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1. Introduction  
 

Since the structures made of composite materials are 

used in a growing way in many engineering industries 

because of their attractive characteristics, such as strength, 

stiffness, reduced weight, thermal characteristics, resistance 

to corrosion, fatigue life, and resistance to wear. The plates 

fabricated with these materials require accurate structural 

investigation to predict the correct flexural behavior. 

The influence of transverse shear strain is more 

important in thick structures than in thin ones. Thus, various 

plate models have been proposed by scientists to predict 

correct flexural behavior of thick structures. The 

conventional plate theory (CPT) of Kirchhoff (1850) is not 

applicable to thick structures because of the neglect of 

transverse shear deformation (Sofiyev and Avcar 2010, 

Sofiyev et al. 2008, 2012, Bilouei et al. 2016, Avcar and 

Mohammed 2018, Cherif et al. 2018). The first order shear 

deformation theory (FSDT) proposed by Mindlin (1951) is 

also not interesting for the investigation since it does not 

verify the conditions of zero stress at upper and bottom 

faces of the plate and requires factors of shear correction 

(Avcar 2015, Al-Basyouni et al. 2015, Arani and Kolahchi  
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2016, Bellifa et al. 2016, Madani et al. 2016, Kolahchi et 

al. 2016a, b, Bouderba et al. 2016, Zamanian et al. 2017, 

Kolahchi 2017, Amnieh et al. 2018, Youcef et al. 2018). 

Thus, many high order shear deformation theories have 

been proposed for the investigation of plates (Reddy 1984, 

Reddy and Khdeir 1989, Touratier 1991, Soldatos 1992, 

Metin 2009, Karama et al. 2009, Sayyad and Ghugal 2012, 

Rezaiee-Pajand et al. 2012, Sayyad 2013, Belabed et al. 

2014, Sayyad and Ghugal 2014, Bousahla et al. 2014, 

Ghugal and Sayyad 2013, Ahmed 2014, Hebali et al. 2014, 

Zemri et al. 2015, Mahi et al. 2015, Panda and Katariya 

2015, Kolahchi and Moniri Bidgoli 2016, Bennoun et al. 

2016, Beldjelili et al. 2016, Bousahla et al. 2016, Akavci 

2016, Baseri et al. 2016, Kolahchi et al. 2017a, b, c, 

Abdelaziz et al. 2017, Hajmohammad et al. 2017, Aldousari 

2017, Kolahchi and Cheraghbak 2017, Mouffoki et al. 

2017, Bouafia et al. 2017, Hajmohammad et al. 2018a, b, c, 

Golabchi et al. 2018, Salami and Dariushi, 2018, Kadari et 

al. 2018, Karami et al. 2018a, b, Bouadi et al. 2018, 

Mokhtar et al. 2018, Fakhar and Kolahchi 2018, Hosseini 

and Kolahchi 2018, Taleb et al. 2018). 

In the recent decade, a novel class of plate models has 

been proposed by scientists in which kinematic involves 

only four variables. Shimpi and Patel (2006) are the first to 

use a plate model involving two variables for bending and 

dynamic study of orthotropic plates. This model is further 

extended by Bouderba et al. (2013), Tounsi et al. (2013), 

Zidi et al. (2014) and Hamidi et al. (2015) for the thermo- 
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Fig. 1 Coordinate system and layer numbering used for a 

typical laminated plate 

 

 

mechanical effect on bending response of functionally 

graded plates considering four and five variables. Meziane 

et al. (2014) also employed this theory for the stability and 

dynamic of exponentially graded sandwich structures under 

various boundary conditions. Yahia et al. (2015) used this 

theory for analyzing wave propagation in functionally 

graded plates with porosities. Draiche et al. (2016) 

presented a refined theory with stretching effect for the 

flexure analysis of laminated composite plates. Karami et 

al. (2017) used a nonlocal strain gradient theory and four 

variable refined plate theory to present the wave 

propagation analysis in functionally graded (FG) nanoplates 

under in-plane magnetic field. 

Recently, another new class of plate models has been 

presented in literature in which in the kinematic is 

introduced undetermined integral terms to reduce the 

number of governing equations (El-Haina et al. 2017, 

Menasria et al. 2017, Chikh et al. 2017, Benahmed et al. 

2017, Bellifa et al. 2017a, Khetir et al. 2017, Besseghier et 

al. 2017, Fahsi et al. 2017, Abualnour et al. 2018, 

Benchohra et al. 2018, Bouhadra et al. 2018, Attia et al. 

2018).     

In the present work, an attempt is carried out to verify 

the efficiency of four variable refined shear deformation 

theory for the flexural, stability and dynamic investigation 

of composite plates. Undetermined integral terms in in-

plane displacements are employed in the kinematics of the 

model to consider the shear deformation influences. The 

model respects conditions of zero shear stress at bottom and 

top surfaces of the plates. The model does not require 

problem dependent shear correction coefficient. Equations 

of motion are determined by considering the virtual work 

principle. Analytical solution is found by using a double 

trigonometric series method proposed by Navier. Finally, 

the results computed by utilizing present model are 

compared with exact elasticity solutions reported by Pagano 

(1970) for bending, Noor (1973) for dynamic and Noor 

(1975) for stability analysis of laminated composite plates. 

 

 

2. Theoretical formulation 
 

Consider a rectangular plate of the sides a and b, a 

constant thickness h and origin o as shown in Fig. 1. The 

plate consists of n number of homogenous layers which are 

perfectly bounded and made up of linearly elastic and 

orthotropic material. The plate occupies the region 0 ≤ x ≤ 

a, 0 ≤ y ≤ b, -h/2 ≤ z ≤ h/2 in Cartesian coordinate system. 

A transverse load q(x, y) is applied on the upper surface of 

the plate. 

2.1 Kinematics and strains 
 

In the unified shear-deformable plate theory, the 

displacement field at a point in the laminated plate is 

expressed as (Bakhadda et al. 2018) 
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(1) 

where u, v, and w are the displacements along x, y, and z 

directions, respectively, u0, v0, w0, φx, and φy are five 

unknown displacement functions of the mid-plane of the 

plate. By assuming dxyxyxx ),(),( =   and

dyyxyxy ),(),( =  , the displacement field of the 

present theory can be rewritten with four unknowns is 

expressed as (Sekkal et al. 2017a, b, Bourada et al. 2018, 

Fourn et al. 2018, Yazid et al. 2018, Younsi et al. 2018, 

Zine et al. 2018, Meksi et al. 2019, Zaoui et al. 2019) 
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(2) 

It is clear that θ(x,y) is a mathematical term that allows 

obtaining the rotations of the normal to the midplate about 

the x and y axes. The constants k1 and k2 depends on the 

geometry and f(z) denote a shape function determining the 

changes in the transverse shear strain and the stress 

distribution along the thickness of the plate and is defined 

as (Touratier 1991). 
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The strains associated with the present theory are 

obtained using strain-displacement relationship from theory 

of elasticity 
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And 

dz

zdf
zg

)(
)( =  (6) 

The integrals used in the above relations shall be 

resolved by a Navier solution and can be expressed by 
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where the parameters A’ and B’ are defined according to the 

type of solution employed, in this case via Navier. Hence, A’ 

and B’ are expressed by 
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where α and β are defined in expression (21). 

 

2.2 Constitutive relations 
 

Since the laminate is made of several orthotropic layers, 

the stress-strain relations in the kth layer of the laminated 

plate in the material coordinate axes are given by 
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where 
ij

Q
 

are the transformed material constants of the 

kth orthotropic layer expressed as 

( )

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

( )

k
Q

k
Q

k
Q

QQQ

QQQ

QQQQQQ

QQQQQQQ

QQQQQ

QQQQQQQ

QQQQQ

QQQQQ

kk

k

kk

k

kkkk

k

kkkk

k

kkkk

k

kkkk

k

kkkk

k

kkkk

k



















2sin
44

2cos
5555

sincos

sincos

cossincossin22

sincos2cossin2

coscossin22sin

cossin2cossin2

cossincossin4

sincossin22cos

445545

2

55

2

4444

44

66

22

6612221166

3

662212

3

66121126

4

22

22

6612

4

1122

3

662212

3

66121116

44

12

22

66221112

4

22

22

6612

4

1111

+=

−=

+=

++−−+=

++−+−−=

+++=

+−+−−=

++−+=

+++=

 

(10) 

where θk is the angle of material axes with the reference 

coordinate axes of each lamina and Qij are the plane stress-

reduced stiffness coefficients defined in terms of the 

engineering constants in the material axes of the layer 
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2.3 Equations of motion 
 

The governing equations and boundary conditions of the 

present higher order shear deformation theory are derived 

using principle of virtual work. The principle of virtual 

work is applied in the following analytical form (Attia et al. 

2015, Larbi Chaht et al. 2015, Bourada et al. 2015, 

Belkorissat et al. 2015, Ahouel et al. 2016, Boukhari et al. 

2016, Bounouara et al. 2016, Houari et al. 2016, Hachemi 

et al. 2017, Bellifa et al. 2017b, Klouche et al. 2017, Zidi et 

al. 2017, Benadouda et al. 2017, Karami et al. 2018c, Kaci 

et al. 2018, Belabed et al. 2018, Bourada et al. 2019) 

( )

( ) 0
2

02
2

2
0

2

2
0,

2/

2/
2

2

2

2

2

2

2/

2/

=  
















+




+




−−


−





+




+





+++++





















−

 

A A

wdA
yx

w
xyN

y

w
yN

x

w
xNwdAyxq

dAdz
h

h A

w

t

w
v

t

v
u

t

u

dAdz

h

h A

x xzxzyzyzxyxyyyx





 

 

(12) 

where A is the area of the top surface of the plate, ρ is the 

density of material, q(x,y) and 
000 ,, xyyx NNN  are 

transverse and in-plane applied loads, respectively. The 

symbol δ denotes the variational operator. Substituting 

expressions for stresses and virtual strains into the principle 

of virtual work and integrating Eq. (12) by parts and 

collecting the coefficients of δu0, δv0, δw0 and δθ, the 

following equations of motion of the plate are obtained in 

terms of stress resultants 
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(13c) 
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where 2 is the Laplacian operator in two-dimensional 

Cartesian coordinate system and the stress resultants
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and the inertia constants (i=0, 2, 3, 4, 5) are defined by the 

following equations 
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by substituting the stress–strain relations expressed by Eq. 

(9) into the definitions of force and moment resultants of 

the present theory given in Eq. (14), the following equations 

are obtained 
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and 
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where the plate stiffnesses Aij, Bij, Dij, Eij, Fij, Hij and
s

ijA are 

defined as follows 
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Substituting the stress resultants in terms of unknown 

displacement variables from Eq. (16) into the Eq. (13), the 

equations of motion of the present theory can be rewritten 

as 

( )

( ) ( )

( )
2

3

312

0

3

12

0

2

02

3

6613

3

2622

3

1621

2

3

661223

3

1113

0

3

262

0

3

162

0

2

6612

3

0

3

112

0

2

662

0

2

262

0

2

16
0

2

16
0

2

66122

0

2

110

'''''2

''32

2    :

tx
IAk

tx

w
I

t

u
I

yx
EAk

y
EBk

yx
EBkAk

yx
EEBk

x
EAk

y

w
B

yx

w
B

yx

w
BB

x

w
B

y

u
A

y

v
A

x

v
A

yx

u
A

yx

v
AA

x

u
Au




+




−




=




+




+




++




++




+




−




−




+−




−




+




+




+




+




++










 

(18a) 

( )

( ) ( )

( )
2

3

322

0

3

12

0

2

02

3

6622

3

26213

3

222

3

3

1612

3

661212

0

3

263

0

3

223

0

3

162

0

2

6612

2

0

2

66

0

2

262

0

2

262

0

2

222

0

2

16

0

2

66120

'''2''

''32

2    :

ty
IBk

ty

w
I

t

v
I

yx
EBk

yx
EBkAk

y
EBk

x
EAk

yx
EEAk

yx

w
B

y

w
B

x

w
B

yx

w
BB

x

v
A

yx

v
A

y

u
A

y

v
A

x

u
A

yx

u
AAv




+




−




=




+




++




+




+




++




−




−




−




+−




+




+




+




+




+




+





  

(18b) 

( ) ( )

( )

( ) ( ) ( )

( )















+




+

















+




−


















+




+




=+




+




+




+




++




+




++




++




++




+




−




−




−




+−




−




+




+




+




+




+




++




++





22

4

222

4

1422

0

4

22

0

4

2

2

0

3

2

0

3

12

0

2

0

0

2

0

2

0

2

0

2

0

2

0

3

4

2621

4

4

2223

4

162122

4

6612222

4

66121

4

4

1113

0

4

264

0

4

223

0

4

1622

0

4

66124

0

4

112

0

2

26

3

0

3

263

0

3

223

0

3

162

0

2

162

0

2

66122

0

2

66123

0

3

110

''

2'3'

'''32'2'

'4422

322    :

ty
Bk

tx
AkI

ty

w

tx

w
I

ty

v

tx

u
I

t

w
Iq

yx

w
N

y

w
N

x

w
N

yx
FBkAk

y
FBk

yx
FBkAk

yx
FFBk

yx
FFAk

x
FAk

yx

w
D

y

w
D

yx

w
D

yx

w
DD

x

w
D

yx

v
B

y

u
B

y

v
B

x

v
B

yx

u
B

yx

v
BB

yx

u
BB

x

u
Bw

xyyx









  

(18c) 

( )( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )

( )

( ) ( ) 











+




−













+




+












+




−=




+




+




+




+−




+−




−




+−




+−




−




++




+




++




++




++




−




−




+−




−




−




−




+−




++−




−

22

4
2

222

4
2

15

22

0

4

222

0

4

142

0

3

22

0

3

132

2

55

2

1

2

4521

2

2

44

2

222

4

66

2

2

2

13

4

2621

2

24

4

22

2

2

3

4

1621

2

122

4

6612214

4

11

2

13

0

4

2621

4

0

4

22222

0

4

661223

0

4

162122

0

4

66121

4

0

4

1112

0

3

6612

0

3

26213

0

3

2623

0

3

222

3

0

3

1612

0

3

16212

0

3

661661223

0

3

111

''

'''''''2

'''2'''2'

'''2''2''3'

'2'''32'

'''2'''

'''2'''    :

ty
Bk

tx
AkI

ty

w
Bk

tx

w
AkI

ty

v
Bk

tx

u
AkI

x
AsAk

yx
AsBkAk

y
AsBk

yx
HBkAk

yx
HBkAkBk

y
HBk

yx
HBkAkAk

yx
HHBkAk

x
HAk

yx

w
FBkAk

y

w
FBk

yx

w
FFBk

yx

w
FBkAk

yx

w
FFAk

x

w
FAk

yx

v
EAk

yx

v
EBkAk

y

u
EBk

y

v
EBk

x

v
EAk

yx

u
EBkAk

yx

u
EAkEEBk

x

u
EAk











 

(18d) 

328



 

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates 

 

2.4 Analytical solution for laminated composite plates 
 

The Navier approach is employed to determine the 

analytical solutions for the bending, buckling and free 

vibration analysis of laminated rectangular plates simply 

supported. The following simply supported boundary 

conditions at all four edges are given by 

000 ====== s

y

b

yy MMNwu  on edges (x=0, a) (19a) 

000 ====== s

x

b

xx MMNwv  on edges (y=0, b) (19b) 

The displacement variables which automatically satisfy 

the above boundary conditions can be expressed in the 

following Fourier series 




=



=



























=

























1 10

0

0

)sin()sin(

)sin()sin(

)cos()sin(

)sin()cos(

m n

ti

mn

ti

mn

ti

mn

ti

mn

eyx

eyxW

eyxV

eyxU

w

v

u

   

   

   

   

   

   

   

   



















 (20) 

where Umn, Vmn, Wmn and Φmn are the unknown Fourier 

coefficients to be determined for each (m, n) value, as well 

as the parameters α and β are defined as 

,/ am = bn / =  (21) 

The transverse load q(x, y) is expanded in the double-

Fourier sine series as 
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=

=
1 1

)cos()sin(),(
m n

mn yxqyxq     (22) 

where qmn=q0 for sinusoidally distributed load m=1, n=1 

and q0 is the maximum intensity of distributed load at the 

centre of plate. 

Substitution this form of solution Eq. (20) and 

transverse load Eq. (22) into the equations of motion (18) 

leads to the following matrix form 
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(23) 

And the values of in-plane compressive forces are 

assumed as follows 

( )2020

33  yx NNN +−=  (24) 

where the parameter N33 refers to the corresponding 

buckling load and can be expressed as 

02

0

01

0    , NkNNkN yx ==  and  00 =xyN  (25) 

Eq. (23) is a general form for bending, buckling and free 

vibration analysis of simply supported laminated composite 

square and rectangular plates subjected to in-plane 

compressive and transverse loads. In order to solve bending 

problem, the in-plane compressive load N0 and mass matrix  

Table 1 

a/h Theory u  w
 x  

y
 xy  

xz
 

yz  

4 Present 0.0114 1.9766 0.9143 0.0889 0.0577 0.1274 0.1274 

 
Sayyad et 

al. (2016) 
0.0114 1.9793 0.9154 0.0890 0.0578 0.0660 0.1276 

 

Sayyad and 

Ghugal 

(2014a) 
0.0111 1.9424 0.9062 0.0964 0.0562 0.1270 0.1270 

 
Reddy 

(1984) 
0.0114 2.0256 0.9172 0.0932 0.0713 0.1270 0.1270 

 
Mindlin 

(1951) 
0.0088 1.9682 0.7157 0.0843 0.0525 0.0910 0.0910 

 
Kirchhoff 

(1850) 
0.0088 1.0636 0.7157 0.0843 0.0525 — — 

 
Pagano 

(1970) 
— 2.0670 0.8410 0.1090 0.0591 0.1200 0.1350 

10 Present 0.0093 1.2132 0.7483 0.0851 0.0533 0.1304 0.1304 

 
Sayyad et 

al. (2016) 
0.0093 1.2135 0.7484 0.0851 0.0534 0.1270 0.1306 

 

Sayyad and 

Ghugal 

(2014a) 
0.0092 1.2089 0.7471 0.0876 0.0530 0.1300 0.1300 

 
Reddy 

(1984) 
0.0095 1.2479 0.7652 0.0889 0.0680 0.1310 0.1310 

 
Mindlin 

(1951) 
0.0088 1.2083 0.7157 0.0843 0.0525 0.0910 0.0910 

 
Kirchhoff 

(1850) 
0.0088 1.0636 0.7157 0.0843 0.0525 — — 

 
Pagano 

(1970) 
— 1.2250 0.7302 0.0886 0.0535 0.1210 0.1250 
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 Sayyad et al. (2016)

 Reddy (1984)

 FSDT

 CPT

 
Fig. 2 Through thickness distribution of in-plane 

displacement ( u ) for two layered (0°/90°) laminated 

composite plate subjected to sinusoidally distributed load 

(b/a=1, a/h= 10) 

 

 

|Mij| are set to zeros. However, the critical buckling loads 

Ncr can be obtained from the stability problem |Kij|=0, while 

the free vibration problem is achieved by omitting both in-

plane and transverse loads. 

 

 

3. Discussion of numerical results 
 

3.1 Bending analysis of laminated composite plates 
 

The following material properties are employed for the 

bending investigation of simply supported anti-symmetric 

laminated composite square plates under sinusoidally 

distributed load. 
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Fig. 3 Through thickness distribution of in-plane normal 

stress ( x ) for two layered (0°/90°) laminated composite 

plate subjected to sinusoidally distributed load (b/a=1, a/h= 

10) 
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The displacements and stresses are presented in the 

following non-dimensional form. 
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(27) 

In this numerical example, the effectiveness of the 

current theory is demonstrated for the bending analysis of 

simply supported two layered (0°/90°) anti-symmetric 

laminated composite square plates subjected to sinusoidally 

distributed load. The non-dimensional displacement and 

stresses computed employing the present model are 

compared and discussed with those reported by (CPT) of 

Kirchhoff (1850), FSDT of Mindlin (1951), higher order 

shear deformation theory (HSDT) of Reddy (1984), 

sinusoidal shear and normal deformation theory (SSNDT) 

of Sayyad and Ghugal (2014a) and exact elasticity solution 

provided by Pagano (1970). The non-dimensional results 

are presented in Table 1. 

It is seen that the in-plane displacement computed by 

present theory is in good agreement with other models.  

In-plane displacement is maximum in 90° layer whereas 

minimum in 0° layer (Fig. 2).  

The proposed model underestimates the value of 

transverse displacement for aspect ratio 4 but it is in good  
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-0.06 -0.03 0.00 0.03 0.06

z/h
 Present

 Sayyad et al. (2016)

 Reddy (1984)

 FSDT

 CPT

 
Fig. 4 Through thickness distribution of in-plane shear 

stress ( xy ) for two layered (0°/90°) laminated composite 

plate subjected to sinusoidally distributed load (b/a=1, a/h= 

10) 
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 Sayyad et al. (2016)
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Fig. 5 Through thickness distribution of transverse shear 

stress ( xz ) for two layered (0°/90°) laminated composite 

plate subjected to sinusoidally distributed load (b/a=1, a/h= 

10) 

 

 
(a) Uniaxial compression 

 
(b) Biaxial compression 

Fig. 6 A simply supported plate subjected to in-plane 

compressive forces 
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Table 2 Comparison of critical buckling load (Ncr) for 

simply supported laminated composite square plates under 

uniaxial and biaxial compression (a/h= 10) 

Lay-up Compression (k1,k2) Theory 
E11/E22 

20 30 40 

0/90/0 Uniaxial (1, 0) Present 16.236 21.440 25.983 

   
Sayyad et 

al. (2016) 
15.215 20.428 24.977 

   

Sayyad and 

Ghugal 

(2014b) 

15.003 19.002 22.330 

   
Turan et al. 

(2017) 
16.223 21.435 25.982 

   
Reddy 

(1984) 
15.300 19.675 23.339 

   FSDT 14.985 19.027 22.315 

   CPT 19.712 27.936 36.160 

   
Noor 

(1975) 
15.019 19.304 22.880 

 Biaxial (1, 1) Present 8.1184 10.720 12.992 

   
Sayyad et 

al. (2016) 
7.6075 10.214 12.488 

   

Sayyad and 

Ghugal 

(2014b) 

7.5014 9.5009 11.165 

   
Turan et al. 

(2017) 
7.6500 9.8376 11.669 

   
Reddy 

(1984) 
7.4925 9.5135 11.157 

   FSDT 9.8560 13.968 18.080 

   CPT 7.5095 9.6520 11.440 

0/90/0/90/0 Uniaxial (1, 0) Present 16.236 21.440 25.983 

   
Sayyad et 

al. (2016) 
16.234 21.435 25.976 

   

Sayyad and 

Ghugal 

(2014b) 

15.828 20.643 24.756 

   
Turan et al. 

(2017) 
15.783 20.578 24.676 

   
Reddy 

(1984) 
15.736 20.485 24.547 

   FSDT 19.712 27.936 36.160 

   CPT 15.653 20.466 24.593 

 Biaxial (1, 1) Present 8.118 10.720 12.992 

   
Sayyad et 

al. (2016) 
8.117 10.717 12.988 

   

Sayyad and 

Ghugal 

(2014b) 

7.9140 10.321 12.378 

   
Turan et al. 

(2017) 
7.8915 10.289 12.338 

   
Reddy 

(1984) 
7.8680 10.240 12.273 

   FSDT 9.8560 13.968 18.080 

   CPT 7.8265 10.466 12.296 

 

 

agreement with exact solution and other higher order 

models for aspect ratio 10.  

Fig. 3 demonstrates that, in-plane normal stress ( x ) 

computed by the proposed theory is in close agreement with 

that of other models.  

The in-plane shear stress ( xy ) is presented in Fig. 4 

where a good agreement is demonstrated between other 

theories. The proposed model predicts good values of 

transverse shear stress ( xz ) as is shown in Fig. 5. 

Table 3 Comparison of critical buckling load Ncr) for 

simply supported four layered (0°/90°/90°/0°) laminated 

composite rectangular plates under uniaxial and biaxial 

compression 

Compression (k1,k2) a/h Theory 
b/a

 

1 2 3 4 

Uniaxial (1, 0) 5 Present 14.236 9.953 9.092 8.779 

   
Sayyad et 

al. (2016) 
14.181 9.950 9.091 8.778 

   

Sayyad 

and 

Ghugal 

(2014b) 

11.986 8.780 8.463 8.382 

   FSDT 12.146 8.673 8.357 8.279 

   CPT 36.160 29.833 29.259 29.102 

  10 Present 25.983 19.792 18.708 18.315 

   
Sayyad et 

al. (2016) 
25.908 19.785 18.705 18.313 

   

Sayyad 

and 

Ghugal 

(2014b) 

23.387 18.500 18.057 17.941 

   FSDT 23.453 18.398 17.962 17.849 

   CPT 36.160 29.833 29.259 29.102 

  100 Present 36.017 29.682 29.094 28.931 

   
Sayyad et 

al. (2016) 
36.016 29.682 29.094 28.931 

   

Sayyad 

and 

Ghugal 

(2014b) 

35.961 29.652 29.080 28.924 

   FSDT 35.956 29.648 29.077 28.921 

   CPT 36.160 29.833 29.259 29.102 

Biaxial (1, 1) 5 Present 7.1181 7.9624 8.1826 8.2625 

   
Sayyad et 

al. (2016) 
7.0900 7.9600 8.1820 8.2620 

   

Sayyad 

and 

Ghugal 

(2014b) 

5.9934 7.0244 7.6171 7.8896 

   FSDT 6.0730 6.9387 7.5216 7.7928 

   CPT 18.080 23.866 26.333 27.390 

  10 Present 12.992 15.834 16.837 17.238 

   
Sayyad et 

al. (2016) 
12.954 15.828 16.834 17.236 

   

Sayyad 

and 

Ghugal 

(2014b) 

11.694 14.800 16.251 16.886 

   FSDT 11.726 14.719 16.166 16.799 

   CPT 18.080 23.866 26.333 27.390 

  100 Present 18.009 23.746 26.185 27.229 

   
Sayyad et 

al. (2016) 
18.008 23.746 26.185 27.229 

   

Sayyad 

and 

Ghugal 

(2014b) 

17.980 23.722 26.172 27.223 

   FSDT 17.978 23.718 26.169 27.219 

   CPT 18.080 23.866 26.333 27.390 

 
 
3.2 Buckling analysis of laminated composite plates 

 

A simply supported laminated composite square and 

rectangular plates under the uniaxial and biaxial loading  
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Table 4 Comparison of non-dimensional natural frequencies 

of simply supported square laminated composite plates 

(a/h=10) 

Lay-up Theory 
E11/E22 

10 20 30 40 

0/90 Present 0.27986 0.31352 0.34126 0.36494 

 Sayyad et al. (2016) 0.27987 0.31354 0.34128 0.36498 

 Sayyad and Ghugal (2015) 0.28060 0.31415 0.34181 0.36543 

 Reddy (1984) 0.27955 0.31284 0.34020 0.36348 

 FSDT 0.27757 0.30824 0.33284 0.35353 

 CPT 0.30968 0.35422 0.39335 0.42884 

 Noor (1975) 0.27938 0.30698 0.32705 0.34250 

0/90/0 Present 0.34307 0.40639 0.44507 0.47162 

 Sayyad et al. (2016) 0.34261 0.40623 0.44502 0.47162 

 Sayyad and Ghugal (2015) 0.32696 0.37037 0.39498 0.41176 

 Reddy (1984) 0.33095 0.38112 0.41094 0.43155 

 FSDT 0.32739 0.37110 0.39540 0.41158 

 CPT 0.42599 0.55793 0.66419 0.75565 

 Noor (1975) 0.32841 0.38241 0.41089 0.43006 

0/90/0/90 Present 0.3277 0.3848 0.4210 0.4465 

 Sayyad et al. (2016) 0.3422 0.4055 0.4441 0.4706 

 Sayyad and Ghugal (2015) 0.3319 0.3821 0.4119 0.4324 

 Reddy (1984) 0.3308 0.3810 0.4108 0.4314 

 FSDT 0.3319 0.3826 0.4130 0.4341 

 CPT 0.4260 0.5579 0.6642 0.7556 

 Noor (1975) 0.3257 0.3762 0.4066 0.4272 

0/90/0/90/0 Present 0.3431 0.4064 0.4450 0.4716 

 Sayyad et al. (2016) 0.3430 0.4063 0.4449 0.4715 

 Sayyad and Ghugal (2015) 0.3384 0.3950 0.4287 0.4518 

 Reddy (1984) 0.3399 0.3994 0.4350 0.4592 

 FSDT 0.3368 0.3930 0.4271 0.4506 

 CPT 0.4259 0.5579 0.6641 0.7556 

 Noor (1975) 0.3408 0.3979 0.4314 0.4537 

 

 

conditions, as presented in Fig. 6, is considered to prove the 

accuracy of the proposed model in predicting the buckling 

behavior. The following material properties are employed in 

the numerical study 

( ) ( )2 3

0 22/crN N a E h=  (28) 

A comparison of the critical buckling load parameters 

determined by the proposed model for a three layered 

(0°/90°/0°) and five layered (0°/90°/0°/90°/0°) symmetric 

cross-ply laminated composite square plates subjected to 

uniaxial and biaxial compressions for various modular 

ratios (E11/E22) is illustrated in Table 2.  

The results of proposed model are compared with HSDT 

of Reddy (1984), SSNDT of Sayyad and Ghugal (2014b), 

Sayyad et al. (2016), Turan et al. (2017) FSDT of Mindlin 

(1951) and CPT of Kirchhoff (1850) and exact elasticity 

solution given by Noor (1975). It can be observed from 

Table 2 that the present results are in good agreement with 

other ones. It is also shown that the buckling loads given by 

CPT are significantly higher than those obtained by the 

proposed model. This is the consequence of omitting the 

transverse shear deformation influence in the CPT. It can be 

seen that the critical buckling loads in case of biaxial 

compression are exactly half of those of uniaxial 

compression for square plates. 

Table 3 presents the critical buckling force parameter 

for four layered (0°/90°/90°/0°) symmetric laminated 

composite rectangular plate. The numerical results are 

determined for different values of b/a ratios and a/h ratios. 

From Table 3 it is seen that the critical buckling load 

increases with respect to increase in b/a and a/h ratios. It is 

also pointed out that the proposed model is in good 

agreement while predicting the buckling response of 

rectangular laminated composite plates. 

 

3.3 Free vibration analysis of laminated composite 
plates 
 

For this study, the material properties given by Eq. (28) 

are employed. Natural frequencies are presented in the 

following non-dimensional form 

2

22/h E  =  (30) 

In Table 4, non-dimensional natural frequencies of 

simply supported square laminated composite plates for 

different modular ratios (E11/E22) are given and compared 

with those predicted SSNDT of Sayyad and Ghugal (2015), 

Sayyad et al. (2016), HSDT of Reddy (1984), FSDT of 

Mindlin (1951), CPT of Kirchhoff (1850) and exact 

elasticity solution provided by Noor (1975). From the Table 

4 it is seen that the proposed model is in good agreement 

while predicting the natural frequencies of laminated 

composite plates. The CPT overestimates the natural 

frequencies due to neglecting the transverse shear 

deformation influence. It is also noticed that the natural 

frequencies of laminated composite plates increase with 

respect to increase in modular ratios (E11/E22).  

 
 

4. Conclusions 
 

In the present investigation, a refined sinusoidal shear 

deformation theory is utilized for the bending, buckling and 

dynamic analysis of laminated composite plates. The most 

important feature of the present theory is that it has only 

four unknowns, contrary to the case of first order shear 

deformation theory and other higher order theories where 

five unknowns are required. The present theory satisfies the 

tensile conditions of the upper and lower surfaces of the 

plates without the use of a shear correction factor. From the 

mathematical formulation of the current theory, it has been 

observed that, due to four unknown variables, the current 

theory requires less computational effort compared to five 

and six variable shear deformation theories. The numerical 

results and discussion suggest that the current theory is in 

good agreement, while predicting the flexural, buckling and 

free vibration behavior of laminated composite plates. 
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