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1. Introduction 
 

Small-scale plates and beams such as microscale and 

nanoscale sheets and tubes operate as the fundamental parts 

of many ultrasmall devices since they display excellent 

electromechanical properties. In many applications, there 

are electromechanical loads exerted on small-scale plates 

and beams, which are originated from different sources 

such as electromagnetic fields and initial stresses. To better 

design the manufacturing process, it is important to 

understand the mechanical response of small-scale plates 

and beams under different loading conditions.  

The mechanical response of nanostructures including 

nanoplates (Asemi et al. 2014, Bakhadda et al. 2018, 

Bouadi et al. 2018, Kadari et al. 2018, Mokhtar et al. 2018, 

Yazid et al. 2018), nanobeams (Chaht et al. 2015, Zemri et 

al. 2015, Ahouel et al. 2016, Bellifa et al. 2017, Nejad et al. 

2017, Farajpour et al. 2018, Hamza-Cherif et al. 2018) and 

nanoshells (Farajpour and Rastgoo 2017, Karami et al. 

2018) has been analyzed in the literature using a number of 

size-dependent continuum models such as nonlocal four 

variable model (Belkorissat et al. 2015), trigonometric 

theory of shear deformations (Besseghier et al. 2017, Khetir 

et al. 2017, Mouffoki et al. 2017), nonlocal zeroth-order 

theory of shear deformations (Bounouara et al. 2016), 

nonlocal quasi-3D theory (Bouafia et al. 2017), surface 

elasticity (Youcef, Kaci et al. 2018) and nonlocal strain 

gradient theory (Farajpour and Rastgoo 2017, Farajpour et 

al. 2018). On the other hand, in addition to the wave 

propagation analysis of macroscale structures (Yahia et al.  
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2015, Fourn et al. 2018), wave propagation characteristics 

of small-scale structures (Karami et al. 2018) using size-

dependent theories (Karami et al. 2017, Karami et al. 2018) 

have been analyzed. 

The influences of mechanical preload caused by initial 

stresses on the mechanical behaviors of small-scale beams 

were analyzed in the last decade using continuum-based 

models. Classical scale-free continuum mechanics cannot 

be utilized for nanobeams under mechanical preload since it 

does not capture size effects (Chakraverty and Behera 2015, 

Kiani et al. 2017, Ebrahimi and Barati 2018, Ebrahimi and 

Barati 2018, Ebrahimi and Barati 2018, Ebrahimi and 

Heidari 2018, Ma et al. 2018). A few size-dependent 

continuum-based models have been proposed for analyzing 

the stability, vibration and bending of small-scale structures 

(Malekzadeh and Shojaee 2013, Farajpour et al. 2014, 

Shenas and Malekzadeh 2016, Farajpour et al. 2017, 

Ebrahimi and Barati 2018). Wang and Cai (Wang and Cai 

2006) explored the effects of mechanical preload on the 

vibrations of a system of nanoscale tubes with the help of a 

continuum-based theory. In another study conducted by 

Song et al. (Song et al. 2010), the influences of axial 

preload on the wave propagations in nanoscale tubes were 

scrutinized employing the nonlocal theory. In addition, 

sound wave propagation characteristics of a single nanotube 

were extracted by Heireche et al. (Heireche et al. 2008) 

using a nonlocal model together with an analytical solution 

approach. The influences of axial preload as well as the 

effects of a magnetic field on the vibration of nanotubes 

were also studied in Ref. (Güven 2014). Moreover, the 

effects of compressive preload on the wave propagation in 

nanoscale tubes were investigated with the help of a 

continuum model (Selim et al. 2009). A nonlocal beam 

model was also proposed in the literature for analyzing the 

effects of axial preload on the frequency shifts of a 
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nanomechanical sensor using two vibrating nanotubes 

(Shen et al. 2012).  

 In addition to the application of size-dependent models 

in analyzing small-scale tubes under axial preload, the 

mechanical behaviors of small-scale plates subjected to in-

plane preload have been examined. A size-dependent model 

was introduced by Asemi et al. (Asemi et al. 2014) to 

investigate the effects of in-plane preload caused by initial 

stresses on the vibrations of nanoscale plates made of 

piezoelectric materials with the help of the nonlocal theory. 

Furthermore, the wave propagation features of small-scale 

plates subjected to in-plane preload were obtained in Ref. 

(Wang et al. 2010) employing the nonlocal theory. In 

another study reported in Ref. (Murmu and Pradhan 2009), 

the transverse vibration of nanoscale plates under uniaxial 

preload was investigated applying the nonlocal theory. The 

effects of an elastic substrate in conjunction with the 

influences of in-plane preload on the wave propagation in 

graphene sheets were scrutinized by Karami et al. (Karami 

et al. 2018). Mohammadi et al. (Mohammadi et al. 2014) 

examined the influences of an elastic medium and the 

effects of shear in-plane preload on the natural frequencies 

of small-scale plates. In another study, Ebrahimi and Shafiei 

(Ebrahimi and Shafiei 2017) used a combination of the 

nonlocal theory and Reddy’s shear deformation model of 

plates to analyze the vibrations of small-scale plates 

subjected to in-plane preload. 

In all of the above-stated valuable works, only the 

influence of initial load on the mechanics of a simple 

homogeneous small-scale structure without any kind of 

reinforcement is investigated. With the development of 

advanced manufacturing techniques at small-scales, more 

complex micro/nanoscale structures with superior 

electromechanical properties have successfully been 

synthesized. For instance, shape memory alloy (SMA) 

properties have lately been observed in a couple of small-

scale fundamental structures such as nanofibers and 

nanofilms (Kahn et al. 1998). From the literature review, it 

can be seen that no size-dependent continuum model has 

been developed for investigating the influences of shear in-

plane preload on the elastic wave dispersion in small-scale 

plates containing nanofibers. To ensure consistency between 

the continuum model and real operating conditions, it is 

assumed that the plate is embedded in an elastic matrix. The 

nonlocal elasticity, as a modified scale-dependent theory, is 

used to model the problem. The size-dependent motion 

equations are then derived along all directions. The phase 

and group velocities of the small-scale system subjected to 

shear in-plane preload are analytically obtained. The 

influences of shear preload and elastic matrix as well as size 

and nanofiber effects on the elastic wave dispersion in the 

nanosystem containing nanofibers are explored. 
 
 

2. Small-scale plates containing nanofibers 
 

In the following, the elastic wave dispersion in small-

scale plates containing nanofibers is modeled based on a 

combination of Brinson’s model and nonlocal theory. Figure 

1 indicates a system of five small-scale plates and 

nanofibers. It is assumed that a uniform shear in-plane  

 

Fig. 1 Elastic waves in small-scale plates under shear 

preload containing nanofibers 
 

 

preload is exerted on the system as shown in the figure. In 

addition, the system is embedded in an elastic matrix with 

shear stiffness coefficient ks and normal stiffness coefficient 

kn (Akgöz and Civalek 2013, Civalek 2013). 

For the geometrical properties of each layer, we assume 

that (length, thickness, width) = (a, h, b). Furthermore, for 

the elastic and physical properties, one can write (shear 

modulus, elasticity modulus, density, Poisson’s ratio) = 

(G12
𝑠𝑦𝑠

, 𝐸𝑖
𝑠𝑦𝑠

, 𝜌𝑠𝑦𝑠,  𝑣12
𝑠𝑦𝑠

) in which “sys” is an abbreviation for 

“system”. These elastic and physical properties are written 

as (Park et al. 2004) 
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(1) 

in which “F” is employed to represent nanoscale fibers 

whereas “L” denotes each layer without nanofibers, VF and 

ζ represent the volume fraction of fibers and martensite 

fraction, respectively. In Appendix A, the basic equations 

for SMA nanofibers, as a particular type of nanofibers, are 

given. The in-plane strains of the small-scale system are as 

(Reddy 2010, Aksencer and Aydogdu 2011) 
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In Eq. (3), v, w and u are utilized to represent the mid-

plane displacements in y, z and x axes, respectively 

(Bouderba et al. 2013, Zenkour and Sobhy 2013). Using the 

nonlocal theory (Reddy 2007, Reddy and Pang 2008, 

Aydogdu 2009, Aydogdu and Arda 2016), the size-

dependent basic equation of the kth layer can be written as 
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and  
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in which ηnl = (e0ac)2 stands for the scale parameter (Benzair 

et al. 2008, Benguediab et al. 2014, Farajpour et al. 2018, 

Zenkour 2018), σ is the stress, ac and e0, respectively, 

represent an internal characteristic dimension and a 

calibration coefficient (Malekzadeh and Shojaee 2013, 

Farajpour et al. 2017). Also, the elastic constant of the kth 

plate, nanofiber angle and recovery stresses are indicated by 

𝐶𝑖𝑗
(𝑘)̃

, ϕk and 𝜎𝑅𝑆
(𝑘)

, respectively. Finally, 2 is utilized to 

denote the Laplace operator (Asemi and Farajpour 2014, 

Zenkour and Sobhy 2015, Farajpour et al. 2016). Let us 

consider n small-scale plates containing nanofibers. The 

recovery stress resultants and nonlocal stress resultants are 
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In view of the above equations (i.e. Eqs. (4)-(9)), one 

obtains the recovery stress resultants and nonlocal stress 

resultants as follows 
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The motion equations of the small-scale system in terms 

of nonlocal stress resultants are as 
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Here qem and msys are respectively the distributed load 

induced by the elastic matrix and the system mass per unit 

area. The distributed load can be expressed as (Akgöz and 

Civalek 2017, Akgöz and Civalek 2018) 
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Equation (17) is in consistent with the equation of the 

elastic medium reported in the literature (Beldjelili et al. 

2016, Bounouara et al. 2016, Attia et al. 2018, Kadari et al. 

2018). Substituting Eqs. (10), (11) and (17) into Eqs. (14)-

(16), the differential equations for the elastic wave 

dispersion in the system are derived as  
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More detail about the derivation of the above equations 

is given in Appendix B. 𝑁𝑥𝑦
𝑆𝑃denotes the shear preload. 
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The following expressions are assumed for the 

displacement components of the small-scale system 

containing nanofibers so as to extract the phase and group 

velocities (Ebrahimi et al. 2016)     
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where kx and ky are, respectively, utilized to indicate the 

wave numbers in longitudinal and width directions, 𝐴̂ , 

𝐵̂ and 𝐶̂  represent wave amplitude constants, also, ω 

denotes the system frequency. Substituting Eq. (22) into 

Eqs. (18)-(20) yields  

[∑̃]{∆} − 𝜔2[𝛤̃]{∆} = 0, (23) 

where 

 

11 12 13
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31 32 33
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 
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=  
 
  

Σ

Γ

Δ

 (24) 

The size-dependent dispersion relation for the small-

scale system containing nanofibers is expressed as 

2 0.   − =   Σ Γ
 

(25) 

In Eq. (25), “| |” is the determinant of a matrix. 

Assuming that the wave numbers in longitudinal and width 

directions are the same (k=kx=ky), we have 𝐾 =

 √𝑘𝑘
2 + 𝑘𝑦

2 =  √2𝑘 in which K is the general wave number. 

The phase and group velocities are obtained as 

,pc
K


=

 

(26) 
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.g

d
c

dK


=

 
(27) 

Here the group velocity is indicated by cg while cp denotes 

the phase velocity of the small-scale system containing 

nanofibers 

 

 
 
3. Results and discussion 

 

For comparison purposes, the variation of phase 

velocities with the wave number is plotted in Fig. 2, the 

results are compared with those extracted by Wang et al. 

(Wang et al. 2010) for small-scale plates. To make a  

 

Fig. 2 Phase velocities of the current model in comparison with literature data (Wang et al. 2010) 

 

Fig. 3 Influences of shear in-plane preload on the phase velocity of the plate containing nanofibers 

1.00E+02

4.00E+02

7.00E+02

1.00E+03

1.30E+03

1.60E+03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
h

a
se

 v
el

o
ci

ty
 (

n
m

/n
s)

Wave number K (1/nm)

Current model

Literature for small-scale plates

110

140

170

200

0.0001 0.001

P
h

a
se

 v
el

o
ci

ty
 (

n
m

/n
s(

K = 0.01 1/nm K = 0.015 1/nm

K = 0.02 1/nm K = 0.025 1/nm

0 (1)

11xy C

411



 

M.R. Farajpour, A.R. Shahidi and A. Farajpour 

 

 

 

reasonable comparison, nanofiber effects are ignored in this 

figure. For the ultrasmall plate, we assume that the plate 

thickness and nonlocal parameter are 0.34 and 1 nm, 

respectively. Furthermore, the density, Poisson’s ratio and 

elasticity modulus are chosen as 2250 kg/m3, 0.25, 1.06 

TPa, respectively (Wang et al. 2010). An excellent  

 

 

 

agreement is seen between the results and those available in 

the literature.  

Figures 3 and 4 indicate the influences of shear prestress 

on the phase and group velocities of the small-scale plate 

containing nanofibers. The shear in-plane preload is 

assumed to be uniform. The nanoscale system consists of  

 

Fig. 4 Influences of shear in-plane preload on the group velocity of the plate containing nanofibers 

 

Fig. 5 Influences of scale parameter and shear preload on the phase velocity of the plate containing nanofibers 
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five plates containing nanofibers with the same material 

properties (vF=0.3, ρF =6450 kg/m3, σRS =0.2 GPa, EF=30 

GPa, VF=0.3, and ϕ =00 for nanofibers; vL=0.3, ρL =1600 

kg/m3 and EL=3.44 GPa for each plate (Farajpour et al. 

2018)). Each layer’s aspect ratio, length and thickness are 1, 

150 nm and 3 nm, respectively. The elastic medium is  

 

 

 

not taken into consideration. The nonlocal parameter-to-

length ratio is considered as 0.02. From the results given in 

Fig. 3, it is seen that the phase velocity of small-scale plates 

is greater for greater values of shear prestress. In addition, 

the shear in-plane preload affects the group velocity. 

Greater values of shear preload result in slightly greater  

 

Fig. 6 Influences of scale parameter and shear preload on the group velocity of the plate containing nanofibers 

 

Fig. 7 Influences of volume fraction and shear preload on the phase velocity of the plate containing nanofibers 
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group velocities. 

The influences of shear in-plane preload together with 

scale influences are indicated in Figs. 5 and 6. The total 

wave number is 0.05 1/nm. The elastic medium is not taken 

into consideration. Stronger scale effects yield lower group 

and phase velocities. It is rooted in the fact that stronger 

 

 

 

scale effects correspond to a lower total stiffness for the 

small-scale system; consequently, lower values of structural 

stiffness lead to lower frequencies. From Eq. (26), it can be 

seen that lower frequencies result in lower phase velocities.  

Figures 7 and 8, respectively, depict the effects of shear 

prestress and volume fraction on the phase and group  

 

Fig. 8 Influences of volume fraction and shear preload on the group velocity of the plate containing nanofibers 

 

Fig. 9 Influences of recovery stress and shear preload on the phase velocity of the plate containing nanofibers 
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velocities of the small-scale plate containing nanofibers. 

The dimensionless scale parameter and total wave number 

are, respectively, given by 0.02 and 0.05 1/nm. Generally, 

greater volume fractions yield greater phase and group 

velocities. This is because increasing the volume fraction of 

nanofibers increases the stiffness of the composite structure.   

To understand the influence of recovery stress on the 

 

 
 

phase and group velocities of small-scale plates containing 

nanofibers, Figs. 9 and 10 are plotted. The dimensionless 

scale parameter, total wave number and volume fraction 

are, respectively, given by 0.02, 0.05 1/nm and 0.3. 

Comparing Figs. 7 and 8 with Figs. 9 and 10, one can 

conclude that the wave propagation characteristics, 

especially the group velocity, are less sensitive to the  

 

Fig. 10 Influences of recovery stress and shear preload on the group velocity of the plate containing nanofibers 

 

Fig. 11 Influences of elastic medium on the phase velocity of the plate containing nanofibers σ𝑥𝑦
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recovery stress in comparison with the volume fraction. 

Nevertheless, the phase and group velocities for nanofibers 

with high recovery stresses are higher than those for small 

recovery stresses.  

Figure 11 is plotted to illustrate the influence of elastic 

medium on the phase velocity while Fig. 12 is aimed at 

illustrating the influence of elastic medium on the group 

velocity. The dimensionless scale parameter, total wave 

number, volume fraction and recovery stress are, 

respectively, given by 0.02, 0.05 1/nm, 0.3 and 0.2 GPa. 

The normal and shear stiffness coefficients of the elastic 

medium are kna4/S̃11 = 50 and ksa2/S̃11 = 50, respectively. It 

can be concluded that the phase and group velocities are 

enhanced when the small-scale plate is embedded in an 

elastic medium. This is due to the fact that utilizing an 

elastic medium increases the total structural stiffness of the 

system, and this consequently increases the value of phase 

and group velocities. 

 

 

4. Conclusions 
 

The effects of shear in-plane preload on the wave 

propagation response of small-scale plate containing 

nanofibers were explored. To develop a more realistic 

model, the small-scale system was assumed to be embedded 

in an elastic matrix. A size-dependent model of plates was 

proposed for the problem via nonlocal elasticity. The size-

dependent differential equations were derived for motions 

along all directions. The differential equations were 

analytically solved so as to extract the phase and group 

velocities of the plate subjected to shear preload. The 

present results indicated that the phase velocity of small- 

 

 

scale plates containing nanofibers is greater for greater 

values of shear preload. Furthermore, greater values of 

shear preload result in slightly greater group velocities. It 

was also indicated that stronger scale effects yield lower 

group and phase velocities. The wave propagation 

characteristics are more sensitive to the volume fraction in 

comparison with the recovery stress. Moreover, as the plate 

is embedded in an elastic medium, both phase and group 

velocities are enhanced. 
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Appendix A 
 

For a particular type of nanofibers such as shape 

memory alloy nanofibers, Brinson’s model can be used to 

obtain the elasticity modulus of nanofibers (Brinson 1993) 

( )
( ) ,

1

aus mar
F

aus mar

E E
E

E E

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=

+ −
 

(A1) 

where “aus” and “mar” represent the nanofiber austenite 

and martensite phases, respectively. ξ can be expressed as 

.str tem  = +
 

(A2) 

where 
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(A3) 

In the above equations, “0”, “tem” and “str” stand for 

the initial condition, temperature and stress, respectively. 

Applying Brinson’s model, the following equation is also 

introduced for ξ 

( )( )

( ) ( )

0 1 cos   
2

for  T>   and  < ,
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(A4) 

where 

( )
1

.A A fin staC A A 
−

 = −
   

(A5) 

Here σ and T are respectively the stress and temperature; 

CA, Afin and Asta, respectively, indicate the critical stress 

slope, finish and start temperatures for the austenite phase. 

 

 

Appendix B 
 

To give more detail about the derivation of the 

governing differential equations, the motion equation along 

the x direction, as an example, is derived in the following. 

Other motion equations are derived in a similar way. Using 

Eqs. (5), (9), (10) and (12), the force resultants are obtained 

as 
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(B1) 

Substituting the right-hand sides of Eq. (B1) into Eq. 

(14), one obtains  
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(B2) 

Again using Eq. (14), the last term on the right-hand 

side of Eq. (B2) is obtained as 

2
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2
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(B3) 

Now substituting Eq. (B3) into Eq. (B2) gives the 

motion equation along the x direction   
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It should be noticed that the differential equations of 

motions along the y and z directions are derived in a similar 

way. 
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