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1. Introduction 
 

The curvature and its associated moment-concept play a 

central role in physics, cosmology, structural and 

gravitational analysis. Historically, driven by musical 

phenomena, the theory of plates and shells had begun with 

Leonhard Euler’s works on acoustics and curvature (Euler L 

1766), a mathematical answer was offered on how bells and 

drums produce sounds. Based on Euler’s work, the internal 

stresses and moment-curvature relations were offered 

through introducing the proportionality constants and 

uncovering their dimensions. Moreover, Bernoulli’s 

attempted the formulation of the mathematical expression 

for plates deflection. Though this attempt resulted in a 

deficient equation lacking the twisting term with its mixed 

operator and these findings facilitated the introduction of 

the Germain-Lagrange biharmonic equation. 

In 1811, in response to a contest held by Paris Academy 

of Sciences concerning Chladni’s experiments, Sophie 

Germain submitted a mathematical explanation, which has 

been corrected by Joseph Lagrange to form the equation of 

vibration of thin plates, known as Germain-Lagrange plates 

biharmonic equation or the governing differential equation 

for deflection of thin plates (Love A 1888, Sihame et al. 

2018, Adim et al. 2018, Behravan et al. 2017, Tran et al. 

2017, Murat 2014, Szilard 2004). In 1829, based on 

Germain work (Gray 1978), Poisson introduced the 

governing plate’s differential equation in polar coordinates 

(Poisson 1829). Between 1828 and 1830, Cauchy (1900) 

and Poisson (1829) successfully formulated through the 

theory of elasticity’s equations the plate bending problem. 

Implementing the powers of the distance measured from a 

middle surface into a series expansion, retaining only the 

first terms of significance. Later, the tensors formulations  
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were introduced to the structural theory with Cauchy 

(1900), Quinn and Stubblefield (2012), Capaldi (2012), and 

Lame (1866). In the second half of the nineteenth century, 

Kirchhoff refined the theory of thin plates with his widely 

accepted hypotheses (Ventsel and Krauthammer 2001, 

Kirchhoff 1850, Kurrer 2008). Deriving the differential 

equation of plates deflection through the principle of virtual 

displacements, generalizing the constant of rigidity and 

introducing a consistent formulation of the boundary 

conditions (Ventsel and Krauthammer 2001, Kirchhoff 

1850, Kurrer 2008, Kirchhoff 1897). 

Regretfully, the integration of higher curvature 

conceptions and formulations into the structural theory had 

been left-behind, following the adoption of Euler’s 

formulation in buckling analysis, and Germain-Lagrange in 

plate’s biharmonics. On the bases of whom-concepts and 

conventions, ensuing contribution immerged tackling 

various structural problems. However, their formulations 

coordinates-dependence has resulted in many formulations 

for the same geometrical problem in various coordinate 

systems, and yet with an enormous amount of simplifying 

assumptions. In this regard, Germain, Lagrange and Poisson 

conception in plate’s formulation has failed to offer such 

criterion. Thus, has failed to reveal the formulation of the 

natural law of flexural biharmonics, that possess the 

“general (or diffeomorphism) covariance” (Norton 1993, 

Einstein and Minkowski 1920). Consequently, a wide gap 

has formed, between the structural theory, and the curvature 

theory of surfaces and manifolds, as the later had succeeded 

into astrophysics through tensors formulations with 

Riemann contributions. 

Mohr circle; named after the German civil engineer 

Christian Otto Mohr (Oct 1835-Oct 1918) is a graphical 

representa t ion of Cauchy s tat ic  s tress tensor ’s 

transformation (Ugural 2010, Parry 2005, Ugural and 

Fenster 2008). It falls in the field of graphical statics and 

analysis introduced by Parry (2005) and expanded by 

Kurrer (2008), Mohr (1906), Maxwell and Föppl (1900). In 
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second-order tensor can be represented using the same 

principals, this includes stress, strain, moment and 

curvature. Of particular interest in this context (in dealing 

with the problem of flexural analysis) is the moment and 

curvature circles, since, the stress and strain have no single 

value at a particular section. Moreover, different materials 

across the thickness alter the stress distribution according to 

their respective stiffness. The moment and curvature, 

therefore, have the advantage of having a single Mohr circle 

representation at each section of the plate. In this study, 

moment representation has been considered for this reason, 

in addition to its importance in plates design and practice. 

Mohr circle has the advantage of representing both 

normal and twisting moments with simple representation. 

Thus, through implementing the circle, the three moments 

problem are reduced into two circle parameters problem; 

namely, a centre and a radius (also referred to as, Mean and 

Deviatoric Moments in continuum mechanics). Fig. 1 

illustrates Mohr circle representation for bending moment 

of infinitesimal plate elements, in which the radius and the 

centre expressions are depicted. The moment 

transformation equations that establishes the bases of Mohr 

circle representation are as follows (Ugural 2010, Parry 

2005, Ugural and Fenster 2008, Lisle and Robinson 1995). 

𝑀𝑥′ =
(𝑀𝑥 +𝑀𝑦)

2
+
(𝑀𝑥 −𝑀𝑦)

2
⋅ 𝑐𝑜𝑠(2𝜃) 

+𝑀𝑥𝑦 ⋅ 𝑠𝑖𝑛(2𝜃) 

(1) 

𝑀𝑦′ =
(𝑀𝑥 +𝑀𝑦)

2
−
(𝑀𝑥 −𝑀𝑦)

2
⋅ 𝑐𝑜𝑠(2𝜃) 

−𝑀𝑥𝑦 ⋅ 𝑠𝑖𝑛(2𝜃) 

(2) 

𝑀𝑥′𝑦′ = −
(𝑀𝑥 −𝑀𝑦)

2
⋅ 𝑠𝑖𝑛(2𝜃) −𝑀𝑥𝑦 ⋅ 𝑐𝑜𝑠(2𝜃) (3) 

 

 

where (x, y) coordinates are to be transformed into (x`, y`) 

coordinates orientation. These equations provide the 

transformation for bending moment in x and y; (i.e. around 

y and x, respectively) and the twisting moment on the plate 

element for a coordinate system rotation with an angle θ. 

For every 2D-static tensor (whether it is a stress, moment, 

strain or a curvature tensor), there need be a special 

coordinate’s orientation, which expels the shear, twisting 

moment, shear strain and twisting curvature from the tensor 

matrix, resulting in pure normal stresses actions. This is 

referred to as the principal moment’s plane. This plane can 

be found through equating Eq. 3 to zero, which result in the 

following plane orientation. 

tan(2𝜃𝑝) =
2𝑀𝑥𝑦

(𝑀𝑥 −𝑀𝑦)
 (4) 

Finally, introducing the principal plane angle into Eq. 1 

and 2 would result in the following expression for the first 

and second principal moments; (the highest and the lowest 

bending moments acting on the respective element of 

concern). 

𝑀1,2 =
(𝑀𝑥 +𝑀𝑦)

2
± √(

(𝑀𝑥 −𝑀𝑦)

2
)

2

+ (𝑀𝑥𝑦)
2
 (5) 

In the preceding equation, the first term locates the 

centroid of the Mohr circle, and the square root term 

symbolizes the circle radius. One of the most interesting 

properties of the Mohr circle representation is in its 

correlation to various tensor properties. For instance, the 

centroid of Mohr circle is the mean moment for the 

particular-tensor that results in pure bending action and 

thus, has no contribution to twisting distortion. This centre 

moment is also twice the first moment invariant, which 

equal the summation of the normal moments in the tensor 

and is constant at a particular-element in the plate 

regardless of the orientation in concern. The radius, on the 

other hand, characterizes the shear or twisting action and  

 

Fig. 1 Mohr circle concept illustration for an infinitesimal plate element 
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the deviatoric margin of the moment tensor that contribute 

to the shearing or twisting distortion. This radius is equal 

also to the maximum twisting moment Mxy.max at the 

particular-element under consideration. 

𝑀𝑥𝑦.𝑚𝑎𝑥 = √(
(𝑀𝑥 −𝑀𝑦)

2
)

2

+ (𝑀𝑥𝑦)
2
 (6) 

The equations of moment transformation with respect to 

the principal plane orientation can be obtained from 

equation Eq. 1 and 2, resulting in the following . 

𝑀𝑥′ =
(𝑀1 +𝑀2)

2
+
(𝑀1 −𝑀2)

2
⋅ cos(2𝜃) (7) 

𝑀𝑦′ =
(𝑀1 +𝑀2)

2
−
(𝑀1 −𝑀2)

2
⋅ cos(2𝜃) (8) 

In a similar manner, the curvature can be used in 

bending problems to yield almost the same meaning as that 

of the moment with a sign convention similar-to that of the 

strain Mohr circle. due to the variation of adopted sign 

conventions for bending moment and curvature; while a 

positive curvature results from the increase in the rate of 

change of the slope-angle as consideration moves with 

respect to the distance along the curve (concaved 

downward), a positive bending moment is the moment 

resulting in an opposite deformation (concaved upward 

deformed shape) (Ugural 2010, Ugural and Fenster 2008). 

Fig. 2 depicts the Mohr circles for curvature and moment 

based on the aforementioned-equations. 
 

 

2. Hydrostatic moment phenomenon 
 

This section is devoted to the Phenomenon and concept 

Establishment in relation to continuum mechanics tensors 

formulation. According to the principals of continuum 

mechanics, any generic static stress tensor can be 

decomposed into a hydrostatic part, and a deviatoric tensor, 

thus, 

𝝈 = 𝝈𝒊𝒔𝒐 + 𝑺 (9) 

where σ is a general stress tensor, σiso is the isotropic 

hydrostatic stress tensor and S is the deviatoric, shear- 

 
 

producing stress tensor. In this research, this concept has 

been brought to the moment tensors, resulting in the 

following conscious representation. 

𝑴 = 𝑴𝒊𝒔𝒐 + 𝑺𝑴 (10) 

Introducing this equation in matrix representation yields 

the following; noting that twisting moment vanishes for the 

isotropic hydrostatic moment state. 

𝑴 = [
𝑀𝑥 𝑀𝑥𝑦
𝑀𝑥𝑦 𝑀𝑦

] = [
𝑀𝑖𝑠𝑜 0
0 𝑀𝑖𝑠𝑜

] 

+[
𝑀𝑥 −𝑀𝑖𝑠𝑜 𝑀𝑥𝑦
𝑀𝑥𝑦 𝑀𝑦 −𝑀𝑖𝑠𝑜

] 

(11) 

𝑴 = [

𝑀𝑥 +𝑀𝑦

2
0

0
𝑀𝑥 +𝑀𝑦

2

] + [

𝑀𝑥 −𝑀𝑦

2
𝑀𝑥𝑦

𝑀𝑥𝑦
𝑀𝑥 −𝑀𝑦

2

] (12) 

One of the phenomena of vital importance in this 

context henceforth is related to the static moment tensors in 

the hydrostatic moment state. In which, a state of an 

isotropic couple that mimics the isotropic confining stress 

given by the weight of water above a specific point, acting 

on an infinitesimal submerged particle, in accordance with 

the continuum mechanics definition (Capaldi 2012, Quinn 

and Stubblefield 2012). Subsequently, this situation when 

introduced to the moment tensors can be summarized in the 

following conditions. 

𝑀1 = 𝑀2 = 𝑀𝑥` = 𝑀𝑦` = 𝑀𝑖𝑠𝑜   ;    𝑀𝑥𝑦 = 0 (13) 

This when introduced to the continuum mechanics 

representation for stress tensors decomposition results in the 

omission of the S term in Eq. 9, and when introduced to the 

moment tensor equivalent representation results in the 

following. 

𝑴 = [
𝑀𝑖𝑠𝑜 0
0 𝑀𝑖𝑠𝑜

] (14) 

This novel conception of the hydrostatic moment tensor 

state can be interpreted in natural, mathematical and 

physical meaning as the case of stress tensors in continuum 

mechanics. That’s, while a hydrostatic stress tensor is 

described as the state of a submerged particle, a hydrostatic 

 

Fig. 2 Mohr circle representation and sign convention for curvature and moment 
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moment tensor state can be described as the state of bending 

of an infinitesimal continuum axisymmetric circular 

element, exhibiting a domain, loading and boundaries 

conditions axisymmetry. This definition results in pure 

isotropic normal curvature. The surface’s Gaussian 

curvature for such state is equal to the second and third 

tensor invariants and to the hydrostatic curvature squared, 

which in turn is half the first tensor invariant (Harutyunyan 

2017). These conditions explicitly suggest the development 

of a spherical surface (a part of a sphere). The 

aforementioned-conditions are summarized in terms of the 

following expression; Eq. 15. 

𝜅𝑖𝑠𝑜 =
𝐼1
2
= √𝐾   ;    𝐾 = 𝐼2 = 𝐼3 = 𝜅𝑖𝑠𝑜

2    ;    𝐼1 = 2𝜅𝑖𝑠𝑜 (15) 

where: 

κiso: Mean or hydrostatic or isotropic curvature tensor 

based on equivalent terminologies to that of continuum 

mechanics in defining Mean or hydrostatic or isotropic 

strain tensor. 

I1 = κ1+ κ2; First curvature tensor invariant at an 

infinitesimal plate element, as per Cauchy definition its 

constant for a particular-tensor regardless of the coordinates 

orientation.   

I2 = κ1* κ2; Second curvature tensor invariant at an 

infinitesimal plate element, as per Cauchy definition its 

constant for a particular-tensor regardless of the coordinates 

orientation (note that the twisting terms have vanished due 

to the definition of the principal-plane orientation). 

I3 = κ1* κ2; Third curvature tensor invariant at an 

infinitesimal plate element. Likewise, as for other 

invariants, its constant for a particular-tensor regardless of 

the coordinates system orientation (note that the twisting 

terms have vanished due to the definition of the principal-

plane orientation).   

K = κ1* κ2; Gaussian curvature of a surface, which  

 

 

characterizes the curvature of various surfaces (Backus 

1966). Based on Gauss curvature, the only surface to have 

an identical curvature at all points is a spherical surface as 

per Minding and Liebmann’s theorems (Kühnel 2015). 

A graphical representation of the hydrostatic moment 

tensor state, as described in an analogues relation to the 

continuum mechanics representation of the hydrostatic 

stress concept, is shown in Fig. 3 for an infinitesimal 

element. 

 

 

3. HM conceptual formulation  
 

This section is devoted to the Major Hypotheses 

Statement and the establishment of the boundary value 

problem dimensions and hypotheses and basic notations and 

relations between the parameters to be used in the following 

section. Through the meditative consideration of the 

flexural problem, on structural and natural aspects, with a 

profound review of previous assumptions, hypotheses, 

equations and most importantly, conceptions, the 

visualization of a four-dimensional boundary value problem 

(4D-BVP) was suggested. In implementing this 4D-BVP 

system visualization, the following flexural behaviour 

hypotheses holds between the axes of various system 

variables. 

•  The 4D-BVP representation is independent of the 

time axis, and thus, vibrations and dynamic responses are 

omitted, and when considered a general solution for 

dynamic flexural analysis is attainable under the 5D-IVP 

representation. 

•  Various axes (variables) are interdependent, with 

complex interconnected relations, which is governed by 

continuum mechanics and material constitutive relations 

and modelling.  

•  The boundary condition variable is dependent on the 

 

Fig. 3 Hydrostatic Moment and curvature representation in contrast to the hydrostatic stress representation 
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material-variable under consideration along with the 

geometrical (aspect ratio) variable. That’s, the material 

condition (elasticity, plasticity, fractures and damage, etc.) 

will affect the boundary conditions. Likewise, the 

geometrical (aspect ratio) variable will affect the 

dependency of the boundary conditions on the material 

variable. 

•  The geometrical variable of the system in flexure is 

dependent on both material and boundary conditions. 

Where a change in the material condition, would alter the 

boundaries. Likewise, a change in the boundaries due to 

material and loading conditions would affect the 

geometrical domain. 

•  The material condition is dependent on the 

boundaries and the geometrical variables. Both of which 

would govern the extent of the response, and thus, the 

material conditions. 

•  The response (moment, curvature) is dependent on 

the three-dimensional variables. The alteration of any 

variable would alter the system response. 

•  In plates bending, for every boundary conditions 

there exist an aspect ratio that renders the maximum 

response a hydrostatic point moment tensor, having a zero 

radius (a zero deviatoric moment tensor). At such point, the 

principal moment’s curves intersect in the 4D-BVP system. 

This Hydrostatic moment tensor state is to be developed 

based on the theory of elasticity and continuum mechanics 

as per Cauchy and Lamé (1866). The concepts and 

notations introduced here are to be incorporated in the 

development of the Hydrostatic Method formulation in the 

following sections for various structural and natural 

problems.  

This marks the end of hypotheses introduction; these 

hypotheses are introduced to redefine the moment boundary 

value problem, solidifying its differential mathematical 

origin and the dependency of the system on various 

dimensions of the BVP. The following sub-sections 

introduce the basic notations and relations for moment and 

curvature hydrostatic analysis.  

 

3.1 HM-moment formulation 
 

Pursuing the introduction of afore assumptions and 

hypotheses in relation to the flexural problem, in this 

section, notations and main parameters relations are 

established. Firstly, Mohr circle representation of the static 

moment tensor relies on various parameters. However, two 

parameters are of the major importance and can establish 

the full representation; these are the centre and radius, 

which happens to have the most crucial role in the 

continuum mechanics tensor representation as they coincide 

with the mean and deviatoric tensors, respectively. The 

central moment representing the portion of the tensor 

responsible for pure normal Gaussian curvature is expressed 

as follows. 

𝐻𝑀𝑐 = 𝑀𝑖𝑠𝑜 =
(𝑀1 +𝑀2)

2
 (16) 

where: 

HMc: Hydrostatic Moment Center ≡ Miso; Mean or 

hydrostatic or isotropic moment tensor based on equivalent 

terminologies to that of continuum mechanics in defining 

Mean or hydrostatic or isotropic stress tensor. 

M1: First principal moment at an infinitesimal plate 

element. and 

M2: Second principal moment at an infinitesimal plate 

element. 

On the other hand, the radius of the Mohr circle 

representation symbolizes the deviatoric portion of the 

moment tensor and is denoted as HMr henceforth, and it 

characterizes the tendency of the specific 4D-BVP problem 

of concern to reveal a twisting action and thus, to hinder the 

development of uniform bending resistance (Two-way 

action in case of rectangular slabs). This radius is given by 

the expression. 

𝐻𝑀𝑟 = 𝑆𝑀 =
(𝑀1 −𝑀2)

2
  (17) 

In adopting these definitions to the flexural problem, the 

graphical statics and analysis with Mohr moment circle 

representation and its underneath continuum mechanics 

tensor and constitutive relations, Eq. 5 results in the 

following expression for the principal first and second 

moment. 

𝑀1 = 𝐻𝑀𝑐 + 𝐻𝑀𝑟 (18) 

𝑀2 = 𝐻𝑀𝑐 − 𝐻𝑀𝑟  (19) 

Similarly, the bending moment for any plane orientation 

in the plate flexural analysis can be obtained from the 

following equations, resulting from modifying Eq. 1 and 2 

through the introduction of abovementioned designation. 

𝑀𝑥′ = 𝐻𝑀𝑐 + 𝐻𝑀𝑟 ⋅ cos(2𝜃) (20) 

𝑀𝑦′ = 𝐻𝑀𝑐 − 𝐻𝑀𝑟 ⋅ cos(2𝜃) (21) 

In the same manner, the twisting moment can be found 

through the transformation equation of the radius 

(deviatoric) moment in any coordinates through the 

following expression for plane making an angle θ with the 

principal shortest dimension. 

𝑀𝑥𝑦 = 𝐻𝑀𝑟 ⋅ sin(2𝜃) (22) 

Finally, the maximum twisting moment is equivalent to 

the radius in this representation, which can be written in the 

following manner. 

𝑀𝑥𝑦.𝑚𝑎𝑥 = 𝐻𝑀𝑟 (23) 

So, through this representation, the plate bending 

analysis can yield all variables of interest through only two 

parameters that have a profound meaning both in graphical 

statics and analysis, in theory of elasticity and the broader 

field of continuum mechanics. Introducing these 

designations into moment tensors matrix representation 

yields the following; noting that twisting moment vanishes 

for the isotropic hydrostatic moment state. 

𝑀 = [
𝑀𝑥 𝑀𝑥𝑦
𝑀𝑥𝑦 𝑀𝑦

] = [
𝐻𝑀𝑐 0
0 𝐻𝑀𝑐

] 

+[
cos(2𝜃) sin(2𝜃)

sin(2𝜃) −cos(2𝜃)
] ⋅ 𝐻𝑀𝑟  

(24) 
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Or through symbolizing sin(2θ) with S and cos(2θ) with 

C in Eq. 24, results in the following concise form, 

𝑀 = [
𝑀𝑥 𝑀𝑥𝑦
𝑀𝑥𝑦 𝑀𝑦

] = [
𝐻𝑀𝑐 0
0 𝐻𝑀𝑐

] + [
𝐶 S
S −C

] ⋅ 𝐻𝑀𝑟 (25) 

For the hydrostatic moment state, the moment tensor is 

characterized by the following two conditions. 

{
𝐻𝑀𝑐 = 𝑀1 = 𝑀2 
𝐻𝑀𝑟 = 0   

 (26) 

Introducing these conditions into Eq. 25 representation 

for moment tensors decomposition results in the omission 

of the HMr term, resulting in the following. 

𝑀 = [
𝐻𝑀𝑐 0
0 𝐻𝑀𝑐

] = 𝐻𝑀𝑐   (27) 

 
3.2 HM curvature formulation 

 
This sub-section is to emphasize the applicability of the 

same concept to the curvature, which is a direct result of the 

direct correlation between moment and curvature. however, 

this curvature notation is not adopted and not ensued. The 

sections to follow will adopt the moment notation, solely, in 

the mathematical derivations, and the curvature will serve 

in the conceptual and natural relation through Gaussian 

curvature and geometry. In contrast to moment 

representation, the curvature representation is of less 

significance in design and practice due to the correlation of 

material strength and resistance with moment capacity 

rather than the curvature capacity. However, for the purpose 

of completeness, the curvature representation is to be given 

here. The designation of curvature parameters can be 

presented adopting the same analogy used for moment 

representation as follows, 

𝐻𝑀𝜅𝑐 =
(𝜅1 + 𝜅2)

2
 (28) 

𝐻𝑀𝜅𝑟 =
(𝜅1 − 𝜅2)

2
  (29) 

where: 

HMκc: Hydrostatic Method Curvature Center ≡ κiso; 

Mean or hydrostatic or isotropic curvature tensor based on 

equivalent terminologies to that of continuum mechanics in 

defining Mean or hydrostatic or isotropic strain tensor. 

κ1: First principal curvature at an infinitesimal plate 

element.  

κ2: Second principal curvature at an infinitesimal plate 

element. 

Based on this definition, the following equations can be 

implemented in identifying the principal curvatures upon 

the estimation of the circle parameters from the solution of 

the governing equations of plate bending. 

𝜅1 = 𝐻𝑀𝜅𝑐 + 𝐻𝑀𝜅𝑟  (30) 

𝜅2 = 𝐻𝑀𝜅𝑐 −𝐻𝑀𝜅𝑟  (31) 

For orientations other than that of the principal plane, 

one can apply the following equations for the curvatures in 

coordinates of x and y, respectively. 

𝜅𝑥′ = 𝐻𝑀𝜅𝑐 + 𝐻𝑀𝜅𝑟 ⋅ cos(2𝜃) (32) 

𝜅𝑦′ = 𝐻𝑀𝜅𝑐 − 𝐻𝑀𝜅𝑟 ⋅ cos(2𝜃) (33) 

Finally, the twisting and maximum twisting curvatures 

can be found, respectively, through the following 

expressions; both of which depends solely on the radius 

parameter. 

𝜅𝑥𝑦 = 𝐻𝑀𝜅𝑟 ⋅ sin(2𝜃) (34) 

𝜅𝑥𝑦.𝑚𝑎𝑥 = 𝐻𝑀𝜅𝑟 (35) 

Likewise, when the hydrostatic case appears, these 

curvature expressions results in the omission of the radius 

terms HMκr, and thus, in similar expressions to those of the 

hydrostatic moment state. 

Fig. 4 illustrates the terminology and some cases 

encountered in a pure two-way system. including the 

extreme hydrostatic point with a point Mohr circle and a 

zero radius. The pure beam action at an edge has negligible 

rotational stiffness in which the radius and centre 

parameters are equal. The corner support or corner column 

case with the negative mean moment. Finally, the general 

case for an arbitrary element is presented. Including 

Hydrostatic extreme circle of pure two-way action, beam 

circle of pure one-way action, support circle of the negative 

mean circle. Henceforth, the moment terminology will be 

solely adopted in the formulation and discussion of flexural 

analysis and particularly plates bending problem. 

The concept now has been established, the hypotheses, 

notation and essential relations had been briefly introduced. 

Yet, till this point, no reference to any of the advantages 

and attainments has been made. This is left to the following 

sections. Through which, the accomplishments that have 

revised the work of Euler (1766), Love (1888), Poisson 

(1829) and Kirchhoff (1897) were uncovered. All of whom 

hadn’t been able to achieve such understanding of the 

bending problem. Their misconception resulted in the 

coordinate-dependent formulations, where every plate 

geometry (and thus coordinate system) requires a distinctive 

formulation. The introduction of such misconception to the 

plates theory resulted in the persistent adoption of the strip 

method in treating slabs like beam strips. This 

misconception, however, is justified, since tensor 

formulations and the concept of hydrostatic and deviatoric 

tensors was introduced almost fifty years later by Cauchy 

and Lame (1866). Moreover, it was almost a century later 

when C. Otto Mohr identified the flexural rigidity (Kurrer 

2008, Mohr 1906), which was a constant of proportionality 

when first introduced by J.II Bernoulli. Thus, it is now left 

for the following sections to show a glance of the 

evolutional that has been attained. Regarding the plate 

theory, a novel and unique coordinates-independent partial 

differential equation was developed. Such development has 

allowed for deeper understanding of the natural, physical 

and structural curvature problems.  
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4. HM-Isotropic thin plates formulation 

 

The assumption of thin isotropic plates, based on the 

work of Germain (1823, 1826) and Navier (1823, 1826, 

1828), in the form presented by Kirchhoff (1850, 1897) is 

appropriate for steel and plain concrete plates, having 

almost identical material and geometrical (section) 

properties in all direction. The behaviour of which is to 

satisfy the following partial differential equation of 

deformation (Bramble and Payne 1962). 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
=
𝑝(𝑥, 𝑦)

𝐷
 (36) 

However, this equation is based on the introduction of 

the following normal and twisting moment-curvature 

relations Eq. 37, 38 and 39 into the statics-based 

equilibrium equation of moments Eq. 40. The following 

equations describe the moment-curvature relations and 

moment-displacement relations in Cartesian coordinates for 

normal moments. 

𝑀𝑥 = −𝐷 ⋅ (𝜅𝑥 + 𝜈 ⋅ 𝜅𝑦) = −𝐷 ⋅ (
𝜕2𝑤

𝜕𝑥2
+ 𝜈 ⋅

𝜕2𝑤

𝜕𝑦2
) (37) 

𝑀𝑦 = −𝐷 ⋅ (𝜅𝑦 + 𝜈 ⋅ 𝜅𝑥) = −𝐷 ⋅ (
𝜕2𝑤

𝜕𝑦2
+ 𝜈 ⋅

𝜕2𝑤

𝜕𝑥2
) (38) 

On the other hand, the equation for twisting moment in 

planer elements is presented as follows,  

𝑀𝑥𝑦 = −𝐷 ⋅ (1 − 𝜈)𝜅𝑥𝑦 = −𝐷 ⋅ (1 − 𝜈)
𝜕2𝑤

𝜕𝑥𝜕𝑦
 (39) 

That’s, the flexural behavior of plates is described in 

terms of static equilibrium, and thus, suggests a three-

dimensional boundary value problem 3D_BVP rather than a 

four-dimensional one 4D_BVP. This had led others to  

 

 

ignore the dependence of moment on material properties, 

which based on the introduced hypotheses in this study, has 

a direct effect on both the domain and the boundary 

conditions of the problem, resulting therefore in the four-

dimensional problem. The moment equilibrium relation is 

as follows, 

𝜕2𝑀𝑥
𝜕𝑥2

+ 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
= −𝑝 (40) (40) 

Now, in introducing the concept of the hydrostatic 

method of analysis to the thin plates formulation, consider 

the principal plane of the extreme point in a plate. Based on 

the terminology developed in the previous section, this 

results in Eq. 37 and 38 for principal normal moments being 

written in the following form; noting that for the principal 

plane the twisting moment is omitted. 

𝑀1 = 𝐻𝑀𝑐 + 𝐻𝑀𝑟 = −𝐷 ⋅ (
𝜕2𝑤

𝜕𝑥2
+ 𝜈 ⋅

𝜕2𝑤

𝜕𝑦2
) (41) 

𝑀2 = 𝐻𝑀𝑐 − 𝐻𝑀𝑟 = −𝐷 ⋅ (
𝜕2𝑤

𝜕𝑦2
+ 𝜈 ⋅

𝜕2𝑤

𝜕𝑥2
) (42) 

These two equations, representing the assumption of 

thin isotropic plates, when solved simultaneously for the 

unknown Mohr circle parameters HMc and HMr, would 

result in the following expression for the hydrostatic 

method centre or mean moment parameters, 

𝐻𝑀𝑐 = −𝐷 ⋅
1 + 𝜈

2
⋅ (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) (43) 

Which can be written in the following concise form; 

𝐻𝑀𝑐 = −𝐷 ⋅
1 + 𝜈

2
⋅ ∇2𝑤 (44) 

 

Fig. 4 Representation of HM designation for elements of interests having special cases 
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Noting that ∇2 represents the Laplace operator also 

known as the Laplacian (symbolized with Nabla); where ∇ 2 

= ∆ = (∂2 ∕ ∂x2) + (∂2 ∕ ∂y2). Substituting the resulting center 

or mean moment expression in the equations would result in 

finding the expression of the radius or deviatoric moment 

parameter for thin isotropic plates as given by, 

𝐻𝑀𝑟 = −𝐷 ⋅
1 − 𝜈

2
⋅ (
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
) (45) 

Recalling that D refer to the isotropic flexural rigidity of 

plates; which is given with the following expression 

(Timoshenko 1953).  

𝐷 =
𝐸 ⋅ 𝑡3

12 ⋅ (1 − 𝜈2)
  (46) 

This expression, when introduced in the earlier 

parameters equations, results in the following two 

expressions for the centre or hydrostatic or mean circle 

parameter HMc and the deviatoric or radius circle parameter 

HMr as follows, 

𝐻𝑀𝑐 = −
1

24
⋅
𝐸 ⋅ 𝑡3

(1 − 𝜈)
⋅ (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)∎ (47) 

𝐻𝑀𝑟 = −
1

24
⋅
𝐸 ⋅ 𝑡3

(1 + 𝜈)
⋅ (
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
)∎ (48) 

where: 

HMc: Hydrostatic Method Center ≡ Miso; Mohr circle 

centre or Mean or hydrostatic or isotropic moment tensor 

based on equivalent terminologies to those of continuum 

mechanics in defining Mean or hydrostatic or isotropic 

stress tensor; in units of [M⋅L2⋅T−2 /L] or moment per unit 

distance. 

HMr: Hydrostatic Method Radius ≡ MS; Mohr circle 

radius or deviatoric moment tensor based on equivalent 

terminologies to that of continuum mechanics in defining 

deviatoric stress tensor; in units of moment per unit distance 

or [M⋅L2⋅T−2 /L]. 

E: Modulus of elasticity (Young’s Modulus) for 

isotropic material; in units of pressure or [M L−1 T−2].  

ν: Poisson’s ratio of lateral strain to normal strain; 

dimensionless. 

w: Vertical normal displacement in plate element; in 

length [L] dimension. 

t: total uniform thickness of a plate element; in length 

[L] dimension. 

In a reflection of aforementioned-interpretation, the 

beneficial aspects of applying this concept are revealed 

through examining the introduced expressions for thin 

isotropic plates; it can be noted that the material dimension 

has been isolated successfully from the geometry-and-

boundary-dependent differentials with respect to the 

Cartesian coordinate system. This allows for the reduction 

of the parameters to be found from three in the case of 

Cartesian coordinates; namely, the two normal moments 

and one twisting moment, into two parameters, namely, the 

hydrostatic and deviatoric moments represented in Mohr as 

centre and radius parameters. Recalling that if the twisting 

moment is of concern, it can be found merely through 

applying Eq. 22 and 23, where 

𝑀𝑥𝑦.𝑚𝑎𝑥 = 𝐻𝑀𝑟 (49) 

Thus, in adopting this conception, the plate’s differential 

equations gain a rather spacious physical parametric 

meaning than the narrow coordinates-dependent definition. 

The problem of HM-Isotropic thin plates is governed by the 

following partial differential equation resulting from the 

consideration of the equilibrium of an infinitesimal plate 

element with respect to the introduced concept, 

∇2[𝐻𝑀𝑐] + ((
𝜕2

𝜕𝑥2
−
𝜕2

𝜕𝑦2
) [𝐻𝑀𝑟𝑛] + 2

𝜕2

𝜕𝑥𝜕𝑦
[𝐻𝑀𝑟𝑡])

= −𝑝(50) 

(50) 

where 

HMrn: The normal component of the moment deviatoric 

tensor, or the projection of the moment-radius on the 

normal moment axis in Mohr circle representation; 

𝐻𝑀𝑟𝑛 = 𝐻𝑀𝑟 ⋅ cos(2𝜃). 
HMrt: The twisting component of the moment deviatoric 

tensor, or the projection of the moment-radius on the 

twisting moment axis in Mohr circle representation; 

𝐻𝑀𝑟𝑡 = 𝐻𝑀𝑟 ⋅ sin (2𝜃). 
 Recalling that the angle of (2θ) in previous expressions 

corresponds to element rotation with an angle (θ) and 

through polar-cartesian conversion of the angle; based on 

the fact, that, 

x = r ⋅ cos(𝜃)    ;    𝑦 = 𝑟 ⋅ sin(𝜃)   ;    𝑟

= √𝑥2 + 𝑦2    (51) (51) 

Finally, implementing the deviatoric partial differential 

term in the derived partial differential equation of Eq. 50 

concludes in the following (Eq. 52) simple form, governing 

differential equation for moment tensors in thin isotropic 

plates, shortened as HM-Isotropic PDE. 

∇2[𝐻𝑀𝑐] + Λ([𝐻𝑀𝑟]) = −𝑝∎ (52) 

Through a delicate examination of this equation, the 

apparent feature to be noticed is the full separation of tensor 

parameters. That’s, the centre, mean or hydrostatic term has 

been isolated completely from the radius or deviatoric. This 

has been achieved in addition to the reduction of the 

number of terms that represents the problem (for e.g., from 

three in case of Eq. 40 to be described with only two 

parameters having more concise physical meaning).  

Moreover, through meticulous perceptiveness, it can be 

observed that through introducing this partial differential 

equation, the plate problem has been split in two. This 

feature would better be illustrated with consideration to the 

various cases of Fig. 4.  

Firstly, through equating the deviatoric or radius term in 

the HM-Isotropic PDE to zero the resulting partial 

differential equation would have the form 

∇2[𝐻𝑀𝑐] = −𝑝 ∎ (53) 

This equation governs all hydrostatic spherically curved 

elements to be formed in plates under flexural pure two-

way actions. This includes all hydrostatic extreme and non- 
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extreme points to present in plates subjected to out-of-plane 

loading. 

Secondly, in equating the proportions of the mean or 

hydrostatic moment to the deviatoric moment in the HM-

Isotropic PDE, exposing the case of pure One-way moment 

resistance which is governed by the following partial 

differential equation. 

2 ⋅ ∇2[𝐻𝑀𝑐] = −𝑝 ∎ (54) 

Tertiary, in the case of the mean or hydrostatic moment 

tensor being equal to zero, resulting in a plane orientation 

with pure twisting action. This case involves the situation of 

continuous plates, where an element with negative moment 

presenting at a certain direction, undergoes an equal 

positive moment on the perpendicular direction, the 

magnitude of each of which is equal to the deviatoric radius 

moment, and subsequently, identical to the twisting 

moment. Elements posing this state are parts of a surface 

having a negative Gaussian curvature (Huang and Lin 

1998), and are governed by the following partial 

differential equation. 

Λ([𝐻𝑀𝑟]) = −𝑝 (55) 

These cases of elements tensor-states are presented in 

Fig. 5 along with various other states in Fig. 4 for visual 

illustration purposes of the different application domain of 

the aforementioned-partial differential equations. 

Finally, this section is concluded with the mathematical 

proof of the HM-Isotropic partial differential equation; Eq. 

52. This can be done through simple substitution of the Eq.  

47 and 48 into Eq. 50 along with the expressions of HMrn  

 

 

and HMrt. This results in the following, 

(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)[−

1

24
⋅
𝐸 ⋅ 𝑡3

(1 − 𝜈)
⋅ (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)]…

+

(

 
 
(
𝜕2

𝜕𝑥2
−
𝜕2

𝜕𝑦2
) [−

1

24
⋅
𝐸 ⋅ 𝑡3

(1 + 𝜈)
(
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
) ⋅ cos(2𝜃)]…

+2
𝜕2

𝜕𝑥𝜕𝑦
[−

1

24
⋅
𝐸 ⋅ 𝑡3

(1 + 𝜈)
(
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
) ⋅ sin(2𝜃)]

)

 
 

= −𝑝 

(56) 

Extracting the flexural rigidity term from Eq. 56, yields, 

−
𝐸 ⋅ 𝑡3

12(1 − 𝜈2)

⋅

(

 
 
 (1 + 𝜈)

2
(
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
)…

+
(1 − 𝜈)

2

(

 
 
[(
𝜕2

𝜕𝑥2
−
𝜕2

𝜕𝑦2
) [(

𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
) ⋅ cos(2𝜃)]]…

+2
𝜕2

𝜕𝑥𝜕𝑦
[(
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
) ⋅ sin(2𝜃)]

)

 
 

)

 
 
 
= −𝑝  

(57) 

Now, considering the Mohr circle representation of 

curvature; Fig. 2, which can be reintroduced in the form of 

differentials relations as per Fig. 6. Thus, serving as a 

differentiation alternative in finding trigonometric 

expressions in term of differentials. The sinusoidal term 

based on which is shown to be as follows, 

(
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
) ⋅ sin(2𝜃) = 2 ⋅

𝜕2𝑤

𝜕𝑥𝜕𝑦
 (58) 

 

Fig. 5 Graphical illustration of the domain of applicability of various sub-terms of the introduced HM-Isotropic partial 

differential equation 
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Thus, substituting the sine trigonometric expression of 

Eq. 58 from Fig. 6 into Eq. 57, yields the following, 

−𝐷

⋅

(

 
 
 
 
 

(1 + 𝜈)

2
(∇4𝑤) +

(1 − 𝜈)

2

⋅

(

 
 
 
 
[(
𝜕2

𝜕𝑥2
−
𝜕2

𝜕𝑦2
) [(

𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
) ⋅ cos(2𝜃)]]…

+2
𝜕2

𝜕𝑥𝜕𝑦
[(
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
) ⋅

2 ⋅
𝜕2𝑤
𝜕𝑥𝜕𝑦

(
𝜕2𝑤
𝜕𝑥2

−
𝜕2𝑤
𝜕𝑦2

)
]

)

 
 
 
 

)

 
 
 
 
 

… = −𝑝 

(59) 

From which, and since the angle used in the definition is 

the principal plane angle for which tan(2θ) =sin (2θ) and for 

which cos(2θ) =1. Eq. 59 simplifies into the following, 

−𝐷 ⋅

(

  
 (1 + 𝜈)

2
(∇4𝑤) +

(1 − 𝜈)

2

⋅

(

 
 
(
𝜕2

𝜕𝑥2
−
𝜕2

𝜕𝑦2
) [
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
]…

+4
𝜕4𝑤

𝜕𝑥2𝜕𝑦2 )

 
 

)

  
 
= −𝑝 

(60) 

Or 

−𝐷 ⋅

(

  
 (1 + 𝜈)

2
(∇4𝑤) +

(1 − 𝜈)

2

⋅

(

 
 

𝜕4𝑤

𝜕𝑥4
− 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
…

+4
𝜕2𝑤

𝜕𝑥2𝜕𝑦2 )

 
 

)

  
 
= −𝑝    

(61) 

 

 

Finally, upon rearrangement of common partial 

differential terms in Eq. 61 and simplification, the Germain-

Lagrange governing partial differential equation for thin 

plates appears as given by Eq. 36, indicating the end of the 

proof and the correctness of the derived HM-Iso partial 

differential equation for thin plates; Eq. 52. 

−𝐷 ⋅ (∇4𝑤) = −𝑝∎ (62) 

 

 
5. Conclusions 
 

Based on the established conception and formulations, 

the following conclusions can be drawn: 

1. Any 2-dimensional moment (curvature) tensor can be 

resolved into two tensors. These are; a hydrostatic and a 

deviatoric tensors. This can be represented as follows, 

𝜿 = 𝑯𝑴𝜿𝒄 +𝑯𝑴𝜿𝒓 = 𝜿𝒊𝒔𝒐 + 𝑺𝜿 (63) 

𝑴 = 𝑯𝑴𝒄 +𝑯𝑴𝒓 = 𝑴𝒊𝒔𝒐 + 𝑺𝑴 (64) 

2. A hydrostatic curvature tensor describes the 

development of a spherical surface with a positive constant 

Gaussian curvature. 

3. The principal moments at any point in a plate can be 

described in relation to the hydrostatic and deviatoric 

moments as follows, 

𝑴𝟏,𝟐 = 𝑯𝑴𝒄 ± 𝑯𝑴𝒓 (65) 

Whereas, the moment at plane orientations other than 

the principal orientation can be represented as follows, 

𝑴𝒙′,𝒚′ = 𝑯𝑴𝒄 ±𝑯𝑴𝒓 ⋅ 𝐜𝐨𝐬(𝟐𝜽) (66) 

4. The twisting moment at any point in a plate under 

flexural deformations can be represented through the 

following expression, 

𝑴𝒙𝒚 = 𝑯𝑴𝒓 ⋅ 𝐬𝐢𝐧(𝟐𝜽) (67) 

While the maximum twisting moment can be 

represented by the following expression, 

𝑴𝒙𝒚.𝒎𝒂𝒙 = 𝑯𝑴𝒓 (68) 

 

Fig. 6 The differential form of Mohr circle representation of curvature 
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5. The redundant (coordinates-dependent) flexural 

variables were eliminated through the implementation of 

the coordinates-independent tensor formulations. 

6. A full separation of the flexural tensor parameters was 

achieved. That’s, the centre, mean or hydrostatic term has 

been isolated completely from the radius or deviatoric. 
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