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       
 (1) 

in which W is the lateral deformation, Nx, Ny and Nxy are the 

in-plane forces per unit length, Mx, My and Mxy are moment 

components which satisfy 
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where D=Eh3/12(1-v2). 

Since the plate is considered compressed by bi-axial 

loads alone in this paper as shown in Fig. 1, the axial force 

components will satisfy Nx=-p, Ny=-q and the shear force 

component will satisfy Nxy=0. Then, Eq. (1) can be 

transformed as follows 

 

Fig. 1 Rectangular plate under biaxial compression 
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In order to make the solutions more general, the 

following non-dimensional parameters are introduced 

0 0

, , ,
x y W h

w H
a b h h

 = = = =  (4) 

where h0 is the nominal thickness of the plate. 

In view of the non-dimensional parameters, the 

governing differential equation can be transformed by 

substituting Eq. (4) into Eq. (3) to yield 
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 (5) 

A non-dimensional parameter λ representing the ratio of 

compression along x coordinate to that along y coordinate is 

introduced as follows 

q p=  (6) 

As we know that various thickness variations such as 

trigonometric, linear, exponential and stepped forms are 

used in thin plate structures. Since some thickness 

variations may be too complicated to be applied in Eq. (5) 
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directly, the buckling parameters may not be analytically 

solved or expressed as analytical formulas. Thus, the 

perturbation method is applied in this paper and the 

thickness function that varies arbitrarily in the x and y 

coordinates is assumed to take on the following form 

( ) ( ) ( ) ( )2

0 1 2 0

1

, , , ,
i

i

ih x y h h x y h x y h h x y  


=

= + + += +  (7) 

where ε(0≤ε≤1) is the non-dimensional parameter indicating 

the thickness variation magnitude, h0 is the nominal 

thickness and hi(i≥1) denotes specific thickness variation 

function that determines the real thickness of the plate. 

Using the perturbation method, difficulties of applying 

complicated variable thickness expression directly in the 

solution process can be avoided and the buckling load for 

the rectangular plate with arbitrary thickness variation can 

be solved analytically. According to Eq. (4), the thickness 

function as shown in Eq. (7) can be transformed into a non-

dimensional form 
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According to the perturbation method, the non-

dimensional lateral displacement will be expressed as 

follows 

2

0 1 2

0

1

( , ) ( , ) ( , ) ( , ) ......

( , ) ( , )i

i

i

w w w w

w w

         

    


=

= + + +

= +
 (9) 

in which w0 represents the solution corresponding to 

nominal thickness h0, wi represents the variation of lateral 

displacement caused by specific thickness variation 

function hi. 

The rectangular plate is assumed as simply supported at 

all edges in this paper. Because for the other boundary 

conditions like clamped supported or free, the plate’s 

displacement satisfying the boundary conditions are too 

complicated to be expressed analytically. It leads to the 

failure to derive the analytical formula of the critical 

buckling load using this method. Thus, the fully simply 

supported condition is considered in this paper and the 

boundary condition can be expressed as follows 
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In order to arrive at the critical buckling load of the plate 

under bi-axial compression, the pressure acting on the plate 

along x coordinate will be expressed in term of ε as follows 

and the pressure along y coordinate can be obtained 

according to Eq. (6) then. 
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where p0 denotes solution of the plate with constant 

thickness, pi are solutions accounting for the thickness 

variation. 

Substituting Eqs. (6), (8), (9) and (11) into Eq. (5), 

collecting the like terms in ε0, one can obtain 

0( ) 0w =  (12) 

then collecting the like terms in εi(i≥1), one obtains 
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the operator Ψ is defined as 
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Taking the like terms in ε for an example, the first term 

of Ti is provided as follows 
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The Eq. (12) will be solved firstly and the solution that 

satisfying the boundary condition is sought as 

0 0 sin sinmnw A m n =  (16) 

where m and n are the half-wave numbers of the plate along 

x and y coordinates respectively, A0mn is undetermined 

amplitude. 

Substituting Eq. (16) into Eq. (12) yields 
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For a rectangular plate with constant thickness under 

certain bi-axial compression, the critical buckling load p0cr 

as well as the corresponding buckling mode (m, n) can be 

determined according to Eq. (17) by minimizing p0 with 

various combination of m and n. 

Then, the solution of Eq. (13) will be solved in the 

following form 
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where j and k are integers and Aijk is undetermined 

amplitude. 

Substituting Eq. (18) into Eq. (13), one can obtain 
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Applying the Galerkin method, both sides of Eq. (19) 

will be multiplied by sinmπξsinnπη and integrated to ξ and 

η from 0 to 1 respectively. We will obtain 

527



 

Haigui Fan, Zhiping Chen, Zewu Wang and Peiqi Liu 

( )

( ) ( ) ( ) ( )

2
1 1

2 2 2 2

0
0 0

0

2
2 2 2

2 2 2 20 0

2

0 0

sin sin
4

4

i
mn i

ijk

p
a m b n A T m n d d

D

A a p a p b
m n m n

b D D


    

    

+ +

  
 = + − − 
   

 
 (20) 

According to Eq. (17), right side of Eq. (20) will 

become zero. Then, Eq. (20) can be transformed as 
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Thus, the asymptotic formula of the critical buckling 

load for the rectangular plate with arbitrary thickness 

variation under bi-axial compression can be given by 
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Since the undetermined amplitude A0mn is included in 

the Ti term, it will be eliminated automatically from Eq. 

(22) in the solving process. Then, Eq. (22) will be used to 

evaluate buckling behavior of thin rectangular plates with 

different geometries and different variable thicknesses 

under different forces. 

 

 
3. Numerical analysis and validation 

 
3.1 Case 1: Plate with linear and parabolic thickness 

variations along x coordinate 
 

Eq. (23) as follows is used to describe the thickness 

variations which β=1 represents the linear form and β=2 

represents the parabolic form. Cross-section of the plates 

with this two thickness variation forms have been shown in 

Fig. 2. h0 is the nominal thickness at x=0 and he is the 

thickness at x=a. 
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x
h x h h h
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
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= −  
 

−  (23) 

According to Eq. (4), the non-dimensional form of Eq. 

(23) will be obtained as follows 

0
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h
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= − − 
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 (24) 

in which ε=1-he/h0, H1=-ξβ and Hi(i≥2)=0. 

Substituting Eq. (24) and relevant parameters into Eq. 

(22), the critical buckling load of the plate corresponding to 

linear and parabolic thickness variations can be obtained as 

follows 

β=1: 
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Fig. 2 Rectangular plate under biaxial compression 

 

 

β=2: 
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The critical buckling load pcr will be transformed into 

non-dimensional form by introducing a critical buckling 

factor φ as 

2

cr

2

0

p b

D



=  (27) 

The critical buckling factor of the plates with different 

thickness variation amplitudes h0/he =1.125, 1.25, 1.375, 1.5 

under bi-axial compression are shown in Tables 1-3. The 

Poisson’s ratio is taken as v=0.3. Buckling mode is given 

next to the value of the plate’s aspect ratio in the Tables 1-3. 

For verification, the available results from Eisenberger 

and Alexandrov (2003) are compared with the current 

results obtained from this paper in Tables 4 and 5. Since the 

critical buckling load in Eisenberger and Alexandrov (2003) 

is normalized as φ'=pcrb2/π2De where ( )3 2/12 1e eD Eh v= −

and the Poisson’s ratio is taken as 0.25 which are different 

from this paper, the results obtained in Tables 1-3 will be 

transformed according to Eisenberger and Alexandrov 

(2003) for comparison as shown in Tables 4 and 5. 

Similarly, the available results from Chehil and Dua (1973) 

are compared in Tables 6. The flexural rigidity Dav in Chehil 

and Dua (1973) was defined as ( )3 2/12 1avEh v− , where 

hav=(h0+he)/2 in this paper. Besides, the Poisson’s ratio was 

taken as 1/3 which is also different from this paper. So, the 

results in Table 1 will be transformed according to Chehil 

and Dua (1973) for comparison as shown in Tables 6. 

It can be seen from Tables 4-6 that the critical buckling 

loads obtained by the method in this paper are in close 

agreement with that in Eisenberger and Alexandrov (2003) 

and Chehil and Dua (1973) for different aspect ratios and 

thickness variation amplitudes, which verifies the method 

presented in this paper. Based on that, the variation of 

critical buckling factors with thickness variation amplitude 

for the plates with different aspect ratios at λ=1 are shown 

in Figs. 3 and 4 which representing the linear and parabolic 

thickness variations respectively. 
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Table 1 Critical buckling factor φ for λ=0 

a/b 

β=1 β=2 

h0/he h0/he 

1.125 1.25 1.375 1.5 1.125 1.25 1.375 1.5 

0.25(1,1) 15.05 12.64 10.67 9.03 16.31 14.91 13.77 12.81 

0.5(1,1) 5.21 4.38 3.69 3.13 5.61 5.1 4.69 4.34 

1(1,1) 3.33 2.8 2.36 2 3.58 3.24 2.96 2.73 

2(2,1) 3.33 2.8 2.36 2 3.56 3.21 2.92 2.68 

3.5(4,1) 3.39 2.85 2.41 2.04 3.62 3.26 2.96 2.72 

5(5,1) 3.33 2.8 2.36 2 3.56 3.2 2.91 2.67 

Table 2 Critical buckling factor φ for λ=0.5 

a/b 

β=1 β=2 

h0/he h0/he 

1.125 1.25 1.375 1.5 1.125 1.25 1.375 1.5 

0.25(1,4) 0.41 0.35 0.29 0.25 0.44 0.4 0.37 0.34 

0.5(1,2) 1.48 1.24 1.05 0.89 1.59 1.44 1.32 1.21 

1(1,1) 2.22 1.87 1.58 1.33 2.38 2.16 1.97 1.82 

2(2,1) 3.23 2.72 2.29 1.94 3.45 3.11 2.83 2.6 

3.5(4,1) 3.38 2.84 2.4 2.03 3.61 3.25 2.96 2.71 

5(5,1) 3.33 2.8 2.36 2 3.55 3.2 2.91 2.66 

Table 3 Critical buckling factor φ for λ=1 

a/b 

β=1 β=2 

h0/he h0/he 

1.125 1.25 1.375 1.5 1.125 1.25 1.375 1.5 

0.25(1,4) 0.21 0.17 0.15 0.12 0.22 0.2 0.18 0.17 

0.5(1,2) 0.78 0.66 0.56 0.47 0.84 0.76 0.7 0.64 

1(1,1) 1.67 1.4 1.18 1 1.79 1.62 1.48 1.36 

2(2,1) 3.14 2.64 2.22 1.88 3.35 3.02 2.75 2.52 

3.5(4,1) 3.38 2.84 2.39 2.03 3.6 3.24 2.95 2.7 

5(5,1) 3.33 2.8 2.36 2 3.55 3.2 2.91 2.66 

Table 4 Comparison of critical buckling factors φ' for linear thickness variation β=1 (φ'=pcrb2/π2De) 

φ' 

a/b=0.5 a/b=2 

h0/he h0/he 

1.125 1.25 1.125 1.25 

Eisenberger and Alexandrov (2003) 7.4678 8.7769 4.6295 5.1138 

Present 7.4181 8.5547 4.7413 5.4688 

Table 5 Comparison of critical buckling factors φ' for parabolic thickness variation β=2 (φ'=pcrb2/π2De) 

φ' 

a/b=0.5 a/b=1 a/b=2 

h0/he h0/he h0/he 

1.125 1.25 1.125 1.25 1.125 1.25 

Eisenberger and Alexandrov (2003) 7.9879 9.9550 5.0655 6.2174 4.9015 5.6685 

Present 7.9883 9.9586 5.0865 6.3094 5.0685 6.2648 

Table 6 Comparison of critical buckling factors φ' for linear thickness variation β=1 (φ'=pcrb2/π2Dav) 

φ' 

a/b=0.25 a/b=0.5 a/b=1 

h0/he h0/he h0/he 

1.125 1.25 1.375 1.125 1.25 1.375 1.125 1.25 1.375 

Chehil and Dua (1973) 17.990 17.803 17.538 6.225 6.160 6.068 3.966 3.878 3.753 

Present 17.451 16.937 16.180 6.041 5.869 5.596 3.861 3.752 3.579 
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Fig. 3 Critical buckling factor vs thickness variation 

amplitude when β=1 

 

 

Fig. 4 Critical buckling factor vs thickness variation 

amplitude when β=2 
 

 

As it can be seen that the critical buckling factor φ will 

decrease as the thickness variation amplitude h0/he 

increases. For the plate with larger aspect ratio, the critical 

buckling factor is higher and effects of thickness variation 

on the critical buckling factor are greater. Comparison 

between Fig. 3 and Fig. 4 shows that reduction amplitude of 

the critical buckling factor as h0/he increases is relatively 

larger for β=1. It means that linear thickness variation has 

greater influence on buckling behavior of the rectangular 

plate than the parabolic thickness variation. 

 

3.2 Case 2: Plate with stepped thickness variation 
along x coordinate 

 

The stepped thickness variation form as shown in Fig. 5 

can be expressed by Eq. (28), in which K is the auxiliary 

parameter that tends to be infinite. Taking the plate with 

h10/h20=1.5 and a1/a=0.4 as an example, the schematic 

diagram of the plate’s thickness that expressed by Eq. (28) 

is shown in Fig. 6. 

( ) ( )10 120 20
1

0 arctan
2

h h h h
h x K x a



+ −
−−=  (28) 

 

Fig. 5 Stepped thickness variation form 

 

 

Fig. 6 Description of stepped thickness variation by Eq. 

(28) 

 

 

It can be seen from Fig. 6 that as the auxiliary parameter 

K becomes larger gradually, the thickness variation tends to 

be the stepped pattern. When K reaches 10000, the wall 

thickness curve in Fig. 6 can describe the thickness 

variation of the plate quite accurately. 

Eq. (28) will be transformed into non-dimensional form 

as follows 

11 arctan
a

H Ka
a

 


= −


− 
 

 (29) 

where 

( )

( )
10 2010 20 1

0 1

10 20

2
, , arctan

2

h hh h a
h H Ka

h h a
 



+  
= = = − −

+



−



 (30) 

Substituting Eq. (29) and Eq. (30) into Eq. (22), the 

critical buckling load of the plate with stepped thickness 

variation can be obtained as follows 

( )

( )

2
2 2

2 20
cr 2 2 2 2 2

10 20 1 1

10 20

3
1 sin 2 1 2

D a
p m n

a m b n b

h h a a
m m

m h h a a





 


 
= + 

+  

 −      
 − + −     

+       

 (31) 

Similarly, Eq. (31) will be transformed into non-

dimensional form by introducing the critical buckling factor 

as 

2

cr

2

10

p b

D



=  (32) 
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The critical buckling factor of the plates with different 

thickness variation amplitudes h10/h20 =1.25, 1.5, 1.75 and 

different stepped lengths a1/a=0.2, 0.4, 0.6, 0.8 under bi-

axial compression are shown in Tables 7-9. Buckling mode 

is also given next to the value of the plate’s aspect ratio in 

these tables. 

In order to verify the presented method, the available 

results from Xiang and Wang (2002) and Wilson and 

Rajasekaran (2014) are compared with the results obtained 

from this paper in Tables 10 and 11. Because the critical  

 

 

 

 

 

buckling load in the above references is normalized as 

φ'=pcrb2/π2D20 and the Poisson’s ratio is taken as 0.25, the 

results obtained in this paper will be transformed according 

to that as shown in Tables 10 and 11. 

It can be seen from Tables 10 and 11 that the results 

obtained by present analysis are in close agreement with the 

previous work. It verifies the accuracy of the present 

theoretical method. According to the numerical results, the 

variation of critical buckling factors with thickness 

variation amplitude for the plates with different aspect  

Table 7 Critical buckling factor φ for λ=0 

a/b 

a1/a=0.2 a1/a=0.4 a1/a=0.6 a1/a=0.8 

h10/h20 h10/h20 h10/h20 h10/h20 

1.25 1.5 1.75 1.25 1.5 1.75 1.25 1.5 1.75 1.25 1.5 1.75 

0.25(1,1) 9.21 4.79 2.29 11.47 8.03 5.99 14.87 12.88 11.54 17.13 16.11 15.32 

0.5(1,1) 3.19 1.66 0.79 3.97 2.78 2.07 5.14 4.46 3.99 5.93 5.58 5.27 

1(1,1) 2.04 1.06 0.51 2.54 1.78 1.33 3.29 2.85 2.55 3.79 3.57 3.37 

2(2,1) 2.24 1.35 0.84 2.87 2.25 1.86 2.96 2.38 2.02 3.59 3.28 3.04 

3.5(4,1) 2.45 1.62 1.13 2.82 2.14 1.73 3.12 2.57 2.22 3.49 3.1 2.82 

5(5,1) 2.33 1.48 0.99 2.72 2.04 1.62 3.11 2.59 2.26 3.5 3.15 2.89 

Table 8 Critical buckling factor φ for λ=0.5 

a/b 

a1/a=0.2 a1/a=0.4 a1/a=0.6 a1/a=0.8 

h10/h20 h10/h20 h10/h20 h10/h20 

1.25 1.5 1.75 1.25 1.5 1.75 1.25 1.5 1.75 1.25 1.5 1.75 

0.25(1,4) 0.25 0.13 0.06 0.32 0.22 0.16 0.41 0.35 0.32 0.47 0.44 0.42 

0.5(1,2) 0.91 0.47 0.23 1.13 0.79 0.59 1.46 1.27 1.14 1.69 1.59 1.5 

1(1,1) 1.36 0.71 0.34 1.69 1.18 0.88 2.19 1.9 1.7 2.53 2.38 2.25 

2(2,1) 2.17 1.31 0.81 2.78 2.18 1.81 2.87 2.31 1.96 3.48 3.18 2.95 

3.5(4,1) 2.44 1.61 1.12 2.81 2.13 1.72 3.11 2.57 2.22 3.48 3.09 2.82 

5(5,1) 2.33 1.48 0.99 2.72 2.04 1.62 3.11 2.59 2.26 3.5 3.15 2.89 

Table 9 Critical buckling factor φ for λ=1 

a/b 

a1/a=0.2 a1/a=0.4 a1/a=0.6 a1/a=0.8 

h10/h20 h10/h20 h10/h20 h10/h20 

1.25 1.5 1.75 1.25 1.5 1.75 1.25 1.5 1.75 1.25 1.5 1.75 

0.25(1,4) 0.13 0.07 0.03 0.16 0.11 0.08 0.2 0.18 0.16 0.24 0.22 0.21 

0.5(1,2) 0.48 0.25 0.12 0.6 0.42 0.31 0.77 0.67 0.6 0.89 0.84 0.79 

1(1,1) 1.02 0.53 0.25 1.27 0.89 0.66 1.65 1.43 1.28 1.9 1.78 1.69 

2(2,1) 2.11 1.27 0.79 2.7 2.12 1.75 2.79 2.24 1.9 3.38 3.09 2.86 

3.5(4,1) 2.44 1.61 1.12 2.8 2.13 1.72 3.1 2.56 2.21 3.47 3.08 2.81 

5(5,1) 2.33 1.48 0.99 2.72 2.03 1.62 3.11 2.59 2.25 3.49 3.14 2.89 

Table 10 Comparison of critical buckling factors φ' for λ=0 and a/b=1 (φ'=pcrb2/π2D20) 

a1/a h10/h20 Xiang and Wang (2002) Present 

0.3 
1.2 4.5131 4.7280 

1.5 5.1516 5.3884 

0.7 
1.2 5.7436 5.8694 

1.5 7.6886 7.8731 
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Table 11 Comparison of critical buckling factors φ' for λ=1 

and a/b=1(φ'=pcrb2/π2D20) 

a1/a h10/h20 
Xiang and Wang  

(2002) 

Wilson and  

Rajasekaran (2014) 
Present 

0.3 

1.2 2.2867 2.9547 2.3640 

1.5 2.7171 2.7444 2.9442 

2.0 3.4449 3.4971 3.9793 

0.7 

1.2 2.9547 2.9471 2.9347 

1.5 4.4051 4.4295 4.7865 

2.0 6.6870 6.8006 6.9852 

 

 

Fig. 7 Critical buckling factor vs thickness variation 

amplitude when a1/a=0.4 
 

 

Fig. 8 Critical buckling factor vs thickness variation 

amplitude when a1/a=0.6 

 
 

ratios at λ=1 are shown in Figs. 7 and 8 corresponding to 

a1/a=0.4 and 0.6 respectively. 

As it can be seen from Figs. 7 and 8, the critical 

buckling factor for the plate with larger aspect ratio is 

bigger than that with smaller aspect ratio. Effects of 

thickness variation on bucking behavior of stepped plates 

are greater for the larger aspect ratios, and as the stepped 

length a1/a increases, the effects will become smaller. 

 

Fig. 9 Critical buckling factor vs thickness variation 

amplitude when λ=0 
 

 

Fig. 10 Critical buckling factor vs thickness variation 

amplitude when λ=0.5 
 

 

Fig. 11 Critical buckling factor vs thickness variation 

amplitude when λ=1 
 

 

3.3 Case 3: Plate with trigonometric thickness 
variation along x and y coordinates 

 

The thickness expression of rectangular plate with 

trigonometric thickness variation along both x and y 

coordinates has been shown in Eq. (33). 
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ε is the non-dimensional parameter indicating the 

thickness variation magnitude defined in Eq. (7) satisfying 

0≤ε≤1. It will be transformed into non-dimensional form as 

follows 

1 sin sinH   = −  (34) 

Taking ε=0.2 as an example, the Eq. (34) and relevant 

parameters is substituted into Eq. (22), the critical buckling 

load of the plate with trigonometric thickness variation can 

be obtained as follows 

( )( )( )

( )

2
2

2 2 2

0 2 2 2

0
cr 2 2 2 2 2 2 2 2 2 2

2
2 2

2 2 2

2 2

2 4 2 2 2
2 2 2

2 4 2 2 2

192

4 1 4 1

1

1
1

2

a
D m n

b D m n
p

a m b n m n a m b n

a a
m n v m

b b

va a a a a
v n m n

b b b b b



 



 
+ 

 = −
+ − − +

    
 + + +   
    

 
−     + + + − + +     

     

 (35) 

According to Eq. (27), critical buckling factor of the 

plates with trigonometric thickness variation will be 

obtained by transforming Eq. (34) into non-dimensional 

form. The variation of critical buckling factor φ with 

thickness variation amplitude ε for the plates with different 

aspect ratios at λ=0, λ=0.5, λ=1 are shown in Figs. 9-11 

respectively. 

As we can see, the critical buckling factor decreases 

gradually as the thickness variation amplitude increases. It 

verifies that the buckling capacity of the plate will be 

weakened because of the thickness reduction. Eq. (34) and 

Figs 9-11 can be used as references to obtain the critical 

buckling load of different rectangular plates with 

trigonometric thickness variation. 
 

 

5. Conclusions 
 

Combining the perturbation technique, Fourier series 

expansion and Galerkin methods, the linear governing 

differential equation of the simply supported plate with 

arbitrary thickness variation under bi-axial compression is 

solved. The analytical formulas of critical buckling loads 

and buckling modes have been established. Numerical 

analyses on the critical buckling loads of the plates with 

different thickness variation forms including linear, 

parabolic, stepped and trigonometric under different load 

combinations are presented. Comparative analysis with 

previous work has also been carried out. It shows that the 

critical buckling loads calculated by the method in this 

paper coincide well with the available references, which 

verifies the accuracy of the presented method. Numerical 

analyses reveal that the analytical formulas derived in this 

paper can be used to calculate critical buckling load and 

evaluate buckling capacity of the variable thickness plates 

conveniently and efficiently. Results show that different 

thickness variation forms have different effects on buckling 

behavior of the simply supported plates under bi-axial 

compression. For the plates with linear and parabolic 

thickness variations, the detrimental effects of thickness 

reduction on the buckling capacity are more serious for the 

plates with linear thickness variation and larger aspect ratio. 

For the plates with stepped thickness variation, the 

detrimental effects are greater for the smaller stepped length 

a1/a and larger aspect ratios. For the plates with 

trigonometric variable thickness, increase of thickness 

variation amplitude will make them more vulnerable to 

buckling. The analytical method presented in this paper can 

be used as reference for buckling analysis and design of 

simply supported thin variable thickness plates under bi-

axial compression. 
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