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Abstract.

In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear

deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four
unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane
kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed
theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear
correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work
principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The
stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with
other published data where a good agreement between results is demonstrated.
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1. Introduction

Since the structures made of composite materials are
used in a growing way in many engineering industries
because of their attractive characteristics, such as strength,
stiffness, reduced weight, thermal characteristics, resistance
to corrosion, fatigue life, and resistance to wear. The plates
fabricated with these materials require accurate structural
investigation to predict the correct flexural behavior.

The influence of transverse shear strain is more
important in thick structures than in thin ones. Thus, various
plate models have been proposed by scientists to predict
correct flexural behavior of thick structures. The
conventional plate theory (CPT) of Kirchhoff (1850) is not
applicable to thick structures because of the neglect of
transverse shear deformation (Sofiyev and Avcar 2010,
Sofiyev et al. 2008, 2012, Bilouei et al. 2016, Avcar and
Mohammed 2018, Cherif et al. 2018). The first order shear
deformation theory (FSDT) proposed by Mindlin (1951) is
also not interesting for the investigation since it does not
verify the conditions of zero stress at upper and bottom
faces of the plate and requires factors of shear correction
(Avcar 2015, Al-Basyouni et al. 2015, Arani and Kolahchi
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2016, Bellifa et al. 2016, Madani et al. 2016, Kolahchi et
al. 2016a, b, Bouderba et al. 2016, Zamanian et al. 2017,
Kolahchi 2017, Amnieh et al. 2018, Youcef et al. 2018).
Thus, many high order shear deformation theories have
been proposed for the investigation of plates (Reddy 1984,
Reddy and Khdeir 1989, Touratier 1991, Soldatos 1992,
Metin 2009, Karama et al. 2009, Sayyad and Ghugal 2012,
Rezaiee-Pajand et al. 2012, Sayyad 2013, Belabed et al.
2014, Sayyad and Ghugal 2014, Bousahla et al. 2014,
Ghugal and Sayyad 2013, Ahmed 2014, Hebali et al. 2014,
Zemri et al. 2015, Mahi et al. 2015, Panda and Katariya
2015, Kolahchi and Moniri Bidgoli 2016, Bennoun et al.
2016, Beldjelili et al. 2016, Bousahla et al. 2016, Akavci
2016, Baseri et al. 2016, Kolahchi et al. 2017a, b, c,
Abdelaziz et al. 2017, Hajmohammad et al. 2017, Aldousari
2017, Kolahchi and Cheraghbak 2017, Mouffoki et al.
2017, Bouafia et al. 2017, Hajmohammad et al. 2018a, b, c,
Golabchi et al. 2018, Salami and Dariushi, 2018, Kadari et
al. 2018, Karami et al. 2018a, b, Bouadi et al. 2018,
Mokhtar et al. 2018, Fakhar and Kolahchi 2018, Hosseini
and Kolahchi 2018, Taleb et al. 2018).

In the recent decade, a novel class of plate models has
been proposed by scientists in which kinematic involves
only four variables. Shimpi and Patel (2006) are the first to
use a plate model involving two variables for bending and
dynamic study of orthotropic plates. This model is further
extended by Bouderba et al. (2013), Tounsi et al. (2013),
Zidi et al. (2014) and Hamidi et al. (2015) for the thermo-
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Fig. 1 Coordinate system and layer numbering used for a
typical laminated plate

mechanical effect on bending response of functionally
graded plates considering four and five variables. Meziane
et al. (2014) also employed this theory for the stability and
dynamic of exponentially graded sandwich structures under
various boundary conditions. Yahia et al. (2015) used this
theory for analyzing wave propagation in functionally
graded plates with porosities. Draiche et al. (2016)
presented a refined theory with stretching effect for the
flexure analysis of laminated composite plates. Karami et
al. (2017) used a nonlocal strain gradient theory and four
variable refined plate theory to present the wave
propagation analysis in functionally graded (FG) nanoplates
under in-plane magnetic field.

Recently, another new class of plate models has been
presented in literature in which in the kinematic is
introduced undetermined integral terms to reduce the
number of governing equations (El-Haina et al. 2017,
Menasria et al. 2017, Chikh et al. 2017, Benahmed et al.
2017, Bellifa et al. 2017a, Khetir et al. 2017, Besseghier et
al. 2017, Fahsi et al. 2017, Abualnour et al. 2018,
Benchohra et al. 2018, Bouhadra et al. 2018, Attia et al.
2018).

In the present work, an attempt is carried out to verify
the efficiency of four variable refined shear deformation
theory for the flexural, stability and dynamic investigation
of composite plates. Undetermined integral terms in in-
plane displacements are employed in the kinematics of the
model to consider the shear deformation influences. The
model respects conditions of zero shear stress at bottom and
top surfaces of the plates. The model does not require
problem dependent shear correction coefficient. Equations
of motion are determined by considering the virtual work
principle. Analytical solution is found by using a double
trigonometric series method proposed by Navier. Finally,
the results computed by utilizing present model are
compared with exact elasticity solutions reported by Pagano
(1970) for bending, Noor (1973) for dynamic and Noor
(1975) for stability analysis of laminated composite plates.

2. Theoretical formulation

Consider a rectangular plate of the sides a and b, a
constant thickness h and origin o as shown in Fig. 1. The
plate consists of n number of homogenous layers which are
perfectly bounded and made up of linearly elastic and
orthotropic material. The plate occupies the region 0 < x <
a, 0 <y <b, -h/2 <z <h/2 in Cartesian coordinate system.
A transverse load q(x, y) is applied on the upper surface of
the plate.

2.1 Kinematics and strains

In the unified shear-deformable plate theory, the
displacement field at a point in the laminated plate is
expressed as (Bakhadda et al. 2018)

U(X,¥,2) = Uy (X, y) - z% + @D, (%Y)

V0. 2) =%l -2 S 1@ )

W(X, Y, 2) = Wo (X, Y)

where u, v, and w are the displacements along x, y, and z
directions, respectively, Ug, Vo, Wo, ¢x, and ¢, are five
unknown displacement functions of the mid-plane of the

plate. By assuming (px(x,y):J.Q(X,y)dX and

o, (X, y):IQ(X, y)dy , the displacement field of the

present theory can be rewritten with four unknowns is
expressed as (Sekkal et al. 2017a, b, Bourada et al. 2018,
Fourn et al. 2018, Yazid et al. 2018, Younsi et al. 2018,
Zine et al. 2018, Meksi et al. 2019, Zaoui et al. 2019)

u(x,y,z) =uy(x,y)— z% +k, f (z)j@(x, y)dx
OX

V0.2 =) -2 ZE ke @ 0y O

W(X, yv Z) = WO(X! y)

It is clear that #(X,y) is a mathematical term that allows
obtaining the rotations of the normal to the midplate about
the x and y axes. The constants k; and k> depends on the
geometry and f(z) denote a shape function determining the
changes in the transverse shear strain and the stress
distribution along the thickness of the plate and is defined
as (Touratier 1991).

f(2) = (gjsm(%zj @)

The strains associated with the present theory are
obtained using strain-displacement relationship from theory
of elasticity
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The integrals used in the above relations shall be
resolved by a Navier solution and can be expressed by

_I ,
ae
oy

where the parameters 4” and B’ are defined according to the

—j@d A'
)

Iédx A _[6d =B'—

type of solution employed, in this case via Navier. Hence, 4’

and B’ are expressed by

1 1
A'= -—— B'= - 2
o B 8
kz = ﬂz
where o and g are defined in expression (21).
2.2 Constitutive relations

Since the laminate is made of several orthotropic layers,
the stress-strain relations in the kth layer of the laminated
plate in the material coordinate axes are given by

o, (k) _611 612 615 0 0 7(k) £, (k)

GY 912 922 926 0 0 g}’

z-xy = Qle st Qse 0 0 7/Xy (9)
7, 0 0 0 Q, 0] |7

T, 0 0 0 0 Qg |V

where 6”
kth orthotropic layer expressed as

are the transformed material constants of the

Q:,=Q,,005*, +2(Q,, + 2Q,,)sin? ¢, cos? 6§, +Q,,sin‘ 6,

Qs, = (Q +Qy - 40, Jsin? 4, cos? 6, + Qysin* 6, +cos* 4, )

Qs = Q- 0y, — 2Q4, )sinG, cos™ 6, +(Qu, ~Qyy + 2Qs, )sin* 4, cos6,

Qy, = Qusin‘ 6, +2(Qy, + 2Q,;)sin? §, cos? 4, +Q,,c0s* 6,

Qs = Q- Qu, ~ 20, )sin 6, cos* 6, +(Q,, ~ Qu, + 2Q,;)c0s 6, +5in° 6, (10)

Q66 (Q,+Q,,—2Q,, - 2Q,,)sin” 6, cos? 6, +Q66(sm 6, +cos (9)

Q44 = QMcos 0, +Q555|n 0,

Qs = (Qus - Qui)c0s 4 sin,

655 = stcoszek +Q445in29k
where 6 is the angle of material axes with the reference
coordinate axes of each lamina and Qj are the plane stress-

reduced stiffness coefficients defined in terms of the
engineering constants in the material axes of the layer

E22

v,,E
Q= Q= Q=1 (11a)

1 V12 21 1-vyvy 1-vivy

Qee = G12’ Q44 = G23a Q44 = G231 Q55 = Gl3 (11b)

2.3 Equations of motion

The governing equations and boundary conditions of the
present higher order shear deformation theory are derived
using principle of virtual work. The principle of virtual
work is applied in the following analytical form (Attia et al.
2015, Larbi Chaht et al. 2015, Bourada et al. 2015,
Belkorissat et al. 2015, Ahouel et al. 2016, Boukhari et al.
2016, Bounouara et al. 2016, Houari et al. 2016, Hachemi
et al. 2017, Bellifa et al. 2017b, Klouche et al. 2017, Zidi et
al. 2017, Benadouda et al. 2017, Karami et al. 2018c, Kaci
et al. 2018, Belabed et al. 2018, Bourada et al. 2019)

hi2
J .[(axﬁgx +0,06,+1,0, +7,0/, +1H67ﬂ)jAdz +

-h/2 A

hi2 (A2 2, A2
[ [p a—;au 6—25\/ 6a/deAdz (12)
“hi2A a2 a? o a?

2 2
(x y)owdA- j[ NP 002w o0 DBl g

6x2 y ayz XY oxay

where A is the area of the top surface of the plate, p is the
g(x,y) and NS, NS, Ngy are

transverse and in-plane applied loads, respectively. The
symbol ¢ denotes the variational operator. Substituting
expressions for stresses and virtual strains into the principle
of virtual work and integrating Eq. (12) by parts and
collecting the coefficients of duo, dvo, dwo and 66, the
following equations of motion of the plate are obtained in
terms of stress resultants

density of material,
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where V2 is the Laplacian operator in two-dimensional
Cartesian coordinate system and the stress resultants

(N, Ny, N) o (ME, ME, ME) L (MS, ME, M) and

(S5, S;,) aredefined as

(NX,Ny,NXy):Zn:ZM(O'X,O'y,TW z,

k=L 7,
(MMM )= (o0 7 Ject,

- sz: (14)
Mm:mim:)=Y [(o,.0,7,)f (2)dz,

k=l 7,
©2.Q)=3 [(..7 oz

k=1 5

and the inertia constants (i=0, 2, 3, 4, 5) are defined by the
following equations

(Io’ |1' |2. |3! |4! Is):

anTp 2,22, 1(2),2 T (2).[f @) bz

klzk

(15)

by substituting the stress—strain relations expressed by Eqg.
(9) into the definitions of force and moment resultants of
the present theory given in Eq. (14), the following equations
are obtained

NX _An Aiz Ala“Bu Blz 816 E11 ElZ E1e_ SS
NY Ay Ay Ag|By By BylEy By Ey gg
NXV A61 Aez Aee_,Bei Bez Bee E61 Eez Eae_ Ty
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where the plate stiffnesses Ajj, Bij, Dij, Ejj, Fij, Hij and Aj are
defined as follows

(AiJ,BDEFH)

ijr Mijr =i Vg
Zk+1 1 2 f f
j bt . (2.2 1) dz, i, j = (17a)
pri] [f(2)]
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=> [Q¥lo@Tdz, i,j=45 )
k=1 7,

Substituting the stress resultants in terms of unknown
displacement variables from Eq. (16) into the Eg. (13), the
equations of motion of the present theory can be rewritten
as
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2.4 Analytical solution for laminated composite plates

The Navier approach is employed to determine the
analytical solutions for the bending, buckling and free
vibration analysis of laminated rectangular plates simply
supported. The following simply supported boundary
conditions at all four edges are given by

Up=W, =N, =M} =M>=60=0 onedges (x=0,2) (19a)

Vo =W, =N, ZMS =M’ =60=0 onedges (=0, ) (19b)

The displacement variables which automatically satisfy
the above boundary conditions can be expressed in the
following Fourier series

U, U, cos(a x)sin(S y)e' "
Vo | && |V, sin(a x)cos(By)e "
W, E; W, sin(a x)sin(B y)e'“" 20)
0 @ sin(a x)sin(B y)e'"

where Umn, Vin, Wmn and ®m, are the unknown Fourier
coefficients to be determined for each (m, n) value, as well
as the parameters ¢ and f are defined as

a=mrla, f=nzxlb (21)

The transverse load q(x, y) is expanded in the double-
Fourier sine series as

q(x, y) = if‘,q sin(a x)cos(BY) (22)

m=1 n=1

where mn=(o for sinusoidally distributed load m=1, n=1
and qo is the maximum intensity of distributed load at the
centre of plate.

Substitution this form of solution Eg. (20) and
transverse load Eq. (22) into the equations of motion (18)
leads to the following matrix form

Kll K12 K13 K14 Mll MlZ M13 M14 Umn 0
K12 KZZ 23 K24 _wz MlZ MZZ M23 M24 an - 0 (23)
K13 KZ3 K33 + N33 K34 M13 MZ3 M33 M34 Wmn qmn
K14 K24 K34 KM M14 M24 M34 M44 cDmn 0

And the values of in-plane compressive forces are
assumed as follows

N = —(N%a? + N°4?) (24)

where the parameter Ns; refers to the corresponding
buckling load and can be expressed as

Ny =k,Ny, NJ=k,N, and N3 =0 (25

Eq. (23) is a general form for bending, buckling and free
vibration analysis of simply supported laminated composite
square and rectangular plates subjected to in-plane
compressive and transverse loads. In order to solve bending
problem, the in-plane compressive load Noand mass matrix

Table 1
ah  Theory u W o, Uy Z'Xy Ty Ty
4 Present 00114 19766 09143 0.0889 0.0577 0.1274 0.1274
Sayyad et
a0l 00114 19793 09154 00890 00578 0.0660 0.1276
Sayyad and
Ghugal  0.0111 1.9424 0.9062 0.0964 0.0562 0.1270 0.1270
(2014a)
Reddy
(ogs) 00114 20256 09172 00932 00713 01270 0.1270
Mindlin
(1051) 00088 19682 07157 00843 00525 00910 00910
Kirchhoff
(g5 00088 10636 07157 00843 00525 —
Pagano
(oy0) 20670 08410 01090 00591 01200 0.1350
10  Present 00093 1.2132 07483 0.0851 0.0533 0.1304 0.1304
Sayyad el 503 12135 07484 00851 00534 01270 0.1306
al. (2016)
Sayyad and
Ghugal  0.0092 1.2089 0.7471 0.0876 0.0530 0.1300 0.1300
(2014a)
Reddy
(log4) 00095 12479 07652 00839 00680 01310 01310
'\("l'g;“l')” 0.0088 12083 07157 0.0843 0.0525 0.0910 0.0910
Kirchhoff
(gsp) 00088 10636 07157 00843 00525  — -
Pagano
1070) 12250 0.7302 0.0886 0.0535 0.1210 0.1250

zh

0.25

—=— Present

—o— Sayyad et al. (2016)
—A— Reddy (1984)
—v—FSDT

—CPT

050
0

Fig. 2 Through thickness distribution of in-plane

displacement (U ) for two layered (0°/90°) laminated
composite plate subjected to sinusoidally distributed load
(b/a=1, a/h=10)

|M;| are set to zeros. However, the critical buckling loads
N, can be obtained from the stability problem |K;;|=0, while
the free vibration problem is achieved by omitting both in-
plane and transverse loads.

3. Discussion of numerical results
3.1 Bending analysis of laminated composite plates
The following material properties are employed for the
bending investigation of simply supported anti-symmetric

laminated composite square plates under sinusoidally
distributed load.



330 Abdelmoumen Anis Bousahla et al.

050
z/h

—a— Present

—e— Sayyad et al. (2016)

—A— Reddy (1984)

—v—FSDT

—<—CPT

0.25

0-06 Py

050

Fig. 3 Through thickness distribution of in-plane normal

stress (o x) for two layered (0°/90°) laminated composite
plate subjected to sinusoidally distributed load (b/a=1, a/h=
10)

E11 = 25E22, Glz = GlS = 0-5E22 )

E 26

623 = 02E22 s V12 = 025 , V21 = E_ZZV]_Z ( )
11

The displacements and stresses are presented in the
following non-dimensional form.

7[ b hj uE,h? ,

ul o, 5.—5 |=

2’ 2 gq.,a’®

— 3

W[E,E,Oj—100Wh4E2 ’
2 2 gpa

P G(ab_h],
“ogea® 2’2" 2
7=t (200,
Y oga® Y\2'2" 2
2
Ty = q?az Ty (0,0,—2)!
_ h

ro= e (080) 7= e, (2.00)
goa 2 goa 2

In this numerical example, the effectiveness of the
current theory is demonstrated for the bending analysis of
simply supported two layered (0°/90°) anti-symmetric
laminated composite square plates subjected to sinusoidally
distributed load. The non-dimensional displacement and
stresses computed employing the present model are
compared and discussed with those reported by (CPT) of
Kirchhoff (1850), FSDT of Mindlin (1951), higher order
shear deformation theory (HSDT) of Reddy (1984),
sinusoidal shear and normal deformation theory (SSNDT)
of Sayyad and Ghugal (2014a) and exact elasticity solution
provided by Pagano (1970). The non-dimensional results
are presented in Table 1.

It is seen that the in-plane displacement computed by
present theory is in good agreement with other models.
In-plane displacement is maximum in 90° layer whereas
minimum in 0° layer (Fig. 2).

The proposed model underestimates the value of
transverse displacement for aspect ratio 4 but it is in good

(27)

N

0.50

z/h
—=— Present

—e— Sayyad et al. (2016)
—a— Reddy (1984)

0259 —v—FSDT

—<4—CPT

-0.25 4

0.50

Fig. 4 Through thickness distribution of in-plane shear

stress (Txy ) for two layered (0°/90°) laminated composite

plate subjected to sinusoidally distributed load (b/a=1, a/h=
10)

0.50

zh
—=— Present
—e— Sayyad et al. (2016)
0.25 1 —A— Reddy (1984)
—v—FSDT
0.00 ¥ AR
0.0 0.08 0.16 024

-0.25

-0.50
Fig. 5 Through thickness distribution of transverse shear

stress (7xz) for two layered (0°/90°) laminated composite
plate subjected to sinusoidally distributed load (b/a=1, a/h=
10)

N
0 —» — Nu
L I y —
|, ‘ |
1 l} x [—
—» [
> a4 —— |
. -
(a) Uniaxial compression
A N A A
N, N
T 1"
.lr) x
or

3 A N O O O A
(b) Biaxial compression

Fig. 6 A simply supported plate subjected to in-plane
compressive forces
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Table 2 Comparison of critical buckling load (N.) for
simply supported laminated composite square plates under
uniaxial and biaxial compression (a/h= 10)
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Table 3 Comparison of critical buckling load N..) for
simply supported four layered (0°/90°/90°/0°) laminated
composite rectangular plates under uniaxial and biaxial

Eu/E2
Lay-up Compression  (ki,kz)  Theory
20 30 40
0/90/0 Uniaxial 1,0) Present  16.236  21.440  25.983
Sayyad et
al. (2016) 15215 20.428  24.977
Sayyad and
Ghugal  15.003 19.002  22.330
(2014b)
Turan et al.
(2017) 16.223  21.435 25.982
Reddy
(1984) 15.300 19.675 23.339
FSDT 14985 19.027 22.315
CPT 19.712 27.936 36.160
Noor
(1975) 15.019 19.304 22.880
Biaxial 1,1 Present  8.1184 10.720 12.992
Sayyad et
al. (2016) 7.6075 10.214  12.488
Sayyad and
Ghugal  7.5014 9.5009 11.165
(2014b)
Turan et al.
(017) 7.6500 9.8376  11.669
Reddy
(1984) 7.4925 95135 11.157
FSDT 9.8560 13.968  18.080
CPT 7.5095 9.6520 11.440
0/90/0/90/0 Uniaxial (1,0) Present 16.236  21.440 25.983
Sayyad et
al. (2016) 16.234 21.435 25.976
Sayyad and
Ghugal  15.828 20.643  24.756
(2014b)
Turan et al.
(2017) 15.783  20.578 24.676
Reddy
(1984) 15.736  20.485  24.547
FSDT 19.712  27.936  36.160
CPT 15.653 20.466  24.593
Biaxial 1,1 Present 8.118 10.720  12.992
Sayyad et
al. (2016) 8.117 10.717  12.988
Sayyad and
Ghugal 7.9140 10.321 12.378
(2014b)
Turan et al.
(2017) 7.8915 10.289 12.338
Reddy
(1984) 7.8680 10.240 12.273
FSDT 9.8560 13.968  18.080
CPT 7.8265 10.466  12.296

agreement with exact solution and other higher order

models for aspect ratio 10.

Fig. 3 demonstrates that, in-plane normal stress (0, )

computed by the proposed theory is in close agreement with
that of other models.

The in-plane shear stress (;xy) is presented in Fig. 4

where a good agreement is demonstrated between other
theories. The proposed model predicts good values of

transverse shear stress (7 xz) as is shown in Fig. 5.

compression

b/a
Compression  (ki,kz) a/h  Theory
2 3 4
Uniaxial 1,0) 5 Present  14.236  9.953 9.092 8.779
Sayyad et
al. (2016) 14181  9.950 9.091 8.778
Sayyad
and 11986 8780 8463  8.382
Ghugal ’ ' ' ’
(2014b)
FSDT 12.146  8.673 8.357 8.279
CPT 36.160 29.833 29.259 29.102
10 Present  25.983 19.792 18.708 18.315
Sayyad et
al. (2016) 25.908 19.785 18.705 18.313
Sayyad
and
23.387 18,500 18.057 17.941
Ghugal
(2014b)
FSDT 23453 18398 17.962 17.849
CPT 36.160 29.833 29.259 29.102
100 Present 36.017 29.682 29.094 28.931
Sayyad et
al. (2016) 36.016 29.682 29.094 28.931
Sayyad
and
35.961 29.652 29.080 28.924
Ghugal
(2014b)
FSDT 35.956 29.648 29.077 28.921
CPT 36.160 29.833 29.259 29.102
Biaxial 1,1) 5 Present  7.1181 7.9624 8.1826 8.2625
Sayyad et
al. (2016) 7.0900 7.9600 8.1820 8.2620
Sayyad
and 59934 7.0244 7.6171 7.8896
Ghugal ' ' ' '
(2014b)
FSDT 6.0730 6.9387 7.5216 7.7928
CPT 18.080 23.866 26.333 27.390
10 Present  12.992 15.834 16.837 17.238
Sayyad et
al. (2016) 12954 15828 16.834 17.236
Sayyad
and 11604 14800 16.251 16.886
Ghugal ’ ) ’ ’
(2014b)
FSDT 11.726 14719 16.166 16.799
CPT 18.080 23.866 26.333 27.390
100 Present 18.009 23.746 26.185 27.229
Sayyad et
al. (2016) 18.008 23.746 26.185 27.229
Sayyad
and
17.980 23722 26.172 27.223
Ghugal
(2014b)
FSDT 17978 23718 26.169 27.219
CPT 18.080 23.866 26.333 27.390

3.2 Buckling analysis of laminated composite plates

A simply supported laminated composite square and
rectangular plates under the uniaxial and biaxial loading
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Table 4 Comparison of non-dimensional natural frequencies
of simply supported square laminated composite plates
(a/h=10)

E11/E2

Lay-up Theory
10 20 30 40

0/90 Present 0.27986 0.31352 0.34126 0.36494

Sayyad et al. (2016) 0.27987 0.31354 0.34128 0.36498

Sayyad and Ghugal (2015)  0.28060 0.31415 0.34181 0.36543

Reddy (1984) 0.27955 0.31284 0.34020 0.36348

FSDT 0.27757 0.30824 0.33284 0.35353

CPT 0.30968 0.35422 0.39335 0.42884

Noor (1975) 0.27938 0.30698 0.32705 0.34250

0/90/0 Present 0.34307 0.40639 0.44507 0.47162

Sayyad et al. (2016) 0.34261 0.40623 0.44502 0.47162

Sayyad and Ghugal (2015)  0.32696 0.37037 0.39498 0.41176

Reddy (1984) 0.33095 0.38112 0.41094 0.43155

FSDT 0.32739 0.37110 0.39540 0.41158

cPT 0.42599 0.55793 0.66419 0.75565

Noor (1975) 0.32841 0.38241 0.41089 0.43006

0/90/0/90 Present 03277 03848 0.4210 0.4465
Sayyad et al. (2016) 03422 0.4055 0.4441 0.4706

Sayyad and Ghugal (2015)  0.3319 0.3821 0.4119 0.4324

Reddy (1984) 03308 0.3810 0.4108 0.4314

FSDT 03319 0.3826 04130 0.4341

CPT 04260 05579 0.6642 0.7556

Noor (1975) 03257 0.3762 0.4066 0.4272

0/90/0/90/0 Present 03431 04064 04450 0.4716
Sayyad et al. (2016) 03430 04063 04449 0.4715

Sayyad and Ghugal (2015)  0.3384 0.3950 0.4287 0.4518

Reddy (1984) 0.3399 0.3994 0.4350 0.4592
FSDT 0.3368 0.3930 0.4271 0.4506
CPT 0.4259 0.5579 0.6641 0.7556

Noor (1975) 0.3408 0.3979 0.4314 0.4537

conditions, as presented in Fig. 6, is considered to prove the
accuracy of the proposed model in predicting the buckling
behavior. The following material properties are employed in
the numerical study

N, =(Noa’)/(Exh*) (28)

A comparison of the critical buckling load parameters
determined by the proposed model for a three layered
(0°/90°/0°) and five layered (0°/90°/0°/90°/0°) symmetric
cross-ply laminated composite square plates subjected to
uniaxial and biaxial compressions for various modular
ratios (E11/E2,) is illustrated in Table 2.

The results of proposed model are compared with HSDT
of Reddy (1984), SSNDT of Sayyad and Ghugal (2014b),
Sayyad et al. (2016), Turan et al. (2017) FSDT of Mindlin
(1951) and CPT of Kirchhoff (1850) and exact elasticity
solution given by Noor (1975). It can be observed from

Table 2 that the present results are in good agreement with
other ones. It is also shown that the buckling loads given by
CPT are significantly higher than those obtained by the
proposed model. This is the consequence of omitting the
transverse shear deformation influence in the CPT. It can be
seen that the critical buckling loads in case of biaxial
compression are exactly half of those of uniaxial
compression for square plates.

Table 3 presents the critical buckling force parameter
for four layered (0°90°/90°/0°) symmetric laminated
composite rectangular plate. The numerical results are
determined for different values of b/a ratios and a/h ratios.
From Table 3 it is seen that the critical buckling load
increases with respect to increase in b/a and a/h ratios. It is
also pointed out that the proposed model is in good
agreement while predicting the buckling response of
rectangular laminated composite plates.

3.3 Free vibration analysis of laminated composite
plates

For this study, the material properties given by Eq. (28)
are employed. Natural frequencies are presented in the
following non-dimensional form

w=0ph’ IE, (30)

In Table 4, non-dimensional natural frequencies of
simply supported square laminated composite plates for
different modular ratios (E11/E2) are given and compared
with those predicted SSNDT of Sayyad and Ghugal (2015),
Sayyad et al. (2016), HSDT of Reddy (1984), FSDT of
Mindlin (1951), CPT of Kirchhoff (1850) and exact
elasticity solution provided by Noor (1975). From the Table
4 it is seen that the proposed model is in good agreement
while predicting the natural frequencies of laminated
composite plates. The CPT overestimates the natural
frequencies due to neglecting the transverse shear
deformation influence. It is also noticed that the natural
frequencies of laminated composite plates increase with
respect to increase in modular ratios (E11/E22).

4. Conclusions

In the present investigation, a refined sinusoidal shear
deformation theory is utilized for the bending, buckling and
dynamic analysis of laminated composite plates. The most
important feature of the present theory is that it has only
four unknowns, contrary to the case of first order shear
deformation theory and other higher order theories where
five unknowns are required. The present theory satisfies the
tensile conditions of the upper and lower surfaces of the
plates without the use of a shear correction factor. From the
mathematical formulation of the current theory, it has been
observed that, due to four unknown variables, the current
theory requires less computational effort compared to five
and six variable shear deformation theories. The numerical
results and discussion suggest that the current theory is in
good agreement, while predicting the flexural, buckling and
free vibration behavior of laminated composite plates.
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