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1. Introduction  
 

In recent decades, many researchers have been eager to 

concentrate on structural health monitoring of important 

mechanical, industrial and civil engineering structures 

(Gentile 2006, Rahbari et al. 2015, Petrovic-Kotur and 

Pavic 2016). Potential risks of natural disasters and high 

investments in reconstructing the infrastructures are the 

main reasons for great tendency of employers and industrial 

managers in evaluating the performance of current 

structures. Destructive and nondestructive tests are two 

main approaches concern about identifying the structural 

behavior. Despite all their advantages, des tructive 

approaches may cause damage in the tested structural 

members, besides, they are limited to local identification of 

structural behavior. Localized nondestructive experimental 

methods such as acoustic or ultrasonic methods, magnetic 

or thermal field methods, require initial information about 

the damage zones and accessibility of inspected portion of 

the structure (Teughels et al. 2002). Therefore, the testing 

techniques which lead to global understanding about the 

characteristics of structures can be considered as reasonable  
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choices for structural evaluation.  

Vibration-based damage identification methods are used 

as the global approaches and integrated health monitoring 

systems to detect structural changes based on dynamic 

properties (Titurus and Friswell 2014, Zhang et al. 2016). 

Based on whether using an analytical model or not, these 

methods can be classified into model based (parametric) 

and non-model based (non-parametric) techniques, 

respectively. The parametric approaches are based on 

adjusting some parameters within the model of structure, 

i.e., their performances depend on the model's quality. Non-

parametric methods do not need a detailed model of 

structure, but most of them lack a solid theoretical and 

physical bases, excluding damage locating vector technique 

(Bernal 2002) and local flexibility method (Reynders and 

De Roeck 2010, Reynders et al. 2010). This research 

focuses on model based damage identification method. 

Doebling et al. (1998) gave an extensive overview of 

vibration-based damage detection methods.  

In this arena, damage is represented as the decrease in 

structural stiffness, which causes the changing in the 

vibrational data of structure (Teughels and De Roeck 2004). 

Natural frequencies and mode shapes are the most common 

dynamic parameters used in damage recognition (Fox 1992, 

Bicanic and Chen 1997, Salawu 1997). Using the natural 

frequencies has the advantage of high accuracy in 

measurement, moreover, its usage is simple and low cost. 

Therefore, it can be practical in localizing the damaged 

zones. The location and severity of deficiencies can be 

better approximated applying mode shapes along with 
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natural frequencies (Jaishi and Ren 2006). However, 

considering the measurement of mode shapes, many sensors 

are needed for large scale and complex structure. Moreover, 

it has less accuracy comparing to measurement of dynamic 

frequencies (Salawu and Williams 1995, Lam and Yin 

2011). Other damage indicators presented in the literature 

are mode shape curvature (Wahab and De Roeck 1999), 

modal strain energy (Ren and De Roeck 2002, Shi et al. 

2002, Wang et al. 2013), modal flexibility (Jaishi and Ren 

2006, Du et al. 2017) and multiple modal residuals (Titurus 

and Friswell 2014). 

Model based damage estimation techniques often use an 

inverse algorithm, generally called model updating, with the 

aim of adjusting analytical model to the experimental 

vibration results (Wei and Lv 2015, Lu et al. 2017). Two 

main approaches, direct and iterative methods, are applied 

for updating Finite Element (FE) models (Carvalho et al. 

2007, Liu et al. 2013). In the former, a closed form direct 

solution is used to calculate global stiffness and/or mass 

matrices and offer the models capable of representing 

measured modal data exactly. No updated physical 

parameter is taken into account in the direct methods. This 

may cause deficiency in the connectivity of nodes, and 

generate asymmetric and populated (instead of banded) 

updated stiffness and/or mass matrices, all these are 

physically meaningless (Marwala 2010). Iterative methods 

update physical properties of FE model through 

optimization process to minimize the difference between 

numerical and experimental vibrational data. The success of 

these methods is related to the definition of objective 

function, capability of selected optimization method and 

quality of measured data. Mottershead and Frisswell (2013) 

have represented a complete overview of Finite Element 

Model Updating (FEMU) approaches. 

Optimization techniques are used in the iterative finite 

element model updating methods to adjust uncertain 

parameters through matching updated numerical model 

response to the measured one. Classical optimization 

methods such as Quasi Newton, Gauss Newton, nonlinear 

conjugate gradient and Nelder Mead Simplex have 

disadvantages of converging the results to local minimums 

in multiple extremum optimization problems. Modern 

evolutionary based methods have random initial assumed 

solutions and try to converge the results to the best optimum 

solution within the whole search space. By the advent of 

computers with higher performance, the slow speed of these 

methods due to the high number of function evaluation and 

iterations is less problematic. Because of the good 

capability of finding the global minimum, they can yield to 

better results. Perera and Torres (2006) used Genetic 

Algorithm (GA) for structural damage detection considering 

eigenvalue equation along with modified total modal 

assurance criterion as the goal function. Saada et al. (2013) 

implemented Particle Swarm Optimization (PSO) method in 

damage identification in an experimental beam. In order to 

combine the efficiency of different methods, some hybrid 

methods have been designed and studied. Begambre and 

Laier (2009) integrated an iterative and a direct method in 

structural damage identification by using a hybrid PSO and 

Nelder-Mead algorithm. Artificial Bees Colony (ABC),  
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Fig. 1 Finite element model updating algorithm 

 

 

proposed by Karaboga and Basturk (2007), was applied in 

different electrical  and industrial engineering problems 

(Hemamalini and Simon 2011) and rarely used in structural 

and mechanical engineering field. 

In this research, a finite element model updating method 

for damage detection is explored, using intelligent 

optimization techniques. The objective function has been 

selected as the square of Euclidean norm error between 

numerical and experimental eigenvalues as well as Modal 

Assurance Criteria (MAC) (Allemang 2003) value of mode 

shapes. Here, the main aim is to investigate application and 

characteristics of ABC, PSO and GA optimization methods 

in structural model updating problems. After exploring 

advantages and disadvantages of these methods, a hybrid 

optimization method is presented using positive points of 

ABC and PSO in optimization. As it is concentrated on 

beam elements, the updating parameters are selected as 

elemental bending stiffness. In ABC-PSO hybrid method, 

the speed of convergence is increased by reducing the 

number of updating parameters. Concerning the 

experimental conditions, only the information of first few 

modes can be measured. Furthermore, the presence of noise 

in the measured data can surely affect the accuracy of final 

results. This report is organized in four sections.  

Section 1: introduction, 

Section 2: finite element model updating procedure 

including objective function and optimization methods, 

Section 3: Verifying the effectiveness of proposed 

method and its application in structural engineering using a 

numerical simulation and some experimental investigation 

data. 

Section 4: brief summary of the obtained results.   

 

 

2. Finite Element Model updating procedure 
 

Finite element model updating method is an 

optimization process minimizing the differences between 

experimental and numerical model data. Many factors such 

as construction faults, aging and external unpredictable 

loads may cause discrepancy between the current measured 

structural characteristics and the initial FE model 

correspond to the as-built documents. As the experimental 

data represent the current realistic behavior of structure, the 

goal is to minimize an objective function by adjusting the 

uncertain properties of FE model (updating parameters). 

Fig. 1 presents the flowchart of FEMU algorithm. 

Different FEMU methods within the literature have 

almost the same algorithms (Friswell and Mottershead 

2013). During these algorithms, the goal function is 

340



 

Evolutionary-base finite element model updating and damage detection using modal testing results 

considered based on updating uncertain parameters to 

match structural desired characteristics. This research 

focuses on the dynamic responses as the updating criteria. 

The experimental real behavior data may be achieved by 

performing field full scale or lab tests. After recording the 

responses using appropriate sensors, the signal processing 

methods will be implemented to reach the required dynamic 

properties. By constructing the objective function using 

numerical and experimental dynamic results, an appropriate 

optimization method should be selected to reach the fittest 

FE model for the studied structure. Two main parts of FE 

model updating algorithm are explained in the following. 

 

2.1 Objective function 
 

The finite element representation of an undamped multi 

degree of freedom structural system consisted of n second 

order coupled differential equations in matrix form, defined 

as follows 

M. ü + K. u = f(𝑡) (1) 

Where, M and K are global stiffness and mass matrices, 

respectively. 

The modal characteristics of this system are described 

by eigenvalue equations as follows 

(K − ω𝑖
2M) Φ𝑖 = 0,    𝑖 = 1, … , n (2) 

Here, ω𝑖  is the natural frequencies corresponding to 

vibration mode shapes ( Φ𝒊), and n is the total number of 

degrees of freedom. 

The objective function is selected as square of Euclidean 

distance between numerical and measured square of natural 

frequencies. It can be written as follows 

𝑓 = ∑ [
𝜔𝑗

2 − 𝜔�̃�
2

𝜔�̃�
2 ]

2𝑚

𝑗=1

 (3) 

Where, 𝜔�̃� is the measured natural frequency of j-th 

mode, and m is the number of measured modes. The 

accuracy of measuring natural frequencies are higher than 

that of other dynamic parameters such as mode shapes and 

FRFs (Marwala 2010). Eq. (3) is selected as the nonlinear 

least square function of eigenvalues for the structure to 

meet more reliable results for the updated FE model.  

In this research damage has been defined as the 

reduction in stiffness of each element of numerical model. 

Physical properties of each element have been corrected 

during the updating procedure using the damage index (α). 

For an Euler Bernoulli beam element, α can be written as 

𝛼𝑖 = 1 −
(𝐸𝐼)𝑑

𝑖

(𝐸𝐼)0
𝑖
 (4) 

Where, E is the Young modulus of elasticity, I is the 

second moment of area, and superscript d is the damaged 

status of the ith element. The reduction factor (α), a 

dimensionless vector with a size between 0 and 1, is used as 

the updating parameter in the FEMU optimization process. 

The damage index (α) is linearly related to the stiffness 

matrix of the structure, presented as follows 

K𝑑
𝑖 = 𝐾0

𝑖  (1 − 𝛼𝑖) (5) 

Where, K𝑑
𝑖  and K0

𝑖  are updated and initial element 

stiffness matrices respectively. The global stiffness matrix 

can be assembled using elemental stiffness matrices. The 

objective function mentioned in Eq. (3) can be rewritten as 

𝑓1(𝛼) = ∑ [
𝜔(𝛼)𝑗

2 − 𝜔�̃�
2

𝜔�̃�
2 ]

2𝑚

𝑗=1

 (6) 

Where, 𝑓1(α) is the amount of objective function 1 

with respect to the parameter α. For the initial undamaged 

model, α is a vector of zeroes with a size equal to the 

number of elements. 

As the structures get more complex, considering mode 

shapes beside the natural frequencies help the optimization 

problem to reach unique converged optimum solution. 

Therefore, the modal assurance criterion is applied in 

addition to the regular objective function mentioned in Eq. 

(6) to better converge damage index vectors to the final 

result (Friswell and Mottershead 2013). The MAC value for 

the i-th mode shape is as follows 

𝑀𝐴𝐶(𝑖) =
|{𝜑𝐴}𝑖

T{𝜑𝐸}𝑖|
2

({𝜑𝐴}𝑖
T{𝜑𝐴}𝑖)({𝜑𝐸}𝑖

T{𝜑𝐸}𝑖)
 (7) 

Where {𝜑𝐴}𝑖 and {𝜑𝐸}𝑖 are the ith mode shapes of the 

analytical and experimental models, respectively. 

The objective function 𝑓2(α) can be completed as 

𝑓2(α) = ∑ [
ω(α)𝑗

2
− ω�̃�

2

ω�̃�
2 ]

2𝑚

𝑗=1

+ 𝑟 ∑[1 − 𝑀𝐴𝐶(𝑖)]

𝑛

𝑖=1

 

(8) 

Where r is a scaling coefficient, helping optimization 

problem become more stable. 
 

2.2 Optimization method 
 

According to FEMU flow chart Fig. 1, after calculating 

the goal function from initial updating parameters, an 

appropriate optimization method should be selected to find 

the best-minimized solution for the problem. In this 

research, modern optimization methods are implemented 

based on the modern heuristic algorithms for finding global 

minimum solution in the search space by using n number of 

individuals (n also names as number of population size), 

each of having a dimension of D. The population evolves 

during a succession of iterations called generations until a 

termination criterion is satisfied. Such criteria take the 

quality of priori solutions into account. During each 

generation, a succession of operators is applied to the 

individuals of a population to generate the new population 

for the next generation. The fitness values of all members 

within the population are evaluated by a goal function after 

modal analysis of structure using modified stiffness. The 

limit number of iterations, the limit of the best fitness  
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Fig. 2 Evolutionary base optimization general algorithm 

 

 

function value and the limit of the average relative change 

in the best fitness function value, are the criteria evaluated 

at the end of each iteration. 

In model updating problem, an optimization problem 

will be solved after constructing an objective function 

which is explained in section 2.1. The optimization 

parameters are selected as the damage index according to 

Eq. 4. The optimization methods applied in this section tries 

to find the best optimum solution for the problem. 

The general procedure of finding global minimum 

solution is as below in Fig. 2.   

 

2.2.1 Genetic algorithm (GA) 
According to Darwin theory (Darwin 1859), competition 

to survive in each generation causes the populations, with 

better characteristics of fitting to the environment, 

overcome the weaker ones. Genetic algorithm is a model of 

machine learning derived from evolution mechanism in the 

nature (Holland 1992). The algorithm starts with creating an 

initial random population of solutions (chromosomes) with 

a uniform distribution considering the bound constraints. 

Each chromosome consists of a set of genes equal to D. In 

this research, a simple GA is applied which includes three 

main operators as selection, crossover and mutation. 

 

Selection 

The algorithm selects fitter chromosomes within the 

existing population to breed next generation of 

chromosomes. The selected solutions (names as parents) 

combine to create new group of solutions (names as 

children). Stochastic uniform selection method (the 

MathWorks 2014) is used in this research, which assures the 

diversity in the selected solutions. Each parent corresponds 

to a section of a line with its length proportional to its 

scaled value. The algorithm moves along the line in equal 

steps, in each of which allocating a parent from the section 

it lands on. Solutions with higher fitness have more 

probability to be selected. 

 

Crossover 

Single point crossover method (Dréo, Pétrowski et al. 

2006) is used in this research. This operator mixes genetic 

information of a fraction of the population by cutting pairs 

of chromosomes at random points along their lengths and 

exchanging the cut sections. In this way, parents’ 

characteristics will be combined to create the children with 

higher capabilities of fitness. Solutions are combined with 

the aim that new generation of solutions have higher fitness 

than their parents.  

 

Mutation 

To prevent converging the solution to the local optima, 

one or more chromosomes’ genes will be changed with low 

probability to create new materials in the population. Here, 

adaptive feasible mutation method (the MathWorks 2014) is 

used that randomly generates directions that are adaptive 

with respect to the last successful or unsuccessful 

generation. The mutation chooses a direction and step 

length that satisfies bounds. Mutation operator tries to 

provide global searching within solution search space 

considering bounds. In every generation, a number of best 

individuals are transferred to the next generation in order to 

avoid being eliminated in the iteration. 

 

2.2.2 Artificial bee colony (ABC) 
Honey bee swarm have a unique foraging strategy. 

Artificial Bee Colony (Karaboga and Basturk 2007), an 

intelligent optimization algorithm, simulates this behavior 

considering three different groups of artificial bees: 

employed, onlooker and scout bees. For a problem with n 

variables, a population of preliminary bees that equals the 

half of the total population are generated randomly, each of 

them consisting of n variables. In an iterative procedure that 

is explained below, ABC finds the best solution for an 

optimization problem. 

 

Employed bees 

Each preliminary solution is given to an employed bee. It 

selects another solution (𝑥𝑘) in the colony and uses it to 

make some changes to its own solution as 

.( )ij ij ij kjv x x x k i= + −   (9) 

Where,  is a random number between [-1 1]. If the 

modification has a better cost function, the bee saves the 

new solution, otherwise it keeps its own solution. 

 

Onlooker bees 

Each Onlooker bee inherits a solution from an employed 

bee. It modifies this solution to achieve better cost functions 

similar to the employed bees. However, they select the other 

solution wisely by using a selection method. (Here, Roulette 

Wheel selection methods is selected). In this method, 

solutions with better cost functions have higher probability 

to be selected. The probability of selecting the i-th bee can 

be shown as mentioned in Eqs. (10) and (11). The results of 

the modification by Onlooker bees will be reported to Scout 

bees. 

1
( )

1 ( )
fit i

f i
=

+  
(10) 
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1

( )
( )

( )
n

j

fit i
P i

fit j
=

=


 

(11) 

 

Scout bees 

If a solution remains unchanged through a specific 

number of iterations called Limit, then the relative Scout 

bee selects a new random solution to keep the diversity of 

the solutions. 
 

2.2.3 Particle swarm optimization (PSO) 
PSO, first proposed by Kennedy and Eberhart in 1995 

(Kennedy 2011), is a metaheuristic algorithm that is based 

on the special foraging approach of the swarms of birds. A 

swarm with a population equal to n, spreads in the domain 

of optimization problem. Position of each bird is stored in a 

vector with size equal to the number of variables of the 

problem (xi). In every iteration, the position of each bird is 

updated via the below procedure in order to converge to the 

best answer 

1

1 1 2 2( ) ( )k k k k k k

i i i i iv w v c r p x c r g x+ =  +   − +   −
 

(12) 

1 1k k k

i i ix x v+ += +  
(13) 

where v is the velocity of the bird, w is the learning factor 

that is in the Inertia range, 𝑐1and 𝑐2 are positive constants 

as the self-adjustment and the social-adjustment factors 

respectively, 𝑟1 and 𝑟2  are uniformly distributed random 

vectors between [0, 1], 𝑝𝑖  is the best position of birds till 

now and 𝑔𝑘  is the best position attained among all of the 

birds so far. 

Some of the consumptions of the aforementioned 

algorithms used in the research are shown in the Table 1. 

 

2.2.4 ABC-PSO hybrid optimization 
As it is mentioned in literature, PSO is one of the best 

metaheuristic algorithms for optimization, however, it is 

reported that it has a disadvantage of low accuracy in 

objective functions that are too noisy which makes it 

susceptible to stick into a local minima (Aote, Raghuwanshi 

et al. 2013). On the other way, PSO is one of the best 

optimization methods in convergence speed when the 

solutions are near the global minimum zone. In order to 

investigate more accurate with less calculation cost 

updating method, after consideration of advantages and 

disadvantages of application of ABC and PSO optimization 

methods within several numerical and experimental 

examples, a new hybrid optimization method in updating 

procedure is proposed trying to merge the positive points of 

these optimization methods. ABC is powerful in dealing 

with noisy objective functions (Karaboga and Basturk 

2008) and PSO is capable of digging deep into optimum 

solutions. In this way, the hybrid algorithm starts with ABC 

as the primary function, finding damage zones within the 

updating variables, continued by PSO as the function 

conducted in the last iterations to converge the solution to 

final results, by finding the amount of damage within 

candidates for damaged elements. After considering some  

Table 1 Parameter settings of the optimization algorithms 

used in the research 

PSO  ABC  GA 

Population Size n  Colony size n  Population 

Size 
n 

Inertia Range 1.1→0.1  
No. of 

Onlooker 

Bees 

0.5×n  Crossover 

Fraction 
0.8 

Self-Adjustment 

Weight 
1.49  

No. of 

Employed 

Bees 

0.5×n  Number of 

Elites 
0.05×n 

Social-

Adjustment 

Weight 

1.49  Limit 0.5×n×D    

 

L

E, A, I, ρ 

Damaged

(a)

(b)

Undamaged

 
(a) 
L

E, A, I, ρ 

Damaged

(a)

(b)

Undamaged  
(b) 

Fig. 3 Simulated numerical example 

 

 

termination criteria, like number of consecutive iterations’ 

limit or cost function tolerance, it can be concluded that 

obtained solutions are near the global minimum damage 

zone. At this step, concerning engineering judgment, the 

algorithm can reduce the number of updating parameters by 

elimination of damage indices that are near zero. Therefore, 

ABC method finds the damaged elements candidates and 

helps the optimization algorithm to disregard undamaged 

elements in continue within optimization process. In the 

next step, PSO tries to converge the result to final solution 

with lower number of updating variables which represents 

finding severity of damage in candidate elements. The 

ABC- PSO optimization method can be so efficient in 

accuracy and speed in damage detection problems with a lot 

of updating variables. 

 

 

3. Examples 
 

3.1 Numerical Example 1 - Simulated Cantilever 
Beam 
 

A numerical simulation has been performed to examine 

the proposed model updating procedure in damage 

detection problem using incomplete measured data. To this 

end, SAP2000 (CSI 2013) software verification example 1-

014 is used as the basic model. A cantilever beam with the 

length of L = 2.44 m,  and a rectangular cross section 

(b × h = 0.30 × 0.46 m) has been modeled using ten 2D 

Euler Bernoulli beam elements in MATLAB. The beam is 

assumed to have young’s modulus (E) of  24.71 GPa  and 

the density (ρ) of 2400  kg/m3 . Regarding the fourth 

element, 50% reduction in bending stiffness is assumed as  
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Table 2 Simulated measured, initial and updated frequencies 

for example 1, comparison between GA, ABC and PSO 

Mode 1 2 3 4 5 

Simulated 

measured Freq. 

[Hz] 

damaged case 37.45 237.88 654.06 1346.07 2138.24 

Numerical Freq. 

[Hz] 

Initial FE 

model 

  39.48 247.40 692.89 1358.74 2249.62 

 error 

% 
5.42 4.01 5.94 0.94 5.21 

 MAC 0.99722 0.98151 0.98476 0.95286 0.93421 

Updated 

FE 

model 

GA 

      

n=50 37.48 237.69 654.70 1343.63 2137.25 

error 

% 
0.10 -0.08 0.10 -0.18 -0.05 

MAC 0.99996 0.99985 0.99984 0.99992 0.99953 

n=100 37.46 237.72 654.51 1338.76 2137.26 

error 

% 
0.040 -0.065 0.068 -0.543 -0.046 

MAC 0.99994 0.99979 0.99977 0.99993 0.99957 

ABC 

      

n=20 37.54 237.88 654.50 1343.97 2135.54 

error 

% 
0.253 0.003 0.067 -0.156 -0.127 

MAC 0.99996 0.99979 0.99983 0.99993 0.99921 

n=50 37.46 237.97 654.31 1344.68 2138.18 

error 

% 
0.039 0.041 0.038 -0.103 -0.003 

MAC 1.00000 0.99999 0.99999 1.00000 0.99999 

n=100 37.45 237.76 654.47 1345.33 2139.37 

error 

% 
0.014 -0.048 0.062 -0.055 0.053 

MAC 1.00000 1.00000 0.99999 1.00000 0.99999 

PSO 

      

n=20 37.45 237.88 654.06 1346.07 2138.24 

error 

% 
0* 0 0 0 0 

MAC 1.00000 1.00000 1.00000 1.00000 1.00000 

n=50 37.45 237.87 654.06 1346.06 2138.22 

error 

% 
0 0 0 0 0 

MAC 1.00000 1.00000 1.00000 1.00000 1.00000 

n=100 37.45 237.88 654.06 1346.07 2138.24 

error 

% 
0 0 0 0 0 

MAC 1.00000 1.00000 1.00000 1.00000 1.00000 

*Errors less than 10-4 % is considered as 0. 
 

 

the damaged beam state. Simulated numerical example. Fig. 

3 shows geometrical and material properties of damaged 

and undamaged beams. Numerical modal analysis of the 

damaged beam is considered as the measured modal 

response of the beam after damage. Only first five modal 

frequencies are selected as the measured response data in 

order to consider the limitation of incompleteness of 

experimental data. The effect of noise on measured 

information is ignored in this example. Here, the main goal 

is to verify the developed FE model updating codes and  

Table 3 simulated damaged and updated frequencies for 

example 1 with objective function f1 and f2 

Mode  Simulated 

damaged 

Frequencies 

[Hz] 

 Updated Model Frequencies [Hz] 

no.   f 1 error % MAC f 2 error % MAC 

1  37.45  37.46 0.040 0.999943 37.45 0.011 1.000000 

2  237.88  237.72 -0.065 0.999791 237.78 -0.041 0.999999 

3  654.06  654.51 0.068 0.999774 654.30 0.037 0.999999 

4  1346.07  1338.76 -0.543 0.999926 1345.10 -0.072 0.999998 

5  2138.24  2137.26 -0.046 0.999573 2138.27 0.001 0.999996 

 

Table 4 simulated damaged and updated frequencies for 

three span continues beam example 

    Initial FE Model  Updated FE Model 

Mode  f m [Hz]  f i [Hz] error % MAC  f u [Hz] 
error 

% 
MAC 

1  24.15  24.54 1.650 0.9840  24.15 0* 1.0000 

2  31.44  31.45 0.049 0.9805  31.44 0 1.0000 

3  45.07  45.93 1.918 0.9786  45.07 0 1.0000 

4  97.88  98.20 0.327 0.7931  97.88 0 1.0000 

5  111.63  111.92 0.263 0.8447  111.63 0 1.0000 

*Error less than 10-5 % is considered as 0. 
 

 

investigate efficiencies of ABC, PSO and GA in these 
problems. 

This problem has 20 degrees of freedom with ten 

updating parameters (damage index vector ) as the studied 

beam has been divided into ten beam elements. The goal is 

to update initial FE model to match the simulated numerical 

data of damaged beam. Considering five first modal 

information, ABC, PSO and GA optimization methods are 

applied to find the optimum solution of the example. The 

results of comparison between these methods considering 

different population sizes are presented in Table 2. This 

table shows the simulated measured modal information as 

well as the initial and updated one and compares the 

updated results using two accuracy criteria (relative error 

and MAC value). Considering maximum number of 

generations as 100, three different population sizes n=20, 

50 and 100 are conducted for each optimization method. 

Only GA method with population size of n=20 was not 

successful to converge to acceptable results finding the 

damaged element, thus it is not included in the Table 2. It 

seems ABC and PSO has ability to reach the global minima 

with less population sizes and therefore less calculation 

costs than GA (Karaboga and Basturk 2008). Moreover, 

obtained results shows better accuracy of ABC and PSO in 

comparison with GA. Fig. 4(a) to (c) shows ABC method 

results at different iterations, trend of converging to final 

result. The final results of damage indices considering ABC 

and PSO methods are shown in Fig. 4(c) and (d). 

Concerning the influence of considering mode shapes plus 

modal frequencies within the objective function in 

comparison with only frequencies in accuracy of converged 

solutions, Table 3, Fig. 4(e) and (f)  report the results of 

using objective function f1 and f2 using GA as optimization 

method. The population size is assumed to be n=100 within 

Fig. 4 and Table 3. 
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Fig. 5 Average of the results in every iteration for the 

algorithms with population=100 

 

 
In order to investigate the trend of convergence of 

mentioned optimization methods to optimum solutions and 

minimizing the cost function, this problem is solved 

repeatedly for 30 times for each method considering 

population size of 100. According to random initial solution 

in each solution, average of cost function values in each 

iteration step is calculated. Fig. 5 shows average value of 

cost functions for best solution in each iteration. The results 

shows the ability of PSO to minimize the cost function fast. 

 

 

 

Fig. 6 Three span continues beam 
 
 

3.2 Numerical example 2 - Three span continuous 
beam 
 

This example is generated to explain damage detection 

procedure using presented ABC- PSO hybrid optimization 

method. A three span continues beam is selected in this 

section as a numerical simulation of damage detection 

problem with multi damaged elements. The dimensions and 

specification of the mentioned beam is considered the same 

as a similar numerical example previously conducted by 

Zhu et al. (2015). The beam has 24 meter length with 0.5 × 

1.0 m cross section which is shown in Fig. 6. The physical 

parameters of the beam is considered as Young’s modulus E 

= 30 GPa and mass density ρ = 2.8 ton/m3. The beam is 

modeled using 24 Euler-Bernoulli beam elements (Fig. 6). 

Damage extent of 15% and 20% is assumed to be accrue in 

12th and 13th elements respectively. 

8 m 8 m 8 m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 

 
 

(a) ABC (10th iteration) (b) ABC (25th iteration) 

  
(c) ABC (100th iteration- converged result) (d) PSO (100th iteration- converged result) 

  
(e) GA (objective function f1) (f) GA (with the objective function f2) 

Fig. 4 Identified damaged indices for numerical example 1 
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To simulate the experimental results of the damaged 

beam, modal analysis is conducted on finite element model 

of the damaged beam and first five frequencies and mode 

shapes of this analysis are used as the algorithm input data. 

In this example, objective function and optimization method 

are considered as equation 8 and ABC- PSO hybrid method, 

respectively. The ABC- PSO algorithm consists of two main 

optimization stage. In the first stage, ABC algorithm starts 

with random initial solutions and tries to find the best 

solution by changing the damage indices of all 24 elements. 

Fig. 7(a) shows damage zones results from this optimization 

step. After 108 iterations and converging to the solution 

which satisfy termination criteria (the last 20 iterations had 

relative changes in their cost function values less than 

0.0001), the elements that were found to have damage index 

value higher than 3% are selected for the next optimization 

stage (elements no. 12, 13 and 24). Then, PSO algorithm 

tries to find the final solution by modifying damage indices 

in estimated damage zones. In 60 iterations, the cost 

function value reduced from 6.80 × 10-5 to 1.67 × 10-17. As 

it is shown in Fig. 7(b), in the second stage, PSO achieves 

to the exact amount of damage in the selected zones in a 

high-speed procedure. Severity of damage is found 15%,  

 

 

 
 

20% and zero in elements no 12, 13 and 24, respectively. 
The ABC-PSO method starts solving the optimization 

process with 24 numbers of updating parameters. As the 
algorithm estimates damage zones after the first step, 
number of updating parameters are reduced to 3 candidate 
damage elements for the second step. The reduction in the 
number of updating variables in ABC-PSO optimization 
method causes less computational cost for solving the 
problem comparing to application of only PSO or ABC 
method with total number of updating parameters. 
Moreover, number of population size in the second step of 
optimization process in ABC-PSO method can be reduced 
according to number of selected updating variables.  

 

3.3 Experimental example - Concrete beam lab test  
 

This example which is previously investigated in some 
relative researches like (Maeck et al. 1999, Ren and De 
Roeck 2002, Teughels et al. 2002, Jaishi and Ren 2006), is 
selected to verify the explained model updating method in 
structural damage detection problem using real structural 
behavior data. A reinforced concrete beam with 6 m length 
and 0.2×0.25 m cross section was tested in laboratory 
before and after damage. The beam was statically loaded in  

  
(a) ABC finds damage zones (b) PSO converges to final solution value 

Fig. 7 Identified damage indices for numerical example 2 

  
(a) Cross section (b) Beam Elements and static loads arrangement 

Fig. 8 Concrete beam specifications 

Table 5 Measured, initial and updated Frequencies of concrete beam example- ABC method 

   Reference State     Damaged State 

   Initial FE Model  Updated FE Model    Initial FE Model  Updated FE  

Model 

Mode f m [Hz]  f i  

[Hz] 

error  

% 
MAC  f u  

[Hz] 
error % MAC  f m [Hz]  f i  

[Hz] 

error 

 % 
MAC  f u  

[Hz] 

error  

% 
MAC 

1 21.90  22.22 1.44 0.9989  21.90 0.00 0.9996  18.01  21.90 21.64 0.9976  17.98 -0.13 0.9991 

2 60.33  61.26 1.55 0.9934  60.33 0.00 0.9959  50.20  60.33 20.16 0.9979  50.23 0.06 0.9984 

3 117.02  120.18 2.70 0.9952  117.01 -0.01 0.9967  98.22  117.01 19.15 0.9862  98.10 -0.12 0.9990 

4 192.03  198.96 3.61 0.9951  192.05 0.01 0.9982  161.88  192.05 18.64 0.8971  162.09 0.13 0.9979 

f m: Measured Frequency, f i: Initial Frequency, f u: Updated Frequency 

Ф8  
6 Ф16  

250 mm

2
0
0

 m
m

2 m 2 m 2 m

P P

1 2 3 4 5 6 7 8 9 10
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two points with 2 m distance from beam edges. This static 

load was applied in six steps with final load of 24 kN 

causing cracks within the beam length. After this step, the 

damaged beam was unloaded and its modal parameters was 

extracted by hammer test on free- free boundary condition. 

Detailed information about the concrete beam, testing 

conditions and obtained dynamic results was reported by 

Jaishi and Ren (Jaishi and Ren 2006) which were 

concentrated on updating the model of this example using a 

sensitivity base model updating method with Trust Region 

Newton algorithm for optimization procedure. Here, the 

aim is to identify damage pattern of the beam using 

measured modal parameters before and after damage. The 

damage identification process is actually consisted of two 

model updating steps. First, the initial numerical finite 

element model modal properties are updated to match the 

experimental model modal data before damage as the 

reference model data.  Then, the reference model data are 

updated to match the measured damaged modal 

information. The modification indices obtained in the 

second updating step demonstrate the damage pattern of the 

tested damaged beam. The geometrical information of the 

reinforced concrete beam is shown in Fig. 8. Only first four 

modal frequencies and mode shapes, reported by (Jaishi and 

Ren 2006), are used in the model updating processes. 

The beam is modelled using ten euler-bernoulli finite 

element beam elements in Matlab. The elastic modulus and 

the moment of inertia for the initial model’s elements are 

considered as 38GPa and 1.66×10-5 m4, respectively. 

Experimental first four frequencies of both the reference 

and damaged state of the tested beam are shown in Table 5 

column no. 2 and 9. 

In this example, during each model updating steps, Eq. 8 

 

Table 7 Measured frequencies for Nanjing TV tower [Hz] 

Mode  Tang et al.’s results  Feng et al.’s results 

1  0.234  0.237 

2  0.73  0.727 

3  1.266  1.271 

4  1.596  1.588 

 

 

is considered as objective function and ABC and PSO 

methods with population size of 100 are used as 

optimization techniques. 

Tables 5 and 6 show measured, initial and updated 

frequencies at reference and damaged state for ABC and 

PSO method respectively. Concerning these tables, the 

amount of relative errors for modal frequencies and MAC 

value for mode shapes are significantly improved which 

shows success of presented model updating algorithm in 

fitting the numerical model to experimental one. The 

updated results in the first updating step is the input (as 

initial model) for the second updating procedure verifying 

the numerical model in first step and finding damage 

severity and location within elements in the second one. 

Obtained modification indices for the reference and 

damaged state model updating are presented in Fig. 9. 

In this research, in order to verify the presented updating 

algorithm and developed codes, obtained results for the 

concrete beam is compared to one reported by Jaishi and 

Ren (Jaishi and Ren 2006). As it is mentioned in this report, 

the errors in frequencies were between [-0.155%, 1.119%] 

for the reference state and [-1.144%, 6.854%] for the 

damaged state. However, the results of this research shows 

that the errors for the reference and damaged states are 

between [-0.011%, 0.013%] and [-0.134%, 0.129%], 

  
(a) Reference State (b) Damaged State 

Fig. 9 Identified damage Indices for concrete beam lab test 

Table 6 Measured, initial and updated Frequencies of concrete beam example-PSO method 

   Reference State     Damaged State 

   Initial FE Model  Updated FE 
Model 

   Initial FE Model  Updated FE Model 

Mode f m [Hz]  f i [Hz] error % MAC  f u 

 [Hz] 
error % MAC  f m [Hz]  f i 

 [Hz] 
error % MAC  f u [Hz] error % MAC 

1 21.90  22.22 1.44 0.9989  21.90 -0.01 0.9996  18.01  21.90 21.64 0.9976  17.99 -0.11 0.9991 

2 60.33  61.26 1.55 0.9934  60.33 0.00 0.9958  50.20  60.33 20.16 0.9979  50.20 -0.01 0.9985 

3 117.02  120.18 2.70 0.9952  117.02 0.00 0.9967  98.22  117.02 19.15 0.9862  98.21 -0.01 0.9991 

4 192.03  198.96 3.61 0.9951  192.05 0.01 0.9982  161.88  192.05 18.64 0.8971  162.07 0.12 0.9979 

f m: Measured Frequency, f i: Initial Frequency, f u: Updated Frequency 
 

347



 

Mehdi Vahidi et al. 

 

 

respectively. Fig. 9 shows the damage index of each 

element in the reference and damaged state. The obtained 

damage distribution pattern is without any assumed damage 

pattern or damage function and the presented updating 

algorithm can be successful to find damaged elements. 

 

3.4 Experimental example-Nanjing TV tower 
 

As a benchmark problem, many researchers were 

previously concentrated on dynamic evaluation and 

structural health monitoring of Nanjing TV tower (Tang et 

al. 1995, Feng and Zhang 1997, Feng et al. 1998). Here, the 

310m height tower’s test results and base line finite element 

model is used to verify the efficiency of the presented 

model updating method. Tang et al. (1995) was reported 

ambient vibration test results of the structure in a technical 

report of southeast university of china. They extracted first 

four natural frequencies and first two mode shapes of the 

tower using measured acceleration data. Feng et al. also 

conducted vibration tests on the tower with less 

measurement points using the measured information to 

investigate dynamic characteristics of the structure (Feng et 

al. 1998). They reported first eight natural frequencies and 

four mode shapes of the structure and finally developed a 

base line model for the tower which consists of 17 beam 

elements with 18 nodes, 17 lumped mass and 34 degrees of 

freedom (two degrees of freedom for each node- lateral and 

rotational displacements). Wu and Li (Wu and Li 2004) 

concentrated on finite element model updating of this high 

rise structure using the mentioned base line model. They 

completely investigated the experimental measurements and 

modal parameters reported by two pervious works. As Wu 

and Li illustrated the most reliable modal parameters in 

their report, first four vibration frequencies obtained by 

Tang et al. (1995) with two mode shapes are considered as 

the experimental measured modal parameters in this 

example. Table 7 shows considered modal frequencies in 

this research. The frequencies from both researches are 

shown in this table. One can find detailed information about 

the tower’s structural and geometrical specification, 

vibration test results, extracted mode shapes and finite 

element base-line model considering mentioned references. 

ABC, PSO and hybrid ABC-PSO methods are 

conducted for this problem with population size equal to 

170 for each method (population size for ABC-PSO method 

is 170 initially, reducing to 85 at the end). The lower and 

upper bounds of the damage indices are considered as 

mentioned in Wu and Lee (2004). Using Eq. (8) as objective  

 

 

function, obtained initial and updated frequencies are shown 

in Table 8. The r coefficient is considered equal to 0.1. 

All three optimization algorithms reached to almost 

similar acceptable results fitting modal parameters of the 

base line model to the experimental data successfully. PSO 

converged to the results with the best objective function 

value out of the three algorithms. Concerning number of 

iterations to obtain the converged results, the hybrid ABC-

PSO algorithm reached to the results after 210 iterations 

faster than the others, leaving the PSO as the slowest 

algorithm with 301 iterations.  

Comparing obtained results with results reported by Wu 

& Li for the updated baseline model, two major criteria is 

considered as relative error of frequency results an MAC 

value of mode shapes. Relative error of frequencies can be 

described as percentage of relative difference between 

experimental and numerical data. According to Table 8, the 

range of frequency errors for the updated model are 

obtained within the bound of [-0.9%, 1.54%] which are 

significantly lower than the range reported by Wu & Li [-

2.19%, 7.65%] for updated baseline model. Moreover, The 

MAC value for the second mode shape of the updated 

baseline model (0.973) in this research is more fitted to the 

measured data in comparison to MAC value 0.958 reported 

by Wu and Li (Wu and Li 2004). 

 

 

4. Conclusions 
 

In this paper, a finite element model updating method is 

described based on the evolutionary algorithm optimization 

techniques, including ABC, PSO, GA and ABC-PSO hybrid 

method. Two different objective functions are used based on 

the sum of squares of eigenvalues and MAC value of mode 

shapes and compared to each other. Numerical example 1 

was generated to compare the efficiency and characteristics 

of the mentioned evolutionary optimization methods. With 

similar parameter settings, it can be concluded that ABC 

and PSO have a better functionality in model updating than 

GA concerning accuracy and reliability of converged 

results. Comparing the objective functions affirms the fact 

that MAC can positively improve the accuracy of the 

updated model and helps the optimization algorithm to find 

global optimum solution. 

In real problems, the existence of uncertainty, noises and 

incompleteness of modal information are not negligible. 

Therefore, the model updating is conducted on an 

experimental beam and a real high rise building to examine 

Table 8 Initial and updated frequencies for Nanjing tower calculated by ABC, PSO and ABC-PSO 

   Initial FE Baseline Model  Updated FE Baseline Model 

       ABC  PSO  ABC-PSO 

Mode f exp [Hz]  f i [Hz] error % MAC  f u [Hz] error % MAC  f u [Hz] error % MAC  f u [Hz] error % MAC 

1 0.234  0.199 -14.99 0.999  0.233 -0.63 0.999  0.233 -0.59 0.999  0.232 -0.67 0.999 

2 0.730  0.627 -14.06 0.952  0.727 -0.38 0.973  0.727 -0.37 0.973  0.727 -0.40 0.973 

3 1.266  1.226 -3.13 -  1.266 0.02 -  1.266 0.01 -  1.267 0.11 - 

4 1.596  1.623 1.70 -  1.620 1.49 -  1.620 1.52 -  1.622 1.61 - 
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the effects. The results show that the PSO has the best cost 

function values although ABC can achieve almost similar 

accurate results. According to the obtained results, the 

evolutionary algorithms are qualified in estimating the 

damage locations and offering acceptable results for amount 

of damage within elements. The updated models have 

higher accuracies in matching the experimental results with 

respect to improvement in frequency errors and MAC value 

for mode. 

Regarding the stated disadvantage of PSO in dealing 

with the objective functions with high level of noises within 

optimization literature, a hybrid method is proposed 

merging the advantages of ABC and PSO in optimization. 

The method is initially conducted on a simple numerical 

simulation to explain the algorithm procedure details, and 

later applied for updating of baseline model of Nanjing TV 

tower to consider its robustness and speed. In ABC-PSO 

method, ABC attempts to find possible damage zones while 

PSO trying to achieve globally optimum value for severity 

of damage in predicted damaged elements candidates. 

Reducing the number of updating parameters in the second 

updating stage, the method is beneficial in dealing with the 

regular disadvantage of evolutionary algorithms encounter 

with problems with high number of updating variables. It 

can be concluded that the ABC- PSO method is successful 

to achieve accurate and reliable results with less 

computational effort with higher convergence speed. 
 

 

References 
 

Allemang, R.J. (2003), “The modal assurance criterion-twenty 

years of use and abuse”, Sound Vibr., 37(8), 14-23. 

Aote, S.S., Raghuwanshi, M. and Malik, L. (2013), “A brief 

review on particle swarm optimization: Limitations & future 

directions”, Int. J. Comput. Sci. Eng., 14(1), 196-200. 

Begambre, O. and Laier, J.E. (2009), “A hybrid particle swarm 

optimization-simplex algorithm (PSOS) for structural damage 

identification”, Adv. Eng. Softw., 40(9), 883-891. 

https://doi.org/10.1016/j.advengsoft.2009.01.004. 

Bernal, D. (2002), “Load vectors for damage localization”, J. Eng. 

Mech., 128(1), 7-14. https://doi.org/10.1061/(ASCE)0733-

9399(2002)128:1(7). 

Bicanic, N. and Chen, H.P. (1997), “Damage identification in 

framed structures using natural frequencies”, Int. J. Numer. 

Meth. Eng., 40(23), 4451-4468. 

https://doi.org/10.1002/(SICI)1097-

0207(19971215)40:23<4451::AID-NME269>3.0.CO;2-L. 

Carvalho, J., Datta, B.N., Gupta, A. and Lagadapati, M. (2007), “A 

direct method for model updating with incomplete measured 

data and without spurious modes”, Mech. Syst. Sign.l Proc., 

21(7), 2715-2731. https://doi.org/10.1016/j.ymssp.2007.03.001. 

CSI (2013), SAP, CSI, Computers and Structures Inc., Berkeley, 

California, U.S.A. 

Darwin, C. (1859), On the Origin of Species by Means of Natural 

Selection. 

Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), “A summary 

review of vibration-based damage identification methods”, 

Shock Vibr. Dig., 30(2), 91-105. 

Dréo, J., Pétrowski, A., Siarry, P. and Taillard, E. (2006), 

Metaheuristics for Hard Optimization: Methods and Case 

Studies, Springer Science & Business Media. 

Du, D.C., Vinh, H.H., Trung, V.D., Hong Quyen, N.T. and Trung, 

N.T. (2017), “Efficiency of Jaya algorithm for solving the 

optimization-based structural damage identification problem 

based on a hybrid objective function”, Eng. Optim., 50(8), 

1233-1251. https://doi.org/10.1080/0305215X.2017.1367392. 

Feng, M.Q., Kim, J.M. and Xue, H. (1998), “Identification of a 

dynamic system using ambient vibration measurements”, J. 

Appl. Mech., 65(4), 1010-1021. https://10.1115/1.2791895. 

Feng, M.Q. and Zhang, R. (1997), “Wind-induced vibration 

characteristics of Nanjing TV tower”, Int. J. Non-Lin. Mech., 

32(4), 693-706. https://doi.org/10.1016/S0020-7462(96)00095-

9. 

Fox, C. (1992). “The location of defects in structures-A 

comparison of the use of natural frequency and mode shape 

data”, Proceedings of the 10th International Modal Analysis 

Conference, San Diego, California, U.S.A., February.  

Friswell, M. and Mottershead, J.E. (2013), Finite Element Model 

Updating in Structural Dynamics, Springer Science & Business 

Media. 

Gentile, C. (2006), “Modal and structural identification of a RC 

arch bridge”, Struct. Eng. Mech., 22(1), 53-70. 

https://10.12989/sem.2006.22.1.053. 

Hemamalini, S. and Simon, S.P. (2011), “Dynamic economic 

dispatch using artificial bee colony algorithm for units with 

valve‐point effect”, Int. Trans. Electr. Energy Syst., 21(1), 70-

81. https://doi.org/10.1002/etep.413. 

Holland, J.H. (1992), Adaptation in Natural and Artificial 

Systems: An Introductory Analysis with Applications to Biology, 

Control, and Artificial Intelligence, MIT Press. 

Jaishi, B. and Ren, W.X. (2006), “Damage detection by finite 

element model updating using modal flexibility residual”, J. 

Sound Vibr., 290(1-2), 369-387. 

https://doi.org/10.1016/j.jsv.2005.04.006. 

Karaboga, D. and Basturk, B. (2007), “A powerful and efficient 

algorithm for numerical function optimization: Artificial bee 

colony (ABC) algorithm”, J. Glob. Optim., 39(3), 459-471. 

https://doi.org/10.1007/s10898-007-9149-x. 

Karaboga, D. and Basturk, B. (2008), “On the performance of 

artificial bee colony (ABC) algorithm”, Appl. Soft Comput., 

8(1), 687-697. https://doi.org/10.1016/j.asoc.2007.05.007. 

Kennedy, J. (2011), Particle Swarm Optimization, Springer. 

Lam, H.F. and Yin, T. (2011), “Dynamic reduction-based structural 

damage detection of transmission towers: Practical issues and 

experimental verification”, Eng. Struct.s, 33(5), 1459-1478. 

https://doi.org/10.1016/j.engstruct.2011.01.009. 

Liu, Y., Sun, H. and Wang, D. (2013), “Updating the Finite 

Element Model of large-scaled structures using component 

mode synthesis technique”, Intell. Automat. Soft Comput., 19(1), 

11-21. https://doi.org/10.1080/10798587.2013.771457. 

Lu, Z., Zhu, J. and Ou, Y. (2017), “Structural damage 

identification using incomplete static displacement 

measurement”, Struct. Eng. Mech., 63(2), 251-257. 

Maeck, J., Abdel Wahab, M. and De Roeck, G. (1999). “Damage 

detection in reinforced concrete structures by dynamic system 

identification”, Proceedings of the International Seminar on 

Modal Analysis. 

Marwala, T. (2010), Finite Element Model Updating Using 

Computational Intelligence Techniques: Applications to 

Structural Dynamics, Springer Science & Business Media. 

Perera, R. and Torres, R. (2006), “Structural damage detection via 

modal data with genetic algorithms”, J. Struct. Eng., 132(9), 

1491-1501. https://doi.org/10.1061/(ASCE)0733-

9445(2006)132:9(1491). 

Petrovic-Kotur, S.P. and Pavic, A.P. (2016), “Vibration analysis 

and FE model updating of lightweight steel floors in full-scale 

prefabricated building”, Struct. Eng. Mech., 58(2), 277-300. 

https://doi.org/10.12989/sem.2016.58.2.277. 

Rahbari, R., Niu, J., Brownjohn, J. and Koo, K.Y. (2015), 

“Structural identification of Humber bridge for performance 

349



 

Mehdi Vahidi et al. 

prognosis”, Smart Struct. Syst., 33(5), 1459-1478. 

http://dx.doi.org/10.12989/sss.2015.15.3.665. 

Ren, W.X. and De Roeck, G. (2002), “Structural damage 

identification using modal data. I: Simulation verification”, J. 

Struct. Eng., 128(1), 87-95. 

https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87). 

Ren, W.X. and De Roeck, G. (2002), “Structural damage 

identification using modal data. II: Test verification”, J. Struct. 

Eng., 128(1), 96-104. https://doi.org/10.1061/(ASCE)0733-

9445(2002)128:1(96). 

Reynders, E. and De Roeck, G. (2010), “A local flexibility method 

for vibration-based damage localization and quantification”, J. 

Sound Vibr., 329(12), 2367-2383. 

https://doi.org/10.1016/j.jsv.2009.04.026. 

Reynders, E., Teughels, A. and De Roeck, G. (2010), “Finite 

element model updating and structural damage identification 

using OMAX data”, Mech. Syst. Sign. Proc., 24(5), 1306-1323. 

https://doi.org/10.1016/j.ymssp.2010.03.014. 

Saada, M.M., Arafa, M.H. and Nassef, A.O. (2013), “Finite 

element model updating approach to damage identification in 

beams using particle swarm optimization”, Eng. Optim., 45(6), 

677-696. https://doi.org/10.1080/0305215X.2012.704026. 

Salawu, O. (1997), “Detection of structural damage through 

changes in frequency: A review”, Eng. Struct., 19(9), 718-723. 

Salawu, O.S. and Williams, C. (1995), “Bridge assessment using 

forced-vibration testing”, J. Struct. Eng., 121(2), 161-173. 

https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(161). 

Shi, Z., Law, S. and Zhang, L. (2002), “Improved damage 

quantification from elemental modal strain energy change”, J. 

Eng. Mech., 128(5), 521-529. 

https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(521). 

Tang, J., Li, L. and Wu, C. (1995), Report on Field Measurement 

of Nanjing TV Tower, Technical Report of Southeast University, 

China. 

Teughels, A. and De Roeck, G. (2004), “Structural damage 

identification of the highway bridge Z24 by FE model 

updating”, J. Sound Vibr., 278(3), 589-610. 

https://doi.org/10.1016/j.jsv.2003.10.041. 

Teughels, A., Maeck, J. and De Roeck, G. (2002), “Damage 

assessment by FE model updating using damage functions”, 

Comput. Struct., 80(25), 1869-1879. 

https://doi.org/10.1016/S0045-7949(02)00217-1. 

the MathWorks, I. (2014), Matlab Release 2014a, The 

MathWorks, Inc., Natick, Massachusetts, U.S.A. 

Titurus, B. and Friswell, M.I. (2014), “Damage detection using 

successive parameter subset selections and multiple modal 

residuals”, Mech. Syst. Sign. Proc., 45(1), 193-206. 

https://doi.org/10.1016/j.ymssp.2013.10.002. 

Wahab, M.A. and De Roeck, G. (1999), “Damage detection in 

bridges using modal curvatures: Application to a real damage 

scenario”, J. Sound Vibr., 226(2), 217-235. 

https://doi.org/10.1006/jsvi.1999.2295. 

Wang, S., Zhang, M. and Liu, F. (2013), “Estimation of semi-rigid 

joints by cross modal strain energy method”, Struct. Eng. 

Mech., 47(6), 757-771. 

Wei, J. and Lv, Z. (2015), “Structural damage detection including 

the temperature difference based on response sensitivity 

analysis”, Struct. Eng. Mech., 53(2), 249-260. 

http://dx.doi.org/10.12989/sem.2015.53.2.249. 

Wu, J. and Li, Q. (2004), “Finite element model updating for a 

high-rise structure based on ambient vibration measurements”, 

Eng. Struct., 26(7), 979-990. 

https://doi.org/10.1016/j.engstruct.2004.03.002. 

Zhang, Z., Shankar, K., Morozov, E.V. and Tahtali, M. (2016), 

“Vibration-based delamination detection in composite beams 

through frequency changes”, J. Vibr. Contr., 22(2), 496-512. 

https://doi.org/10.1177/1077546314533584. 

Zhu, J., Li, H., Lu, Z. and Liu, J. (2015), “A two-step approach for 

structural damage localization and quantification using Static 

and dynamic response data”, Adv. Struct. Engi., 18(9), 1415-

1425. https://doi.org/10.1260/1369-4332.18.9.1415. 

 
 
PL 

350




